588 research outputs found

    Wastewater-based epidemiology in hazard forecasting and early-warning systems for global health risks

    Get PDF
    With the advent of the SARS-CoV-2 pandemic, Wastewater-Based Epidemiology (WBE) has been applied to track community infection in cities worldwide and has proven succesful as an early warning system for identification of hotspots and changingprevalence of infections (both symptomatic and asymptomatic) at a city or sub-city level. Wastewater is only one of environmental compartments that requires consideration. In this manuscript, we have critically evaluated the knowledge-base and preparedness for building early warning systems in a rapidly urbanising world, with particular attention to Africa, which experiences rapid population growth and urbanisation. We have proposed a Digital Urban Environment Fingerprinting Platform (DUEF) – a new approach in hazard forecasting and early-warning systems for global health risks and an extension to the existing concept of smart cities. The urban environment (especially wastewater) contains a complex mixture of substances including toxic chemicals, infectious biological agents and human excretion products. DUEF assumes that these specific endo- and exogenous residues, anonymously pooled by communities’ wastewater, are indicative of community-wide exposure and the resulting effects. DUEF postulates that the measurement of the substances continuously and anonymously pooled by the receiving environment (sewage, surface water, soils and air), can provide near real-time dynamic information about the quantity and type of physical, biological or chemical stressors to which the surveyed systems are exposed, and can create a risk profile on the potential effects of these exposures. Successful development and utilisation of a DUEF globally requires a tiered approach including: Stage I: network building, capacity building, stakeholder engagement as well as a conceptual model, followed by Stage II: DUEF development, Stage III: implementation, and Stage IV: management and utilization. We have identified four key pillars required for the establishment of a DUEF framework: (1) Environmental fingerprints, (2) Socioeconomic fingerprints, (3) Statistics and modelling and (4) Information systems. This manuscript critically evaluates the current knowledge base within each pillar and provides recommendations for further developments with an aim of laying grounds for successful development of global DUEF platforms

    Integrating Data Science and Earth Science

    Get PDF
    This open access book presents the results of three years collaboration between earth scientists and data scientist, in developing and applying data science methods for scientific discovery. The book will be highly beneficial for other researchers at senior and graduate level, interested in applying visual data exploration, computational approaches and scientifc workflows

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Mobility mining for time-dependent urban network modeling

    Get PDF
    170 p.Mobility planning, monitoring and analysis in such a complex ecosystem as a city are very challenging.Our contributions are expected to be a small step forward towards a more integrated vision of mobilitymanagement. The main hypothesis behind this thesis is that the transportation offer and the mobilitydemand are greatly coupled, and thus, both need to be thoroughly and consistently represented in a digitalmanner so as to enable good quality data-driven advanced analysis. Data-driven analytics solutions relyon measurements. However, sensors do only provide a measure of movements that have already occurred(and associated magnitudes, such as vehicles per hour). For a movement to happen there are two mainrequirements: i) the demand (the need or interest) and ii) the offer (the feasibility and resources). Inaddition, for good measurement, the sensor needs to be located at an adequate location and be able tocollect data at the right moment. All this information needs to be digitalised accordingly in order to applyadvanced data analytic methods and take advantage of good digital transportation resource representation.Our main contributions, focused on mobility data mining over urban transportation networks, can besummarised in three groups. The first group consists of a comprehensive description of a digitalmultimodal transport infrastructure representation from global and local perspectives. The second groupis oriented towards matching diverse sensor data onto the transportation network representation,including a quantitative analysis of map-matching algorithms. The final group of contributions covers theprediction of short-term demand based on various measures of urban mobility

    Earth Observation Open Science and Innovation

    Get PDF
    geospatial analytics; social observatory; big earth data; open data; citizen science; open innovation; earth system science; crowdsourced geospatial data; citizen science; science in society; data scienc

    Mobility mining for time-dependent urban network modeling

    Get PDF
    170 p.Mobility planning, monitoring and analysis in such a complex ecosystem as a city are very challenging.Our contributions are expected to be a small step forward towards a more integrated vision of mobilitymanagement. The main hypothesis behind this thesis is that the transportation offer and the mobilitydemand are greatly coupled, and thus, both need to be thoroughly and consistently represented in a digitalmanner so as to enable good quality data-driven advanced analysis. Data-driven analytics solutions relyon measurements. However, sensors do only provide a measure of movements that have already occurred(and associated magnitudes, such as vehicles per hour). For a movement to happen there are two mainrequirements: i) the demand (the need or interest) and ii) the offer (the feasibility and resources). Inaddition, for good measurement, the sensor needs to be located at an adequate location and be able tocollect data at the right moment. All this information needs to be digitalised accordingly in order to applyadvanced data analytic methods and take advantage of good digital transportation resource representation.Our main contributions, focused on mobility data mining over urban transportation networks, can besummarised in three groups. The first group consists of a comprehensive description of a digitalmultimodal transport infrastructure representation from global and local perspectives. The second groupis oriented towards matching diverse sensor data onto the transportation network representation,including a quantitative analysis of map-matching algorithms. The final group of contributions covers theprediction of short-term demand based on various measures of urban mobility
    • …
    corecore