377 research outputs found

    Estimation of white matter fiber parameters from compressed multiresolution diffusion MRI using sparse Bayesian learning

    Get PDF
    We present a sparse Bayesian unmixing algorithm BusineX: Bayesian Unmixing for Sparse Inference-based Estimation of Fiber Crossings (X), for estimation of white matter fiber parameters from compressed (under-sampled) diffusion MRI (dMRI) data. BusineX combines compressive sensing with linear unmixing and introduces sparsity to the previously proposed multiresolution data fusion algorithm RubiX, resulting in a method for improved reconstruction, especially from data with lower number of diffusion gradients. We formulate the estimation of fiber parameters as a sparse signal recovery problem and propose a linear unmixing framework with sparse Bayesian learning for the recovery of sparse signals, the fiber orientations and volume fractions. The data is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible diffusion directions. Volume fractions of fibers along these directions define the dictionary weights. The proposed sparse inference, which is based on the dictionary representation, considers the sparsity of fiber populations and exploits the spatial redundancy in data representation, thereby facilitating inference from under-sampled q-space. The algorithm improves parameter estimation from dMRI through data-dependent local learning of hyperparameters, at each voxel and for each possible fiber orientation, that moderate the strength of priors governing the parameter variances. Experimental results on synthetic and in-vivo data show improved accuracy with a lower uncertainty in fiber parameter estimates. BusineX resolves a higher number of second and third fiber crossings. For under-sampled data, the algorithm is also shown to produce more reliable estimates

    Estimation of Fiber Orientations Using Neighborhood Information

    Full text link
    Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted l1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.Comment: Journal paper accepted in Medical Image Analysis. 35 pages and 16 figure

    Estimation of white matter fiber parameters from compressed multiresolution diffusion MRI using sparse Bayesian learning

    Get PDF
    We present a sparse Bayesian unmixing algorithm BusineX: Bayesian Unmixing for Sparse Inference-based Estimation of Fiber Crossings (X), for estimation of white matter fiber parameters from compressed (under-sampled) diffusion MRI (dMRI) data. BusineX combines compressive sensing with linear unmixing and introduces sparsity to the previously proposed multiresolution data fusion algorithm RubiX, resulting in a method for improved reconstruction, especially from data with lower number of diffusion gradients. We formulate the estimation of fiber parameters as a sparse signal recovery problem and propose a linear unmixing framework with sparse Bayesian learning for the recovery of sparse signals, the fiber orientations and volume fractions. The data is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible diffusion directions. Volume fractions of fibers along these directions define the dictionary weights. The proposed sparse inference, which is based on the dictionary representation, considers the sparsity of fiber populations and exploits the spatial redundancy in data representation, thereby facilitating inference from under-sampled q-space. The algorithm improves parameter estimation from dMRI through data-dependent local learning of hyperparameters, at each voxel and for each possible fiber orientation, that moderate the strength of priors governing the parameter variances. Experimental results on synthetic and in-vivo data show improved accuracy with a lower uncertainty in fiber parameter estimates. BusineX resolves a higher number of second and third fiber crossings. For under-sampled data, the algorithm is also shown to produce more reliable estimates

    Reconstruction algorithms for Magnetic Resonance Imaging

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 135-142).This dissertation presents image reconstruction algorithms for Magnetic Resonance Imaging (MRI) that aims to increase the imaging efficiency. Algorithms that reduce imaging time without sacrificing the image quality and mitigate image artifacts are proposed. The goal of increasing the MR efficiency is investigated across multiple imaging techniques: structural imaging with multiple contrasts preparations, Diffusion Spectrum Imaging (DSI), Chemical Shift Imaging (CSI), and Quantitative Susceptibility Mapping (QSM). The main theme connecting the proposed methods is the utilization of prior knowledge on the reconstructed signal. This prior often presents itself in the form of sparsity with respect to either a prespecified or learned signal transformation.by Berkin Bilgic.Ph.D

    Joint Spatial-Angular Sparse Coding, Compressed Sensing, and Dictionary Learning for Diffusion MRI

