7,262 research outputs found

    Embedding Population Dynamics Models in Inference

    Full text link
    Increasing pressures on the environment are generating an ever-increasing need to manage animal and plant populations sustainably, and to protect and rebuild endangered populations. Effective management requires reliable mathematical models, so that the effects of management action can be predicted, and the uncertainty in these predictions quantified. These models must be able to predict the response of populations to anthropogenic change, while handling the major sources of uncertainty. We describe a simple ``building block'' approach to formulating discrete-time models. We show how to estimate the parameters of such models from time series of data, and how to quantify uncertainty in those estimates and in numbers of individuals of different types in populations, using computer-intensive Bayesian methods. We also discuss advantages and pitfalls of the approach, and give an example using the British grey seal population.Comment: Published at http://dx.doi.org/10.1214/088342306000000673 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Bayesian phylogenetic hidden Markov model for B cell receptor sequence analysis.

    Get PDF
    The human body generates a diverse set of high affinity antibodies, the soluble form of B cell receptors (BCRs), that bind to and neutralize invading pathogens. The natural development of BCRs must be understood in order to design vaccines for highly mutable pathogens such as influenza and HIV. BCR diversity is induced by naturally occurring combinatorial "V(D)J" rearrangement, mutation, and selection processes. Most current methods for BCR sequence analysis focus on separately modeling the above processes. Statistical phylogenetic methods are often used to model the mutational dynamics of BCR sequence data, but these techniques do not consider all the complexities associated with B cell diversification such as the V(D)J rearrangement process. In particular, standard phylogenetic approaches assume the DNA bases of the progenitor (or "naive") sequence arise independently and according to the same distribution, ignoring the complexities of V(D)J rearrangement. In this paper, we introduce a novel approach to Bayesian phylogenetic inference for BCR sequences that is based on a phylogenetic hidden Markov model (phylo-HMM). This technique not only integrates a naive rearrangement model with a phylogenetic model for BCR sequence evolution but also naturally accounts for uncertainty in all unobserved variables, including the phylogenetic tree, via posterior distribution sampling

    Markov and Neural Network Models for Prediction of Structural Deterioration of Stormwater Pipe Assets

    Get PDF
    Storm-water pipe networks in Australia are designed to convey water from rainfall and surface runoff. They do not transport sewerage. Their structural deterioration is progressive with aging and will eventually cause pipe collapse with consequences of service interruption. Predicting structural condition of pipes provides vital information for asset management to prevent unexpected failures and to extend service life. This study focused on predicting the structural condition of storm-water pipes with two objectives. The first objective is the prediction of structural condition changes of the whole network of storm-water pipes by a Markov model at different times during their service life. This information can be used for planning annual budget and estimating the useful life of pipe assets. The second objective is the prediction of structural condition of any particular pipe by a neural network model. This knowledge is valuable in identifying pipes that are in poor condition for repair actions. A case study with closed circuit television inspection snapshot data was used to demonstrate the applicability of these two models

    Methods for longitudinal complex network analysis in neuroscience

    Full text link
    The study of complex brain networks, where the brain can be viewed as a system with various interacting regions that produce complex behaviors, has grown tremendously over the past decade. With both an increase in longitudinal study designs, as well as an increased interest in the neurological network changes that occur during the progression of a disease, sophisticated methods for dynamic brain network analysis are needed. We first propose a paradigm for longitudinal brain network analysis over patient cohorts where we adapt the Stochastic Actor Oriented Model (SAOM) framework and model a subject's network over time as observations of a continuous time Markov chain. Network dynamics are represented as being driven by various factors, both endogenous (i.e., network effects) and exogenous, where the latter include mechanisms and relationships conjectured in the literature. We outline an application to the resting-state fMRI network setting, where we draw conclusions at the subject level and then perform a meta-analysis on the model output. As an extension of the models, we next propose an approach based on Hidden Markov Models to incorporate and estimate type I and type II error (i.e., of edge status) in our observed networks. Our model consists of two components: 1) the latent model, which assumes that the true networks evolve according to a Markov process as they did in the original SAOM framework; and 2) the measurement model, which describes the conditional distribution of the observed networks given the true networks. An expectation-maximization algorithm is developed for estimation. Lastly, we focus on the study of percolation - the sudden emergence of a giant connected component in a network. This has become an active area of research, with relevance in clinical neuroscience, and it is of interest to distinguish between different percolation regimes in practice. We propose a method for estimating a percolation model from a given sequence of observed networks with single edge transitions. We outline a Hidden Markov Model approach and EM algorithm for the estimation of the birth and death rates for the edges, as well as the type I and type II error rates.2018-07-25T00:00:00

    Interactive Robot Learning of Gestures, Language and Affordances

    Full text link
    A growing field in robotics and Artificial Intelligence (AI) research is human-robot collaboration, whose target is to enable effective teamwork between humans and robots. However, in many situations human teams are still superior to human-robot teams, primarily because human teams can easily agree on a common goal with language, and the individual members observe each other effectively, leveraging their shared motor repertoire and sensorimotor resources. This paper shows that for cognitive robots it is possible, and indeed fruitful, to combine knowledge acquired from interacting with elements of the environment (affordance exploration) with the probabilistic observation of another agent's actions. We propose a model that unites (i) learning robot affordances and word descriptions with (ii) statistical recognition of human gestures with vision sensors. We discuss theoretical motivations, possible implementations, and we show initial results which highlight that, after having acquired knowledge of its surrounding environment, a humanoid robot can generalize this knowledge to the case when it observes another agent (human partner) performing the same motor actions previously executed during training.Comment: code available at https://github.com/gsaponaro/glu-gesture
    corecore