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Abstract. To develop theories to specify and reason about various aspects of
multi-agent systems, many researchers have proposed the use of modal logics
such as belief logics, logics of knowledge, and logics of norms. As multi-agent
systems operate in dynamic environments, there is also a need to model the evo-
lution of multi-agent systems through time. In order to introduce a temporal di-
mension to a belief logic, we combine it with a linear-time temporal logic using
a powerful technique called fibring for combining logics. We describe a labelled
modal tableaux system for a fibred belief logic (FL) which can be used to auto-
matically verify correctness of inter-agent stream authentication protocols. With
the resulting fibred belief logic and its associated modal tableaux, one is able to
build theories of trust for the description of, and reasoning about, multi-agent
systems operating in dynamic environments.

1 Introduction

Multi-agent systems (MASs for short) consist of a collection of agents that interact
with each other in dynamic and unpredictable environments. Agents communicate with
one another by exchanging messages, and they have the ability to cooperate, coordinate
and negotiate with each other to achieve their objectives. In order to develop theories to
specify and reason about various aspects of multi-agent systems, many researchers have
proposed the use of modal logics such as belief logics [4,6] and logics of knowledge
[5,12]. As multi-agent systems operate in dynamic environments, there is also a need to
model the evolution of multi-agent systems through time.

In order to introduce a temporal dimension to a belief logic, Liuet al. [16] have
proposed a temporalized logic that provides a logical framework for users to specify
the dynamics of trust and model evolving theories of trust for multi-agent systems.
However, in this logic there are certain restrictions on the use of temporal and belief
operators because of the hierarchical combination of belief and temporal logics used.
Temporal operators can never be within the scope of a belief operator, hence we cannot
express a statement asserting that some agent believes an event to happen at some time,
e.g., the logic does not have a formula such asB john first holds(bob,k), which could
be used to express an assertion thatJohn believes that at the initial timeBob holds
the keyk. Such kind of assertions are often needed, for example, in analysing stream
authentication protocols; we therefore consider a more powerful combination technique
called fibring [8] that treats temporal operators and belief operators equally.

In this paper, we combine, using the fibring technique, the logic TML, a variant
of the modal logic KD of belief [16], with the temporal logic SLTL which is suitable
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for specifying events that may run on different clocks (time-lines) of varying rates of
progress [15]. We show that in the resulting fibred belief logic (FL) we can specify and
reason about not only agent beliefs but also the timing properties of a system effectively.
We describe a labelled modal tableaux system for FL which can be used to automati-
cally verify correctness of inter-agent stream authentication protocols. With this logical
system one is able to build theories of trust for the description of, and reasoning about,
multi-agent systems.

In the rest of the paper, Section 2 introduces the TESLA stream authentication pro-
tocol. Section 3 briefly discusses logics SLTL and TML. Section 4 presents the fibring
technique as specifically applied for combining TML with SLTL, and provides an ax-
iomatisation for the fibred logic called FL. Section 5 adapts KEM [2,9], a labelled
modal tableaux system to reason with FL. Section 6 develops a theory of trust in FL for
specifying the TESLA protocol and discusses its correctness.

2 The TESLA Protocol

Multi-agent systems, typically real world systems, need to employ application specific
protocols for transferring data, such as video, audio and sensory data, among agents.
Such protocols are often different from the standard class of authentication protocols
previously analysed by many researchers using belief logics and/or model checking
techniques [4,5,6]. As an example, we consider the TESLA protocol, a multicast stream
authentication protocol of Perriget al. [19]. In TESLA, authentication is based on the
timing of the publication of keys and the indirect relation of each new key to an original
key commitment. The process for verifying data packets received to be authentic de-
pends on trust of the receiver in the sender, and belief on whether an intruder can have
prior knowledge of a key before it is published by the protocol.