    Get PDF
    Neuroimaging provides a window into the inner workings of the human brain to diagnose and prevent neurological diseases and understand biological brain function, anatomy, and psychology. Diffusion Magnetic Resonance Imaging (dMRI) is an emerging medical imaging modality used to study the anatomical network of neurons in the brain, which form cohesive bundles, or fiber tracts, that connect various parts of the brain. Since about 73% of the brain is water, measuring the flow, or diffusion of water molecules in the presence of fiber bundles, allows researchers to estimate the orientation of fiber tracts and reconstruct the internal wiring of the brain, in vivo. Diffusion MRI signals can be modeled within two domains: the spatial domain consisting of voxels in a brain volume and the diffusion or angular domain, where fiber orientation is estimated in each voxel. Researchers aim to estimate the probability distribution of fiber orientation in every voxel of a brain volume in order to trace paths of fiber tracts from voxel to voxel over the entire brain. Therefore, the traditional framework for dMRI processing and analysis has been from a voxel-wise vantage point with added spatial regularization considered post-hoc. In contrast, we propose a new joint spatial-angular representation of dMRI data which pairs signals in each voxel with the global spatial environment, jointly. This has the ability to improve many aspects of dMRI processing and analysis and re-envision the core representation of dMRI data from a local perspective to a global one. In this thesis, we propose three main contributions which take advantage of such joint spatial-angular representations to improve major machine learning tasks applied to dMRI: sparse coding, compressed sensing, and dictionary learning. First, we will show that we can achieve sparser representations of dMRI by utilizing a global spatial-angular dictionary instead of a purely voxel-wise angular dictionary. As dMRI data is very large in size, we provide a number of novel extensions to popular spare coding algorithms that perform efficient optimization on a global-scale by exploiting the separability of our dictionaries over the spatial and angular domains. Next, compressed sensing is used to accelerate signal acquisition based on an underlying sparse representation of the data. We will show that our proposed representation has the potential to push the limits of the current state of scanner acceleration within a new compressed sensing model for dMRI. Finally, sparsity can be further increased by learning dictionaries directly from datasets of interest. Prior dictionary learning for dMRI learn angular dictionaries alone. Our third contribution is to learn spatial-angular dictionaries jointly from dMRI data directly to better represent the global structure. Traditionally, the problem of dictionary learning is non-convex with no guarantees of finding a globally optimal solution. We derive the first theoretical results of global optimality for this class of dictionary learning problems. We hope the core foundation of a joint spatial-angular representation will open a new perspective on dMRI with respect to many other processing tasks and analyses. In addition, our contributions are applicable to any general signal types that can benefit from separable dictionaries. We hope the contributions in this thesis may be adopted in the larger signal processing, computer vision, and machine learning communities. dMRI signals can be modeled within two domains: the spatial domain consisting of voxels in a brain volume and the diffusion or angular domain, where fiber orientation is estimated in each voxel. Computationally speaking, researchers aim to estimate the probability distribution of fiber orientation in every voxel of a brain volume in order to trace paths of fiber tracts from voxel to voxel over the entire brain. Therefore, the traditional framework for dMRI processing and analysis is from a voxel-wise, or angular, vantage point with post-hoc consideration of their local spatial neighborhoods. In contrast, we propose a new global spatial-angular representation of dMRI data which pairs signals in each voxel with the global spatial environment, jointly, to improve many aspects of dMRI processing and analysis, including the important need for accelerating the otherwise time-consuming acquisition of advanced dMRI protocols. In this thesis, we propose three main contributions which utilize our joint spatial-angular representation to improve major machine learning tasks applied to dMRI: sparse coding, compressed sensing, and dictionary learning. We will show that sparser codes are possible by utilizing a global dictionary instead of a voxel-wise angular dictionary. This allows for a reduction of the number of measurements needed to reconstruct a dMRI signal to increase acceleration using compressed sensing. Finally, instead of learning angular dictionaries alone, we learn spatial-angular dictionaries jointly from dMRI data directly to better represent the global structure. In addition, this problem is non-convex and so we derive the first theories to guarantee convergence to a global minimum. As dMRI data is very large in size, we provide a number of novel extensions to popular algorithms that perform efficient optimization on a global-scale by exploiting the separability of our global dictionaries over the spatial and angular domains. We hope the core foundation of a joint spatial-angular representation will open a new perspective on dMRI with respect to many other processing tasks and analyses. In addition, our contributions are applicable to any separable dictionary setting which we hope may be adopted in the larger image processing, computer vision, and machine learning communities

    Fast diffusion MRI based on sparse acquisition and reconstruction for long-term population imaging

