3,164 research outputs found

    Brownfield Factory Layout Planning using Realistic Virtual Models

    Get PDF
    To stay competitive in an increasingly digitalised and global context, manufacturing companies need to increase productivity and decrease waste. This means their production systems must improve; something they can achieve in a multitude of ways. For example, increasing the level of automation, improving scheduling and improving product and process flows. Often, these production system improvements entail redesigning the system to incorporate these ensuing changes; a unique and temporary endeavour that is often structured as a project. One part of the production system design process is layout planning, in which the positions of operators, workstations, machines and other parts of the system are decided. This planning process can have a major impact on the overall efficiency of operations.In industrial settings, factory layout planning is often conducted in brownfield settings. In other words, in operational facilities. Since every production system and facility is unique, so is every factory layout planning project. Each such project has different preconditions, existing knowledge, availability and quality of data, lead-times, expectations and driving forces, to name just a few. If factory layout planning were treated as a design problem (more subjective than mathematical in nature), it would be hard to produce a mathematical solution for an optimal layout that would also work in reality. Instead, if a layout is developed and adapted to all real constraints and factors while it is being developed, the result would more likely be installable and work as expected.The long-term vision of this thesis is of a future in which sustainable manufacturing industry continues playing a vital role in society, because its contribution is more than just economic. A future in which the manufacturing industry is appreciated and engaged with by the local community; in which high performance is connected to the successful adoption and efficient use of digital tools in developing and improving existing brownfield production systems. This thesis aims to ensure that manufacturing industry adopts realistic virtual models in its brownfield factory layout planning processes. It does this by identifying and describing common challenges and how they may be reduced by developing and using realistic virtual models. This leads to improvements in the planning, installation and operational phases of production systems.The findings of this thesis show that brownfield factory layout planning represents a significant proportion of industrial layout planning. Its challenges lie mainly in the areas of data accuracy and richness. There are difficulties in grasping scale and perspective, communicating ideas and gathering input in the layout planning phase. By applying 3D laser scanning to provide accurate data and virtual reality to provide immersion and scale, realistic virtual models have been created. These reduce or eliminate the challenges stated above and allow more employees to be involved in the layout planning process. This, in turn, results in the identification of flaws in the layout and improvements in the early stages, rather than during or after installation. There is also an overall improvement to brownfield factory change processes, with costs that pale by comparison to the total cost of layout changes

    A HOLISTIC APPROACH TO COMPUTER INTEGRATED MANUFACTURING ARCHITECTURE AND SYSTEMS DESIGN

    Get PDF
    This work addresses the problem of finding an improved solution to Computer Integrated Manufacturing (ClM) Architecture and Systems Design. The current approaches are shown to be difficult to understand and use, over complex. In spite of their complexity of approach they lack comprehensiveness and omit many factors and dimensions considered essential for success in today's competitive and often global market place. A new approach to ClM Architecture and Systems Design is presented which offers a simpler, more flexible and more robust format for defining a particular ClM System within a general architectural framework. At the same time this new approach is designed to offer a comprehensive and holistic solution. The research work involved the investigation of current approaches and research and development initiatives focusing particularly on the CIM-OSA and GRAI Integrated methodologies in the field of ClM Architecture. The strengths and weaknesses of the various approaches are examined. Developments in other related fields including manufacturing systems, manufacturing management, information technology and systems generally have been investigated regarding their relevance and possible contribution to an improved solution. The author has built on his practical experience in creating, designing and managing the implementation of a global CIM system. The authors work on several publicly funded collaborative research and development projects relevant to the problem area is described. These include CIM-OSA, IMOCIM and TIQS projects. In the latter two projects the author was instrumental in developing the methodological approach based on a systems approach to business processes in connection with the design of quality and manufacturing systems. Both of these projects have contributed to this work. The author has also participated in the global IMS programme as a rapporteur for the European Commission and this helped to provide a global perspective on the problems of manufacturing companies as they attempt to compete in a world wide market place. The results of this work provide the basis for a radically improved approach to ClM Architecture and Systems Design based on the holistic view of an enterprise. The approach developed supports the business process view of an enterprise; addresses the people and organisational aspects; leads to ClM solutions focused on meeting enterprise goals; and is able to deal with a significantly increased scope and complexity compared with existing methods yet is easily understood and more simple to simple to apply than current approaches

    Design and Implementation of Hierarchical Digital Twins in Industrial Production Environments

    Get PDF
    The increasing requirements for industrial production environments due to customer expectations, the implementation of batch size 1, and further automation of production processes are confronting companies with new challenges. In particular, the emergence of cyber-physical systems is influencing and complicating manufacturing processes by capturing an increasing amount of information within production facilities. Digital twins are an interdisciplinary technology that may solve these issues because they serve to monitor, control, and optimize cyber-physical systems by creating a digital representation of real-world objects. Existing concepts for digital twins usually consider specific and independent objects. This is of limited use for production environments due to a multitude of different machines and associated sensor types. Therefore, we propose a requirements catalog, concept, and prototypical implementation for the hierarchical structuring of digital twins in this paper