We consider a basic scheme for the TESLA Protocol, called the PCTS scheme, in
which each messageMi is sent in a packetPi , along with additional authentication in-
formation [3,19]. The sender issues a signed commitment to a key. The key is only only
known to the sender. To send messageMi , the sender uses that key to compute a MAC
(Message Authenticating Code) on a packetPi , and later discloses the key in packet
Pi+1, which enables the receiver (or receivers, when multiple receivers are involved) to
verify the commitment and the MAC of packetPi . A successful verification will imply
that packetPi is authenticated and trusted. We assume that, apart from the initial contact
messages between the sender and the receiver, for alli ≥ 2, the packetPi from the sender
to receiver has the standard form〈Di ,MAC(K′

i ,Di)〉, whereDi = 〈Mi , f (Ki+1),Ki−1〉,
K′

j = f ′(K j) for j ≥ 1, and f and f ′ are two different pseudo-random functions.
In analysing the protocol it is assumed that [19]:

– The sender is honest and works correctly, following all requirements of the protocol
strictly.

– The receiver accepts packetPi as authentic only when it believes the key commit-
ment and the MAC of the packet have been successfully verified.

– The intruder has the ability to capture, drop, resend, delay, and alter packets, can
access to a fast network with negligible delay, and can perform efficient compu-
tations, such as computing a reasonable number of pseudo-random function appli-



cations and MACs with negligible delay. Nonetheless, the intruder cannot invert a
pseudo-random function with non-negligible probability.

The security property for the TESLA protocol we need to guarantee is that the
receiver does not believe any packetPi to be authenticated unless theMi it contains was
actually sent by the sender. To prevent any successful attack by an intruder, the receiver
only needs to be sure that all packetsPi arrive safely such that the intruder has no time
to change the message and commitment inPi and forge the subsequent traffic.

3 Two Logics: SLTL and TML

We now give a brief introduction to the logics SLTL and TML.

3.1 SLTL: Simple Linear-time Temporal Logic

SLTL offers two operators,first andnext, which refer to the initial moment and the next
moment in time respectively. The formulas of SLTL are built with the usual formation
rules from standard connectives and quantifiers of classical first order logic, and the
temporal operatorsfirst andnext.

The collection of moments in time is the set of natural numbers. We define the
global clock as the increasing sequence of natural numbers, i.e.,〈0,1,2, . . .〉, and a local
clock is an infinite subsequence of the global clock. Thus, we have

Definition 1 (time models) A time model for the logic SLTL has the formc= 〈C,<,ν〉,
where C= (t0, t1, t2, . . .) is a clock,< is the usual ordering relation over C andν is an
assignment function giving a valueν(t,q) ∈ {true, f alse} for any atomic formula q at
time t in C.

We writec, t |= A to stand for “A is true at timet in the modelc”. Then the semantics of
the temporal operators with the notion of satisfaction in SLTL is given as follows:

– c, ti |= first A iff c, t0 |= A.
– c, ti |= next A iff c, ti+1 |= A.
– satisfaction in the modelc= (C,<,ν) is defined as satisfaction at some point onC.

A minimal axiomatic system for the propositional temporal logic consists of the fol-
lowing axioms (axiom schemata). We let5 stand forfirst or next.

A0. all classical tautologies.
A1. 5(first A)↔ first A.
A2. 5(¬A)↔¬(5 A).
A3. 5(A∧B)↔ (5A)∧ (5 B).

Apart from the generic substitution rule, SLTL has two rules of inference defined as
follows:

MP. From` A and` A→ B infer ` B (Modus Ponens)
TG. From` A infer `5 A (Temporal Generalisation)

The soundness and completeness of the axiomatisation system for SLTL with respect
the classC consisting of all local clocks are straightforward [15].



3.2 TML: Typed Modal Logic

We assume that there aren agentsa1, . . . ,an and, correspondingly,n modal operators
B1, . . . ,Bn in the logic, whereBi (1≤ i ≤ n) stands for “agentai believes that”.

We assume the fixed-domain approach to quantification, that is, the domain of quan-
tification is the same in all possible worlds. This mean than we have the standard first-
order logic semantics for the∀ and∃ quantifiers. We also employ rigid denotations for
terms, that is, the only dynamic objects are predicates. We also assume that in TML all
the wffs built according to the usual formation rules and are correctly typed.

