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Abstract 
The increasing requirements for industrial 

production environments due to customer expectations, 

the implementation of batch size 1, and further 

automation of production processes are confronting 

companies with new challenges. In particular, the 

emergence of cyber-physical systems is influencing and 

complicating manufacturing processes by capturing an 

increasing amount of information within production 

facilities. Digital twins are an interdisciplinary 

technology that may solve these issues because they 

serve to monitor, control, and optimize cyber-physical 

systems by creating a digital representation of real-

world objects. Existing concepts for digital twins 

usually only consider individual machines without their 

context. This is of limited use for production 

environments due to a multitude of different machines 

and associated sensor types. Therefore, we propose a 

requirements catalog, concept, and prototypical 

implementation for the hierarchical structuring of 

digital twins in this paper.    

 

Keywords: Digital Twin, Hierarchical Digital Twin, 

Industry 4.0, Industrial Production Environment, 

Design Science Research 

1. Introduction  

Due to the influence of globalization and 

digitalization of production and logistics processes to 

meet challenges of the customer, cost, and time 

requirements, there is pressure to modernize the 

production processes in companies. For this purpose, 

production environments, especially machines, have 

been equipped with cyber-physical systems (CPS) to 

make information from the manufacturing environment 

available in real-time which potentially intensifies the 

existing problems of an adequate data presentation in 

industrial productions (Schuh et al., 2021). However, 

the mere availability of real-time data from production 

does not result in an appropriate presentation to the 

relevant groups of people, e.g., shop floor managers 

(Freier & Schumann, 2020; Krüger & Borsato, 2019). 

Digital Twins (DTs) offer an approach that has emerged 

in recent years in research and practice to manage, 

process, and aggregate the generated data, e.g., by CPS. 

Here, DTs reflect physical objects of the real world in 

digital form and enable the monitoring, control, and 

optimization (e.g., via simulation) of these objects via a 

bidirectional data connection (Glaessgen & Stargel, 

2012; Negri et al., 2017). Furthermore, it is potentially 

possible to adjust and simulate the measures before 

applying them to physical objects in the real world 

(Vogt et al., 2021). This data connection may span 

across several life phases of the system (Kuehner et al., 

2021). 

In the context of an industrial production 

environment, especially concerning digitization and 

modernization (Industry 4.0), DTs can map machines 

including their CPS and the volume of generated 

information. DTs of machines are also able, for 

example, to simulate the manufacturing behavior of a 

machine for different products (Müller et al., 2021). 

Although DTs are not a new concept, previous research 

on this topic falls short given the high product 

complexity and manufacturing processes involving a 

large number of production sites or machines (Jiang et 

al., 2021; Kong et al., 2021). Concepts for single DTs 

are only conditionally suitable for a production 

environment since decision-making groups require 

information from different hierarchical levels of the 

production environment. Here, sensors, machines, 

production lines, factories, and companies can be 

mentioned from bottom to top. In addition, the 

interdependencies of machines in connection with the 

manufacturing processes of individual products must be 

mapped to be able to generate the integrated digital 
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image of a manufacturing environment. This problem 

could be solved using the hierarchical structure of DTs 

to display a modern production environment (Jiang et 

al., 2021; Kong et al., 2021). 

Therefore, the goal of this paper is to make a level 1 

research contribution to design science according to 

Gregor and Hevner (2013). We follow their idea by 

providing requirements, a concept, and a prototype 

implementation of Hierarchical Digital Twins (HDT). 

To achieve this goal, we address two research questions: 

RQ1: Which requirements arise for hierarchically 

structured digital twins within industrial production? 

RQ2: How can a prototypical implementation for 

the use of hierarchically structured digital twins in 

industrial production be designed? 

To answer these questions, the remainder of the 

research paper is structured as follows: In Section 2 we 

present the basic concepts and related research of 

industrial production and DTs for a common 

understanding. In addition, we outline the related 

research. In Section 3 we discuss the research method 

following Peffers et al. (2007), and then we present the 

results based on the design science research framework 

in Section 4. Subsequently, the discussion and 

conclusion of the research results follow in Section 5. 

2. Theoretical Foundation and Related 

Research  

In this section, we present the theoretical 

foundation of the work for a common understanding. 

