1,292 research outputs found

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning

    03411 Abstracts Collection -- Language Based Security

    Get PDF
    From October 5th to 10th 2003,the Dagstuhl Seminar 03411 ``Language Based security\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper

    Choreographies with Secure Boxes and Compromised Principals

    Get PDF
    We equip choreography-level session descriptions with a simple abstraction of a security infrastructure. Message components may be enclosed within (possibly nested) "boxes" annotated with the intended source and destination of those components. The boxes are to be implemented with cryptography. Strand spaces provide a semantics for these choreographies, in which some roles may be played by compromised principals. A skeleton is a partially ordered structure containing local behaviors (strands) executed by regular (non-compromised) principals. A skeleton is realized if it contains enough regular strands so that it could actually occur, in combination with any possible activity of compromised principals. It is delivery guaranteed (DG) realized if, in addition, every message transmitted to a regular participant is also delivered. We define a novel transition system on skeletons, in which the steps add regular strands. These steps solve tests, i.e. parts of the skeleton that could not occur without additional regular behavior. We prove three main results about the transition system. First, each minimal DG realized skeleton is reachable, using the transition system, from any skeleton it embeds. Second, if no step is possible from a skeleton A, then A is DG realized. Finally, if a DG realized B is accessible from A, then B is minimal. Thus, the transition system provides a systematic way to construct the possible behaviors of the choreography, in the presence of compromised principals

    Privacy Architectures: Reasoning About Data Minimisation and Integrity

    Get PDF
    Privacy by design will become a legal obligation in the European Community if the Data Protection Regulation eventually gets adopted. However, taking into account privacy requirements in the design of a system is a challenging task. We propose an approach based on the specification of privacy architectures and focus on a key aspect of privacy, data minimisation, and its tension with integrity requirements. We illustrate our formal framework through a smart metering case study.Comment: appears in STM - 10th International Workshop on Security and Trust Management 8743 (2014

    A Formal Analysis of 5G Authentication

    Get PDF
    Mobile communication networks connect much of the world's population. The security of users' calls, SMSs, and mobile data depends on the guarantees provided by the Authenticated Key Exchange protocols used. For the next-generation network (5G), the 3GPP group has standardized the 5G AKA protocol for this purpose. We provide the first comprehensive formal model of a protocol from the AKA family: 5G AKA. We also extract precise requirements from the 3GPP standards defining 5G and we identify missing security goals. Using the security protocol verification tool Tamarin, we conduct a full, systematic, security evaluation of the model with respect to the 5G security goals. Our automated analysis identifies the minimal security assumptions required for each security goal and we find that some critical security goals are not met, except under additional assumptions missing from the standard. Finally, we make explicit recommendations with provably secure fixes for the attacks and weaknesses we found.Comment: Categories (ACM class 2012): Security and privacy - Formal methods and theory of security -- Security requirements -- Formal security models -- Logic and verification; Network protocols - Protocol correctness -- Formal specifications; Security and privacy - Network security -- Mobile and wireless security - Security services -- Privacy-preserving protocol

    Agile cryptography:A universally composable approach

    Get PDF
    Being capable of updating cryptographic algorithms is an inevitable and essential practice in cryptographic engineering. This cryptographic agility, as it has been called, is a fundamental desideratum for long term cryptographic system security that still poses significant challenges from a modeling perspective. For instance, current formulations of agility fail to express the fundamental security that is expected to stem from timely implementation updates, namely the fact that the system retains some of its security properties provided that the update is performed prior to the deprecated implementation becoming exploited. In this work we put forth a novel framework for expressing updateability in the context of cryptographic primitives within the universal composition model. Our updatable ideal functionality framework provides a general template for expressing the security we expect from cryptographic agility capturing in a fine grained manner all the properties that can be retained across implementation updates. We exemplify our framework over two basic cryptographic primitives, digital signatures and non-interactive zero-knowledge (NIZK), where we demonstrate how to achieve updateability with consistency and backwards-compatibility across updates in a composable manner. We also illustrate how our notion is a continuation of a much broader scope of the concept of agility introduced by Acar, Belenkiy, Bellare, and Cash in Eurocrypt 2010 in the context of symmetric cryptographic primitives

    DY* : A Modular Symbolic Verification Framework for Executable Cryptographic Protocol Code

    Get PDF
    International audienceWe present DY*, a new formal verification framework for the symbolic security analysis of cryptographic protocol code written in the F* programming language. Unlike automated symbolic provers, our framework accounts for advanced protocol features like unbounded loops and mutable recursive data structures, as well as low-level implementation details like protocol state machines and message formats, which are often at the root of real-world attacks. Our work extends a long line of research on using dependent type systems for this task, but takes a fundamentally new approach by explicitly modeling the global trace-based semantics within the framework, hence bridging the gap between trace-based and type-based protocol analyses. This approach enables us to uniformly, precisely, and soundly model, for the first time using dependent types, long-lived mutable protocol state, equational theories, fine-grained dynamic corruption, and trace-based security properties like forward secrecy and post-compromise security. DY* is built as a library of F* modules that includes a model of low-level protocol execution, a Dolev-Yao symbolic attacker, and generic security abstractions and lemmas, all verified using F*. The library exposes a high-level API that facilitates succinct security proofs for protocol code. We demonstrate the effectiveness of this approach through a detailed symbolic security analysis of the Signal protocol that is based on an interoperable implementation of the protocol from prior work, and is the first mechanized proof of Signal to account for forward and post-compromise security over an unbounded number of protocol rounds

    Synthesising end-to-end security schemes through endorsement intermediaries

    Get PDF
    Composing secure interaction protocols dynamically for e-commerce continue to pose a number of challenges, such as lack of standard notations for expressing requirements and the difficulty involved in enforcing them. Furthermore, interaction with unknown entities may require finding common trusted intermediaries. Securing messages sent through such intermediaries require schemes that provide end-to-end security guarantees. In the past, e-commerce protocols such as SET were created to provide such end-to-end guarantees. However, such complex hand crafted protocols proved difficult to model check. This thesis addresses the end-to-end problems in an open dynamic setting where trust relationships evolve, and requirements of interacting entities change over time. Before interaction protocols can be synthesised, a number of research questions must be addressed. Firstly, to meet end-to-end security requirements, the security level along the message path must be made to reflect the requirements. Secondly, the type of endorsement intermediaries must reflect the message category. Thirdly, intermediaries must be made liable for their endorsements. This thesis proposes a number of solutions to address the research problems. End-to-end security requirements were arrived by aggregating security requirements of all interacting parties. These requirements were enforced by interleaving and composing basic schemes derived from challenge-response mechanisms. The institutional trust promoting mechanism devised allowed all vital data to be endorsed by authorised category specific intermediaries. Intermediaries were made accountable for their endorsements by being required to discharge or transfer proof obligations placed on them. The techniques devised for aggregating and enforcing security requirements allow dynamic creation of end-to-end security schemes. The novel interleaving technique devised allows creation of provably secure multiparty schemes for any number of recipients. The structured technique combining compositional approach with appropriate invariants and preconditions makes model checking of synthesised schemes unnecessary. The proposed framework combining endorsement trust with schemes making intermediaries accountable provides a way to alleviate distrust between previously unknown e-commerce entities
    corecore