    Get PDF
    Diffusion weighted magnetic resonance imaging (dMRI) is a unique MRI modality to probe the diffusive molecular transport in biological tissue. Due to its noninvasiveness and its ability to investigate the living human brain at submillimeter scale, dMRI is frequently performed in clinical and biomedical research to study the brain’s complex microstructural architecture. Over the last decades large prospective cohort studies have been set up with the aim to gain new insights into the development and progression of brain diseases across the life span and to discover biomarkers for disease prediction and potentially prevention. To allow for diverse brain imaging using different MRI modalities, stringent scan time limits are typically imposed in population imaging. Nevertheless, population studies aim to apply advanced and thereby time consuming dMRI protocols that deliver high quality data with great potential for future analysis. To allow for time-efficient but also versatile diffusion imaging, this thesis contributes to the investigation of accelerating diffusion spectrum imaging (DSI), an advanced dMRI technique that acquires imaging data with high intra-voxel resolution of tissue microstructure. Combining state-of-the-art parallel imaging and the theory of compressed sensing (CS) enables the acceleration of spatial encoding and diffusion encoding in dMRI. In this way, the otherwise long acquisition times in DSI can be reduced significantly. In this thesis, first, suitable q-space sampling strategies and basis functions are explored that fulfill the requirements of CS theory for accurate sparse DSI reconstruction. Novel 3D q-space sample distributions are investigated for CS-DSI. Moreover, conventional CS-DSI based on the discrete Fourier transform is compared for the first time to CS-DSI based on the continuous SHORE (simple harmonic oscillator based reconstruction and estimation) basis functions. Based on these findings, a CS-DSI protocol is proposed for application in a prospective cohort study, the Rhineland Study. A pilot study was designed and conducted to evaluate the CS-DSI protocol in comparison with state-of-the-art 3-shell dMRI and dedicated protocols for diffusion tensor imaging (DTI) and for the combined hindered and restricted model of diffusion (CHARMED). Population imaging requires processing techniques preferably with low computational cost to process and analyze the acquired big data within a reasonable time frame. Therefore, a pipeline for automated processing of CS-DSI acquisitions was implemented including both in-house developed and existing state-of-the-art processing tools. The last contribution of this thesis is a novel method for automatic detection and imputation of signal dropout due to fast bulk motion during the diffusion encoding in dMRI. Subject motion is a common source of artifacts, especially when conducting clinical or population studies with children, the elderly or patients. Related artifacts degrade image quality and adversely affect data analysis. It is, thus, highly desired to detect and then exclude or potentially impute defective measurements prior to dMRI analysis. Our proposed method applies dMRI signal modeling in the SHORE basis and determines outliers based on the weighted model residuals. Signal imputation reconstructs corrupted and therefore discarded measurements from the sparse set of inliers. This approach allows for fast and robust correction of imaging artifacts in dMRI which is essential to estimate accurate and precise model parameters that reflect the diffusive transport of water molecules and the underlying microstructural environment in brain tissue.Die diffusionsgewichtete Magnetresonanztomographie (dMRT) ist ein einzigartiges MRTBildgebungsverfahren, um die Diffusionsbewegung von Wassermolekülen in biologischem Gewebe zu messen. Aufgrund der Möglichkeit Schichtbilder nicht invasiv aufzunehmen und das lebende menschliche Gehirn im Submillimeter-Bereich zu untersuchen, ist die dMRT ein häufig verwendetes Bildgebungsverfahren in klinischen und biomedizinischen Studien zur Erforschung der komplexen mikrostrukturellen Architektur des Gehirns. In den letzten Jahrzehnten wurden große prospektive Kohortenstudien angelegt, um neue Einblicke in die Entwicklung und den Verlauf von Gehirnkrankheiten über die Lebenspanne zu erhalten und um Biomarker zur Krankheitserkennung und -vorbeugung zu bestimmen. Um durch die Verwendung unterschiedlicher MRT-Verfahren verschiedenartige Schichtbildaufnahmen des Gehirns zu ermöglich, müssen Scanzeiten