A classical Kripke model[14] for the logic TML is a tuplem = 〈S,R1, . . . ,Rn,π〉,
whereS is the set of states or possible worlds; and eachRi(1≤ i ≤ n) is a relation over
S, consisting of state pairs(s, t) such that(s, t) ∈ Ri iff, at states, agentai considers
the statet possible; andπ is theassignment function, which gives a valueπ(s,q) ∈
{true, f alse} for anys∈ Sand atomic formulaq. EachRi called thepossibility relation
according to agentai . We write m,s |= ϕ to stand for “ϕ is true at the states in the
modelm” or “ ϕ holds ats in m”. The semantics definition for the belief operators with
the notion of satisfaction in TML is given as follows:

– m,s |= Biϕ iff, for all t such that(s, t) ∈ Ri , m, t |= ϕ.
– A formula ϕ is satisfiable in a modelm if there existss∈ Ssuch thatm,s |= ϕ.

In preparation for fibring TML with SLTL, we now consider monadic models for TML
defined as follows:

Definition 2 (monadic models) A monadic model for TML is a structure
m = 〈S,R1, . . . ,Rn,π,u〉 where〈S,R1, . . . ,Rn,π〉 is a classical model for TML and u∈S
is called the actual world.ϕ is satisfiable in the monadic modelm if and only if
m,u |= ϕ.

We defineKtml as a class of monadic models of the form〈S,R1, . . . ,Rn,π,u〉, where

(1) S= {x | ∃Ri1 . . .Rik uRi1 ◦ . . .◦Rikx,Ri1, . . . ,Rik ∈ {R1, . . . ,Rn}},

whereRi ◦Rj represents the relative product (or composition) ofRi andRj . Furthermore,

using the notationm for a model inKtml, we writem = 〈S(m),R(m)
1 , . . . ,R(m)

n ,π(m),u(m)〉.
In addition we assumeP:

(2) if m1 6= m2, thenS(m1)∩S(m2) = /0.
(3) m1 = m2 iff u(m1) = u(m2).

Assumption (2) indicates that all sets of possible worlds inKtml are all pairwise dis-
joint, and that there are infinitely many isomorphic (but disjoint) copies of each model;
assumption (3) means that a model inKtml can in fact be identified by the actual world
in it.

TML has the following axiom schemata and inference rules:

B0. all axioms of the classical first-order logic.
B1. Bi(ϕ → ψ)∧Biϕ → Biψ for all i (1≤ i ≤ n).
B2. Bi(¬ϕ)→¬(Biϕ) for all i (1≤ i ≤ n).



B3. ∀XBiϕ(X)→ Bi∀Xϕ(X) for all i (1≤ i ≤ n).
I1. Fromϕ andϕ → ψ infer ψ. (Modus Ponens)
I2. From∀Xϕ(X) infer ϕ(Y). (Instantiation)
I3. Fromϕ(X) infer ∀Xϕ(X). (Generalisation)
I4. Fromϕ infer Biϕ for all i (1≤ i ≤ n). (Necessitation)

The soundness and completeness of the axiomatisation system for TML can be
proved in a standard pattern [13].

4 FL: Fibred Logic

In this section, we discuss how the logic FL is obtained through the use of fibring
technique for combining the logics TML and SLTL. LetO = {B1, . . . ,Bn,first ,next}
be the set of modal connectives of FL. Then the formulas of FL are obtained from the
usual formation rules. As before we assume that in FL all the wffs are correctly typed.

The discussion of the fibred semantics in the case of the Kripke monadic models
for TML with time models for SLTL can be laid out in three levels: using a single time
model, or considering a set of time models with the same clock, or based on different
clock models. In this paper we restrict ourselves to the first level. Following Gabbay [8],
we define the fibred semantics arising from the Kripke models for TML with a single
time model based onsimplified fibred models(simply,sfm models) defined as follows:

Definition 3 (sfm models) A simplified fibred modelor sfm modelis a tuple
〈W,Wt ,Wb,R0,R1, . . . ,Rn,π,F,w0〉 where

1. W is a set of worlds, w0 ∈Wt ∪Wb

2. Wb ⊆W, and Wt is a set of natural numbers, we also have Wt ⊆W.
3. For s∈Wb, let S(s) = {x | sRi1 ◦ . . . ◦Rikx, for some Ri1, . . . ,Rik ∈ {R1, . . . ,Rn}},

then (1) for all s∈Wb, S(s)∩Wt = /0; (2) for all s, r ∈Wb, if s 6= r, then S(s)∩S(r) = /0;
and (3) W= (

⋃
s∈Wb

S(s))∪Wt .
4. R0 = {(x,y) | x,y∈Wt & x < y, for all x,y∈W}.
5. For all u∈Wt , the modelc = (C,R0,π

(c)) satisfies the condition that u∈Wt iff u is
a time point in the clock C, and is in the semantics of SLTL.