First, the subsections outline the application domain of 

industrial production and the influence of digitization 

and modernization on this very domain in the context of 

Industry 4.0. Second, we discuss DTs and their 

hierarchical arrangement. 

2.1. Industrial Production  

In general, industrial production deals with the 

transformation of input factors into marketable material 

goods. This process usually takes place at a spatially 

defined location of a factory, using machines for this 

purpose (Lasi et al., 2014).  

In the process, industrial production environments 

have become increasingly modernized and digitized. 

CPS, machine-to-machine communication, and 

extensive networking have now become part of 

industrial production and are covered by the term 

"Industry 4.0" (Freier & Schumann, 2020; Lasi et al., 

2014). CPS are embedded, physical systems that 

integrate physical components into their environment 

with the help of sensors and actuators and can interact 

with them. In this context, network and processing 

functions are used to process information. Accordingly, 

the data generated by the machines is aggregated and 

processed on-site, and appropriate responses are 

initiated on this as a result. This is suitable for 

monitoring and controlling physical processes within 

machines of a production site (Freier & Schumann, 

2020). The sensor data collected at the lowest level of 

production and processed on-site is particularly 

important because they allow a real-time response to 

unforeseen events (Vermesan & Friess, 2011). While 

this data was historically used to make control 

adjustments in the event of value deviations, in Industry 

4.0 it is also stored to enrich other applications based on 

it and to receive further information from the data 

obtained (Lasi et al., 2014). 

The hierarchical structure of a factory is described 

below and serves as a basis for this work. The smallest 

actors are CPS which operate on the bottom level with 

the production data. An overlying hierarchical level is a 

machine that comprises one or more CPS and serves to 

carry out individual production steps in the 

manufacturing process (Montreuil, 1999). If the 

hierarchical structure is continued, several machines are 

combined into a production line to define a 

manufacturing process of (intermediate) products. In 

addition, these production lines can be combined to 

form the factory defined above. Potentially, the 

hierarchical structure can also be extended upwards via 

further factories or even companies (Montreuil, 1999). 

2.2. Digital Twin (Hierarchical)  

DTs are a promising technology for resolving the 

challenges of complexity and the volume of information 

in different areas which is explained in this section. The 

beginnings of the concept of a DT can be found in the 

aerospace industry, where it was used to simulate 

existing flying objects as close to reality as possible 

(Negri et al., 2017). These simulations within a digital 

model are based on physical models, sensor data, and 

flight paths to digitally reproduce the properties and 

behavior of the physical model (Glaessgen & Stargel, 

2012). With the emergence of the Internet of Things 

(IoT) and the associated availability of CPS, the concept 

spread to other application areas (Vogt et al., 2021). The 

CPS-generated information serves as the basis for the 

concept of a DT to bring an independent information 

object of a physical object into the virtual space. 

According to Tao, Zhang, et al. (2019), this can be 

implemented with three components: the physical 

object, the virtual mapping, and the connection between 

the object and the virtual mapping. 
In addition to physical objects, DTs also digitally 

represent abstract constructs such as processes. Due to 

their development, DTs can reproduce complex object 
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structures consisting of several objects. This makes it 

possible to simulate entire production lines or factories 

by having multiple DTs interact and depend on each 

other hierarchically (Qi et al., 2018). There is no 

uniform terminology for hierarchical digital twins.  

2.3. Related Research  

Research on the use of hierarchical structures of 

DTs within industrial production environments has been 

neglected so far. Although there are research results that 

consider individual, stand-alone DTs within the 

production environment for specific objects such as 

machines, there is a lack of research that considers the 

interaction and hierarchical structuring of these. For 

example, while Kong et al. (2021) describe the need for 

a hierarchical structure of DTs to function as needed for 

a production environment, they focus on the data 

structure needed to achieve this. This is a relevant aspect 

for the implementation of HDT but still falls short of 

providing a holistic HDT solution for the outlined 

problem areas in industrial production. In contrast, Jiang 

et al. (2021) consider the connection between physical 

and real objects in a hierarchical relationship with each 

other. The authors propose a model of such a structure 

and how to implement it in a production environment, 

although there is no validation and implementation via 

an application. Consequently, previous research on 

HDT does not consider a concrete implementation of 

these. Therefore, there is a need to answer our research 

questions. 