typischerweise stark begrenzt werden. Dennoch streben Populationsstudien die Anwendung von fortschrittlichen und daher zeitintensiven dMRT-Protokollen an, um Bilddaten in hoher Qualität und mit großem Potential für zukünftige Analysen zu akquirieren. Um eine zeiteffizente und gleichzeitig vielseitige Diffusionsbildgebung zu ermöglichen, leistet diese Dissertation Beiträge zur Untersuchung von Beschleunigungsverfahren für die Bildgebung mittels diffusion spectrum imaging (DSI). DSI ist ein fortschrittliches dMRT-Verfahren, das Bilddaten mit hoher intra-voxel Auflösung der Gewebestruktur erhebt. Werden modernste Verfahren zur parallelen MRT-Bildgebung mit der compressed sensing (CS) Theorie kombiniert, ermöglicht dies eine Beschleunigung der räumliche Kodierung und der Diffusionskodierung in der dMRT. Dadurch können die ansonsten langen Aufnahmezeiten für DSI erheblich reduziert werden. In dieser Arbeit werden zuerst geeigenete Strategien zur Abtastung des q-space sowie Basisfunktionen untersucht, welche die Anforderungen der CS-Theorie für eine korrekte Signalrekonstruktion der dünnbesetzten DSI-Daten erfüllen. Neue 3D-Verteilungen von Messpunkten im q-space werden für die Verwendung in CS-DSI untersucht. Außerdem wird konventionell auf der diskreten Fourier-Transformation basierendes CS-DSI zum ersten Mal mit einem CS-DSI Verfahren verglichen, welches kontinuierliche SHORE (simple harmonic oscillator based reconstruction and estimation) Basisfunktionen verwendet. Aufbauend auf diesen Ergebnissen wird ein CS-DSI-Protokoll zur Anwendung in einer prospektiven Kohortenstudie, der Rheinland Studie, vorgestellt. Eine Pilotstudie wurde entworfen und durchgeführt, um das CS-DSI-Protokoll im Vergleich mit modernster 3-shell-dMRT und mit dedizierten Protokollen für diffusion tensor imaging (DTI) und für das combined hindered and restricted model of diffusion (CHARMED) zu evaluieren. Populationsbildgebung erfordert Prozessierungsverfahren mit möglichst geringem Rechenaufwand, um große akquirierte Datenmengen in einem angemessenen Zeitrahmen zu verarbeiten und zu analysieren. Dafür wurde eine Pipeline zur automatisierten Verarbeitung von CS-DSI-Daten implementiert, welche sowohl eigenentwickelte als auch bereits existierende moderene Verarbeitungsprogramme enthält. Der letzte Beitrag dieser Arbeit ist eine neue Methode zur automatischen Detektion und Imputation von Signalabfall, welcher durch schnelle Bewegungen während der Diffusionskodierung in der dMRT entsteht. Bewegungen der Probanden während der dMRT-Aufnahme sind eine häufige Ursache für Bildfehler, vor allem in klinischen oder Populationsstudien mit Kindern, alten Menschen oder Patienten. Diese Artefakte vermindern die Datenqualität und haben einen negativen Einfluss auf die Datenanalyse. Daher ist es das Ziel, fehlerhafte Messungen vor der dMRI-Analyse zu erkennen und dann auszuschließen oder wenn möglich zu ersetzen. Die vorgestellte Methode verwendet die SHORE-Basis zur dMRT-Signalmodellierung und bestimmt Ausreißer mit Hilfe von gewichteten Modellresidualen. Die Datenimputation rekonstruiert die unbrauchbaren und daher verworfenen Messungen mit Hilfe der verbleibenden, dünnbesetzten Menge an Messungen. Dieser Ansatz ermöglicht eine schnelle und robuste Korrektur von Bildartefakten in der dMRT, welche erforderlich ist, um korrekte und präzise Modellparameter zu schätzen, die die Diffusionsbewegung von Wassermolekülen und die zugrundeliegende Mikrostruktur des Gehirngewebes reflektieren

    Image quality transfer and applications in diffusion MRI

    Get PDF
    This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard “single-shell” data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems

    Diffusion MRI analysis:robust and efficient microstructure modeling

    Get PDF
    Diffusion MRI (dMRI) allows for investigating the structure of the human brain. This is useful for both scientific brain research as well as medical diagnosis. Since the raw dMRI data is not directly interpretable by humans, we use mathematical models to convert the raw dMRI data into something interpretable. These models can be computed using multiple different computational methods, each having a different trade-off in accuracy, robustness and efficiency. In this thesis we studied multiple different computational models for their usability and efficiency for dMRI modeling. In the end we provide the reader with methodological recommendations for dMRI modeling and provide a high performance GPU enabled dMRI computing platform containing all recommendations
    • …
    corecore