6. For all u∈Wb, the modelm(u) =(S(u),R1 bS(u)×S(u), . . . ,Rn bS(u)×S(u),u,h bS(u))
is in the semantics ofKtml of the logic TML.

7. F is the fibred function consisting of two folds,Fb andFt . It satisfies the following
conditions: (1) For all connectives5∈O and all worlds w∈W,

F(5,w) =
{

Ft(w) if 5 is first or next
Fb(w), otherwise.

(2) If x∈S(u) and u∈Wb, thenFb(x) = x; if x ∈Wt , thenFb(x)∈Wb; if x ∈Wt , then
Ft(x) = x; and if x /∈Wt , thenFt(x) ∈Wt .

Definition 4 (semantics) The semantics of formulas for the logic FL is defined induc-
tively with respect to an sfm-model〈W,Wc,Wb,R0,R1, . . . ,Rn,π,F,w0〉. For any w∈W,



1. for any atomic formula q, w|= q iff π(w,q) = true.
2. w|= ¬ϕ iff it is not the case that w|= ϕ.
3. w|= (ϕ ∧ψ) iff w |= ϕ and w|= ψ.
4. w|= ∀Xϕ(X) iff, for all d ∈T , w |= ϕ(d), whereT is the type of X.
5. w|=5 ϕ iff F(5,w) |=5 ϕ.
6. w|= first ϕ when w∈Wt iff min{t |t ∈Wt} |= ϕ.
7. w|= next ϕ when w∈Wt iff min{t |wR0t} |= ϕ.
8. w |= Biϕ when w/∈Wt and1≤ i ≤ n iff, for all s such that wRis, s|= ϕ, assuming

s∈ S(m) andm ∈Kbl .

With the sfm model〈W,Wc,Wb,R0,R1, . . . ,Rn,π,F,w0〉 we say that it satisfies the for-
mulaϕ iff w0 |= ϕ. Furthermore,m = 〈W,Wc,Wb,R0,R1, . . . ,Rn,π,F〉 is called aregular
fibred semantics modelfor the logic FL. We sayϕ is valid in the modelm, and written
asm |= ϕ, if, for all w0 ∈Wt ∪Wb, the model〈W,Wc,Wb,R0,R1, . . . ,Rn,π,F,w0〉 satis-
fiesϕ; we say thatϕ is satisfied in the modelm if, for somew0 ∈Wt ∪Wb, the model
〈W,Wc,Wb,R0,R1, . . . ,Rn,π,F,w0〉 satisfiesϕ. Let K f l be the set of regular fibred se-
mantics models which defines the fibred logic FL, then we sayϕ is valid in the logic
FL if, for all m ∈K f l , m |= ϕ.

The axiom set of FL consists of the combination of the axioms for SLTL and TML
and their inference rules. The soundness for the logic FL depends on the soundness
theorems for logics TML and SLTL, and is not difficult to prove; the completeness can
be proved by the techniques used in Gabbay [8].

5 Labelled Tableaux for FL

In this section we show how to adapt KEM, a labelled modal tableaux system, to rea-
son with FL. The system can be used to automatically check for formal properties of
security protocols, in particular for TESLA, in FL.

A tableaux system is a semantic based refutation method that systematically tries
to build a (counter-)model for a set of formulas. A failed attempt to refute (invalidate)
a set of formulas generates a model where the set of formulas is true. To show that a
propertyA follows from a theory (a protocol)B1, . . . ,Bn we verify whether a model for
{B1, . . . ,Bn,¬A} exists. If it does not thenA is a consequence of the protocol.

In labelled tableaux systems, the object language is supplemented by labels meant
to represent semantic structures (possible worlds in the case of modal and temporal
logics). Thus the formulas of a labelled tableaux system are expressions of the form
A : i, whereA is a formula of the logic andi is a label. The intuitive interpretation of
A : i is thatA is true at (the possible world(s) denoted by)i.