3. Research Design  

To answer the research questions from section 1, 

we have chosen the problem-centered design science 

research process according to Peffers et al. (2007) 

mentioned in figure 1. Our first step is problem 

identification, using a structured literature review 

according to vom Brocke et al. (2009). The main goal of 

this literature review is to provide a holistic overview of 

current approaches to (hierarchical) DTs in industrial 

production environments. This forms the basis for an 

investigation of suitability and possible adaptation. 

Furthermore, we can derive the goals and requirements 

for the design for the development of HDT (Step 2). Via 

the research methodology, we implemented a prototype 

based on the requirements (Step 3). We then conducted 

a demonstration with the help of an application scenario 

following Peffers et al. (2007) in Step 4. An evaluation 

study was not conducted so far and so it remains open. 

But still, we simulated a production environment via a 

script to verify that the prototype behaved as expected. 

4. Hierarchical Digital Twin  

In this section, we present the design of the HDT 

that addresses the identified research gap. In doing so, 

we present the requirements, design, and 

implementation of the HDT for industrial production in 

the following subsections. Similar to the structure of a 

DT (Section 2), the explanations within the subsections 

are divided into the representation, monitoring, and 

management of the physical and digital mapping of the 

target objects (Grieves & Vickers, 2017).  

4.1. Problem Identification  

CPS-based processing of data directly on the object, 

e.g., the machine, allows for faster response times in the 

case of unforeseen events (Section 2.1). Furthermore, 

the resulting information can be transferred into a DT 

and made available to the responsible persons and 

systems (Freier & Schumann, 2020; Müller et al., 2021). 

However, this usually only happens on a low 

hierarchical level, e.g., machines, of the industrial 

production environment. Thus, although DTs create an 

overview for a single object, the upward aggregated 

view of the information situation, from machines 

through production lines up to factories or even 

companies remains unconsidered (Kong et al., 2021).  

 

 
Figure 1. Research design adapted from Peffers et al. (2007)
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Figure 2. Functional requirements for HDT in production environments

Since DTs represent physical objects such as 

machines in isolation and have to map different machine 

specifics depending on the object, an integrated view 

taking into account the hierarchical structures of an 

industrial production environment is not possible via 

individual DTs. Therefore, a new DT concept 

integrating different hierarchical levels of a production 

environment is necessary. A potential benefit of these 

integrated DTs is a single point of information with 

regard to the production environment for different needs 

in the production environment. Different employees 

with different roles in a corporation have different 

information needs. While a machine operator on the 

production floor might need specific information on the 

current condition of the machine, a production manager 

might be more interested in information on the overall 

production flow (Autiosalo et al., 2020). A potential DT 

can therefore integrate sensor information of different 

machines and present those to relevant machine 

operators while also consolidating and enriching this 

information hierarchically and provide production 

metrics of the production line or the factory to 

managers. These metrics can be used to detect and 

predict failures in production. (Autiosalo et al., 2020; 

Schuh et al., 2020). 

Thus, relevant information collected on-site is 

available for other activity profiles with the relevant 

level of depth. Furthermore, it is not only important to 

map the hierarchical production structure, e.g., 

machines, production lines, factories, in a 

comprehensible way, but also to be able to use the 

digital model of a complete production environment for 

simulations and, if necessary, adapt it to test alternative 

factory layouts. Simulations of individual DTs, e.g., of 

machines, can only be used effectively if they are 

integrated into the information situation of the rest of the 

production environment (Jiang et al., 2021; Kong et al., 

2021).  

4.2. Objectives of Solution  

To solve all the above problems, we aim to develop 

an artifact that can represent the complex structure of a 

modern industrial production environment. To answer 

the first research question (RQ 1), we examined the 

existing literature for requirements on HDT in industrial 

production and identified about 200 atomic 

requirements to enable HDT. We aggregated these as 

part of the research methodological approach for this 

paper. Figure 2 shows the 13 core requirements for 

implementing an HDT for industrial production. The 

online appendix shows detailed information on the 

literature review conducted and the requirements table: 

https://lmy.de/1oGh2. 

