11,337 research outputs found

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    [Subject benchmark statement]: computing

    Get PDF

    The logic behind negotiation : from pre-argument reasoning to argument-based negotiation

    Get PDF
    The use of agents in Electronic Commerce environments leads to the necessity to introduce some formal analysis and definitions. A 4-step method is introduced for developing EC-directed agents, which are able to take into account non-linearites such as gratitude and agreement. Negotiations that take into account a multi-step exchange of arguments provide extra information, at each step, for the intervening agents, enabling them to react accordingly. This argument-based negotiation among agents has much to gain from the use of Extended Logic Programming mechanisms. Incomplete information is common in EC scenarios; therefore arguments must also take into account the presence of statements with an unknown valuation

    Security-Oriented Formal Techniques

    Get PDF
    Security of software systems is a critical issue in a world where Information Technology is becoming more and more pervasive. The number of services for everyday life that are provided via electronic networks is rapidly increasing, as witnessed by the longer and longer list of words with the prefix "e", such as e-banking, e-commerce, e-government, where the "e" substantiates their electronic nature. These kinds of services usually require the exchange of sensible data and the sharing of computational resources, thus needing strong security requirements because of the relevance of the exchanged information and the very distributed and untrusted environment, the Internet, in which they operate. It is important, for example, to ensure the authenticity and the secrecy of the exchanged messages, to establish the identity of the involved entities, and to have guarantees that the different system components correctly interact, without violating the required global properties

    Modal Tableaux for Verifying Security Protocols

    Get PDF
    To develop theories to specify and reason about various aspects of multi-agent systems, many researchers have proposed the use of modal logics such as belief logics, logics of knowledge, and logics of norms. As multi-agent systems operate in dynamic environments, there is also a need to model the evolution of multi-agent systems through time. In order to introduce a temporal dimension to a belief logic, we combine it with a linear-time temporal logic using a powerful technique called fibring for combining logics. We describe a labelled modal tableaux system for a fibred belief logic (FL) which can be used to automatically verify correctness of inter-agent stream authentication protocols. With the resulting fibred belief logic and its associated modal tableaux, one is able to build theories of trust for the description of, and reasoning about, multi-agent systems operating in dynamic environments

    Modal tableaux for verifying stream authentication protocols

    Get PDF
    To develop theories to specify and reason about various aspects of multi-agent systems, many researchers have proposed the use of modal logics such as belief logics, logics of knowledge, and logics of norms. As multi-agent systems operate in dynamic environments, there is also a need to model the evolution of multi-agent systems through time. In order to introduce a temporal dimension to a belief logic, we combine it with a linear-time temporal logic using a powerful technique called fibring for combining logics. We describe a labelled modal tableaux system for the resulting fibred belief logic (FL) which can be used to automatically verify correctness of inter-agent stream authentication protocols. With the resulting fibred belief logic and its associated modal tableaux, one is able to build theories of trust for the description of, and reasoning about, multi-agent systems operating in dynamic environments

    The verification of an industrial payment protocol

    Get PDF
    • …
    corecore