    Industry 4.0 in ‘factory economies’

    Get PDF

    Virtual metrology for semiconductor manufacturing applications

    Get PDF
    Per essere competitive nel mercato, le industrie di semiconduttori devono poter raggiungere elevati standard di produzione a un prezzo ragionevole. Per motivi legati tanto ai costi quanto ai tempi di esecuzione, una strategia di controllo della qualità che preveda la misurazione completa del prodotto non è attuabile; i test sono eettuati su un ristretto campione dei dati originali. Il traguardo del presente lavoro di Tesi è lo studio e l'implementazione, attraverso metodologie di modellistica tipo non lineare, di un algoritmo di metrologia virtuale (Virtual Metrology) d'ausilio al controllo di processo nella produzione di semiconduttori. Infatti, la conoscenza di una stima delle misure non realmente eseguite (misure virtuali) può rappresentare un primo passo verso la costruzione di sistemi di controllo di processo e controllo della qualità sempre più ranati ed ecienti. Da un punto di vista operativo, l'obiettivo è fornire la più accurata stima possibile delle dimensioni critiche a monte della fase di etching, a partire dai dati disponibili (includendo misurazioni da fasi di litograa e deposizione e dati di processo - ove disponibili). Le tecniche statistiche allo stato dell'arte analizzate in questo lavoro comprendono: - multilayer feedforward networks; Confronto e validazione degli algoritmi presi in esame sono stati possibili grazie ai data-set forniti da un'industria manifatturiera di semiconduttori. In conclusione, questo lavoro di Tesi rappresenta un primo passo verso la creazione di un sistema di controllo di processo e controllo della qualità evoluto e essibile, che abbia il ne ultimo di migliorare la qualità della produzione.ope

    A Review Of Cloud Manufacturing: Issues And Opportunities

    Get PDF
    Cloud Manufacturing (CM) is the latest manufacturing paradigm that enables manufacturing to be looked upon as a service industry.The aim is to offer manufacturing as a service so that an individual or organization is willing to manufacture products and utilize this service without having to make capital investment.However,industry adoption of CM paradigm is still limited.This paper compared the current adoption of CM by the industry with the ideal CM environment.The gaps between the two were identified and related research topics were reviewed. This paper also outlined research areas to be pursued to facilitate CM adoption by the manufacturing industry.This will also improve manufacturing resource utilization efficiencies not only within an organization but globally.At the end,the cost benefits will be passed down to end customer

    Transformation towards Human Workforce 4.0 through the Qualification Model LTA-FIT

    Get PDF
    Even though digitization is a topic of high interest and promises remarkable benefits for the German manufacturing industry, it is still in its development phase. Thus, necessities arising from it are not predictable, yet. A great obstacle that will occur is the appropriate qualification of employees at all levels, sectors and firm sizes. The integration of new technologies will have radical impact on the role and job profile of all staff members as they alter the requirements across the whole value chain and lead to new processes. Latest studies showed that an insufficient qualification of employees is one of the greatest challenges for a successful digitization. Thus, to regain a globally leading position in the manufacturing industry German companies, especially small and medium sized enterprises (SME), need to qualify their employees appropriately. The LTA-FIT model is an approach that aims to face these challenges

    Identify - Quantify - Obtain Qualifications for Virtual Commissioning

    Get PDF

    How to adapt lean practices in SMEs to support Industry 4.0 in manufacturing

    Get PDF
    Industry 4.0 promises to increase productivity and flexibility for the manufacturing industry, which translates into greater customer value and lower costs. Lean manufacturing has long championed principles and tools with a focus on value adding activities, elimination of waste and continuous improvement. Even the most successful lean manufacturing firms, in terms of efficiency and quality achieved through waste reduction, will acknowledge there is a lot of opportunity for improvement. This review evaluates how lean principles can support Industry 4.0 in pursuit of greater customer value and manufacturing excellence. Leveraging the opportunities that exist within Industry 4.0 umbrella of technologies can help to further reduce the nine wastes of lean. While large corporations have access to extensive capital markets and can capture economies of scale offered by leading edge technologies of Industry 4.0, small and medium sized enterprises (SMEs) with greater capital restraints face the challenge of justifying Industry 4.0 technologies and cannot risk being at the bleeding edge of technology. Using a case study of a small electronics manufacturing firm, the opportunities, challenges, and the implementation strategy for technology are examined. This paper finds that SMEs pursuit of process efficiencies and waste reduction can be best achieved through a focus on foundational digitalization & data management then taking a stepwise approach towards the cyber-physical systems of Industry 4.0
    corecore