The identified core requirements can be divided into 

four areas (1) monitoring & data display of the physical 

image, (2) management of the digital model, (3) 

simulation functions, and (4) control functions. First, to 

create the data basis for the digital model, the type 

templates e.g., sensors and machines must be created at 

the beginning (R7) (Armendia et al., 2019; Kuhn et al., 

2020; Meierhofer & West, 2020; Slot & Lutters, 2021). 

Based on these types of templates, the actual sensors, 

machines, and factory layouts can then be created (R8) 

(Ashtari Talkhestani et al., 2019; Brenner & Hummel, 

2017; Lattanzi et al., 2021; Qi et al., 2018). Based on 

these types of templates, the actual sensors, machines, 

and factory layouts can then be created (R8) (Ashtari 

Talkhestani et al., 2019; Brenner & Hummel, 2017; 

Lattanzi et al., 2021; Qi et al., 2018). Finally, the 

connection to the CPS, or physical elements such as 

sensors, must be established to ensure real-time 

synchronization of the data (R9) (de Andrade et al., 

2021; Delfino et al., 2019; Ferro et al., 2021; Shao et al., 

2019). This is necessary to convert the physical object 

of the production environment into a digital model and 

thus provide the possibility to monitor it. The data thus 

Page 1451

https://lmy.de/1oGh2


 

 

 
Figure 3. The architecture of the HDT Web-Application 

transferred from the physical element to the connected 

DT can now be used to display basic information (e.g., 

ID, location, operating time), current status & metrics 

(e.g., for a machine, the current job and average 

processing time), and historical data in real-time (R1; R2; 

R3; R6) (Glatt et al., 2021; Krüger & Borsato, 2019; 

Kuehn, 2019; Papacharalampopoulos et al., 2021; 

Zhuang et al., 2018). In addition, the information 

prepared and displayed in this way must be displayed 

appropriately for the selected hierarchy level (R4) (Jiang 

et al., 2021; Kong et al., 2021). 

Furthermore, it should be possible to generate 

reports from the information (R5) (Autiosalo et al., 

2020; Rasheed et al., 2020; Schleich et al., 2019). To use 

the artifact, control functions are also required to 

manage the production environment, e.g., to create order 

data that can be processed (R12) (Chen et al., 2018; 

Dalstam et al., 2018; Gericke et al., 2019). Furthermore, 

elements like single sensors or whole machines should 

be controllable, e.g., to switch them off (R13) (Jain et al., 

2016; Kirchhof et al., 2020; Shao & Kibira, 2018). 

Finally, the user can access the simulation functions to 

simulate the factory layout in conjunction with the order 

situation (R10) (Davila Delgado & Oyedele, 2021; 

Kuehn, 2019; Negri et al., 2017). Here, the simulation 

environment should ensure the adaptation of the factory 

layout to check potential changes (R11) (Heininger & 

Stary, 2021; Jain et al., 2016; Rolle et al., 2019).  

4.3. Design and Development  

To implement the stated requirements and thus 

solve the problem described in subsection 4.1, we have 

developed a web application that implements an HDT 

prototype. The web application allows the user to access 

the digital image of the hierarchically structured DTs, 

their information, and the associated simulation 

environment. Accordingly, our application consists of 

two components: A server that hosts the application, 

reads the production environment information, and 

contains the database, and a web component that is 

accessible through a web browser 

Figure 3 outlines the architecture of the web 

application. The Node.js server simulates the physical 

devices in this prototype. Using the MQTT client 

MQTT.js, the physical devices connect to the MQTT 

broker HiveMQ Cloud and can receive and send 

messages using the MQTT protocol. The back-end runs 

on a Node.js server, is responsible for data processing 

and storage, and contains the prototype's application 

logic. It interfaces with the MQTT broker to receive data 

from the physical devices and send messages such as 

control commands. Connected to the back-end is the 

MongoDB database, which holds the prototype's data. 

The Express web framework used in the back-end 

enables the provision of APIs through which HTTP 

requests can be made. The front-end uses the Vue.js 

framework and is responsible for presenting the data. On 

the one hand, the front-end requests the data from the 

back-end via the HTTP client Axios. On the other hand, 

the data comes from the MQTT broker by establishing 

a WebSocket connection. For data organization, the 

front-end uses the state management Vuex. Vuetify, as 

well as ApexCharts, display the data. Both the Node.js 

servers, on which the physical devices and the back-end 

run, and the front-end are implemented in the 

TypeScript programming language. 

Figure 4 presents the core of the HDT’s data model 

which contains four hierarchy levels (factories, machine 

groups, machines, and sensors). The hierarchical 

structure is created by assigning the elements to a parent 

element on the next higher hierarchy level (e.g., each 

machine group is assigned to exactly one factory). 

Sensors can be assigned to one factory, machine group 

or machine. Factories have no parent element as they are 

on the highest hierarchy level. All hierarchy levels 

inherit from the entity type DT-Object which contains 

attributes that are needed for all elements, regardless of 

their hierarchy level (e.g., name and location). 

Furthermore, machines and sensors are assigned to a 

specific machine type or sensor type which contains 
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type specific attributes (e.g., the specification of 

temperature in degrees Celsius for temperature sensors). 

Some attributes are determined by data aggregation at 

lower hierarchy levels, where, for example, the 

calculation of factory utilization is done by aggregating 

the utilization of the assigned machine groups. The full 

data model of the HDT prototype, which also lists the 

attributes, is available in the online appendix: 

https://lmy.de/1oGh2. Within the full data model, the 

hierarchy levels (green) are expanded by the data 

structure for user management and maintenance 

(yellow), production (red), and simulation (blue).  

 

 
Figure 4. Data Model of the HDT 

Figure 5 shows the dashboard of the HDT and the 

implemented data aggregation. Here, the user has a 

navigation bar at his disposal that allows intuitive 

navigation within the user interface of the application 

(1). The left side of the user interface shows a core 

element of the artifact in terms of a hierarchical structure 

and navigation within a production environment. This 

bar is expandable for navigation purposes and allows 

individual machines or even sensors to load their 

customized information views if necessary (2). In 

Figure 5, the top-level element is the full-scale view of 

second factories for the production of hand trucks. The 

main page shows this on the main part of the user 

interface, where the application displays general 

information on capacity and order situation (3), 

aggregated information about factories (e.g., current 

workload or the uptime of assigned components) (4), 

and aggregated information on machine groups (5). It is 

also possible to call up details for individual elements, 

such as machine groups, machines or sensors (6). 

Calling up a machine or a sensor opens a view that 

displays detailed information on the selected element. 

Opening an element on the machine group level displays 

information like average processing times and current 

throughput across all related machines and their current 

status by representing a larger scope of the production 

environment. In contrast, the machine level (Figure 6) 

shows a more detailed view for a specific machine and 

provides specific sensor values (e.g., temperature and 

pressure) relevant to the machine operator. The user can 

also view maintenance information and production 

history. Additionally, the HDT generates error 

messages, e.g., if a sensor measures values outside of 

the configured working range, which are displayed to a 

user depending on its role. The prototype is therefore 

capable of providing aggregated information to users 

depending on their individual needs and responsibilities.  

 

 
Figure 5. Dashboard of the HDT Application 
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Figure 6. Overview of a machine 

The simulation environment of the artifact builds on the 

hierarchically structured DTs, although in the context of 

the paper, no in-depth focus has been placed on the 

simulation model. The simulation model applies the 

first-in-first-out approach for testing purposes. This can 

be supplemented by other models in the future. Here, the 

user can specify the products to produce and adjust the 

layout of the production environment within several 

steps. If no adjustment occurs by the user, the real-world 

layout serves as the basis for the simulation. 

Subsequently, the simulation and calculation of 

machine loadings and total throughput time takes place 

to detect bottlenecks 

Further information on the application is available in the 

online appendix: https://lmy.de/1oGh2.  

4.4. Demonstration by using an application 

scenario  

After implementing the HDT artifact for industrial 

production, we tested it within an application scenario. 

The application scenario deals with the production of 

hand wagons in modern industrial production in the 

context of CPS. With a focus on the production of hand 

wagons, we created an application scenario without 

unnecessary complexities to be able to apply and test the 

requirements of the HDT application areas during the 

implementation process.  

While working with the system, the user can create 

jobs, and a script simulates CPS-based sensor data. 

Users should be able to simulate the real and potentially 

adapted production environment via the creation of 

orders and the adaptation of the virtual production 

environment to be able to foresee the effects of changes 

to the production environment. Potential maintenance 

work and its effects can also be considered and relevant 

information on the production environment is displayed 

to the user on a profile basis. Within the application 

scenario, the HDT artifact has performed according to 

expectations and has been verified by the project team, 

although an evaluation study with independent probands 

from the field or other suitable experts remains open and 

is discussed as a potential outlook. The application 

scenario presented can serve as the basis for a qualitative 

study with experts to review, evaluate, and assess the 

individual constructs of the HDT. Thus, we fulfilled the 

fourth step of the research methodological approach 

only partially at this point and should be covered 

thereafter. Further information on the application 

scenario is available in the online appendix: 

https://lmy.de/1oGh2.  

5. Discussion and Conclusion  

In this work, we designed and prototyped an HDT 

for the industrial production environment in the context 

of CPS, creating a design science contribution that 

adapts the problem-centered design science research 

approach of Peffers et al. (2007). By conducting a 

structured literature review, we identified theoretical 

problems. Based on this, we derived goals and 

generalized requirements in a literature review to realize 

the implementation of HDT in the industrial production 

environment to address these very problems (RQ1). 

Thereupon, we presented an HDT software artifact that 

enables a demand-driven presentation of the physical 

production environment in digital space. Furthermore, 

the simulation environment allows to test and adapt the 

models (RQ2). The prototypical implementation 

showed, based on the test application scenario, that the 

implementation of HDT within a production 

environment is potentially feasible. Here, the software 

artifact was able to display aggregated (real-time) 

information for each selected hierarchy level and 

enables switching between levels. By storing and 

displaying historical data, such as status data, 

malfunctions, or production history, the prototype can 

be supportive in problem analysis and identification. In 
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addition, the user can identify optimization potentials in 

production, especially with the help of simulation 

functions. Decision-makers can test different machine 

configurations or new machines before applying them 

to reality. It is possible to identify capacity bottlenecks 

and eliminate them via the digital image. Furthermore, 

new production lines can be tested if, for example, 

production is to be scaled up or a new product is to be 

produced. Finally, the prototype is flexible and modular 

concerning the digital model. Users can easily add, edit, 

or delete objects via the corresponding management 

functionalities. From a scientific point of view, the 

requirements, design, and implementation also 

represent an entry point for further research on HDT 

design guidelines through extension, application, and 

evaluation of the system. For this, however, we need to 

further evaluate the prototype by conducting, e.g., 

expert interviews with practice partners and passing a 

further design science cycle to create a level 2 design 

science contribution (Gregor & Hevner, 2013). 

Therefore, individual constructs of the prototype should 

be evaluated and tested for relevance to determine if 

they are useful for an HDT. 

However, this work has limitations concerning the 

structured literature analysis and the software artifact. 

By considering English and German literature, we have 

to mention that the inclusion of literature in other 

languages could change the results of the structured 

literature analysis. Furthermore, many concepts from 

the literature pose insufficiently specified requirements 

for the hierarchical structuring of DTs, which would 

require the derivation of specific and practice-oriented 

(e.g., via expert interviews) requirements. In terms of 

the software artifact there is no comprehensive 

implementation for a production environment, since 

intralogistics tasks within the factories have not been 

considered. In addition, we only tested the prototype 

internally with an application scenario so far, so an 

evaluation by experts from the field and the associated 

exercise testing of the theoretical approaches are still 

pending. In future research, we will conduct an 

evaluation of the requirements, concept, and prototype 

regarding the information presentation and simulation in 

a more complex application scenario taking the practical 

view into account. Especially the simulation 

environment offers the possibility to implement and 

evaluate different simulation strategies. 

The research community should address the 

limitations mentioned above. More scenarios and use 

cases under less controlled conditions should be 

investigated. In these studies, we suggest mainly 

interviewing decision-makers within the production 

environment of companies via qualitative interviews to 

get detailed feedback on the proposed requirements as 

well as functions and usability of the software artifact. 

Nevertheless, we have developed a software solution 

that supports new technologies and concepts of DTs and 

can improve the management of enterprise production 

environments. However, to implement HDT in practice, 

a necessary step is to interconnect all elements involved 

in production. Infrastructure and the technical 

preparations on machines and sensors are required so 

that they can participate in the data traffic and thus use 

the produced data for DT functionalities. 
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