KEM is a labelled tableaux for logics admitting possible world semantics whose
inferential engine is based on a combination of standard tableaux linear expansion rules
and natural deduction rules supplemented by an analytic version of the cut rule. In
addition it utilises a sophisticated but powerful label formalism that enables the logic to
deals with a large class of (quantified) modal and non-classical logics. Furthermore the
label mechanism corresponds to fibring thus it is possible to define tableaux systems
for multi-modal logic by a seamless combination of the (sub)tableaux systems for the
component logics of the combination.



5.1 Label Formalism

KEM usesLabelled Formulas(L-formulas for short), where anL-formula is an expres-
sion of the formA : i, whereA is a wff of the logic, andi is a label. For FL we have a
type of labels to various modalities for each agent (belief) plus a type of labels for the
temporal modalities. The set of atomic labels is

Φ = ΦT ∪
⋃

i∈Agt
Φ

i ,

where ΦT = {t0, t1, . . .} and everyΦ i is partitioned into (non-empty) sets of vari-
ables and constants:Φ i = Φ i

V ∪Φ i
C wereΦ i

V = {Wi
1,W

i
2, . . .} andΦ i

C = {wi
1,w

i
2, . . .}.

Finally we add a sets of auxiliary unindexed atomic labelsΦA = ΦA
V ∪ΦA

C where
ΦA

V = {W1,W2, . . .} andΦA
C = {w1,w2, . . .}. ΦA will be used in unifications and proofs.

ΦC and ΦV denote the set of constants and the set of variables. The set of labels is
denoted byℑ.

Definition 5 (labels) A label is either a (i) an element of the setΦC, or (ii) an element
of the setΦV , or (iii) a path term(u′,u) where (iiia) u′ ∈ ΦC∪ΦV and (iiib) u∈ ΦC or
u = (v′,v) where(v′,v) is a label.

As an intuitive explanation, we may think of a labelu∈ΦC as denoting a world (agiven
one), and a labelu∈ΦV as denoting a set of worlds (anyworld) in some Kripke model.
A labelu = (v′,v) may be viewed as representing a path fromv to a (set of) world(s)v′

accessible fromv (the world(s) denoted byv).
For any labelu = (v′,v) we shall callv′ theheadof u, v thebodyof u, and denote

them byh(u) andb(u) respectively. Notice that these notions are recursive (they corre-
spond to projection functions): ifb(u) denotes the body ofu, thenb(b(u)) will denote
the body ofb(u), and so on. We call each ofb(u), b(b(u)), etc., asegmentof u. The
length of a labelu, `(u), is the number of world-symbols in it.sn(u) will denote the
segment ofu of lengthn and we shall usehn(u) as an abbreviations forh(sn(u)). Notice
thath(u) = h`(u)(u). Let u be a label andu′ an atomic label. We use(u′;u) as a notation
for the label(u′,u) if u′ 6= h(u), or for u otherwise.

For any labelu, `(u) > n, we define thecounter-segment-nof u, as follows (for
n < k < `(u)):

cn(u) = h(u)× (· · ·× (hk(u)× (· · ·× (hn+1(u),w0))))

wherew0 is a dummy label, i.e., a label not appearing inu (the context in which such
a notion occurs will tell us whatw0 stands for). The counter-segment-n defines what
remains of a given label after having identified the segment of lengthn with a ‘dummy’
labelw0. The appropriate dummy label will be specified in the applications where such
a notion is used. However, it can be viewed also as an independent atomic label in the
set of auxiliary labels.

So far we have provided definitions about the structure of the labels without regard
of the elements they are made of. The following definitions will be concerned with the
type of world symbols occurring in a label.

We say that a labelu is τ-preferrediff τ = i andh(u) ∈Φ i , or τ = t andh(u) ∈ΦT ;
a labelu is τ-pure iff each segment ofu of lengthn > 1 is τ-preferred. Withℑi we
denote the set ofi-preferred labels wherei ∈ Agt.



5.2 Label Unifications

One of the key features of KEM is its logic dependent label unification mechanism. In
the same way as each modal logic is characterised by a combination of modal axioms
(or semantic conditions on the model), KEM defines a unification for each modality and
axiom/ semantic condition and then combines them in a recursive and modular way. In
this case for SLTL we have to provide a characterisation of the two modalitiesfirst and
next in terms of relationships over labels. In particular we use what we call unification
to determine whether the denotation of two labels have a non empty intersection, or
in other terms whether two labels can be mapped to the same possible world in the
possible worlds semantics.

The second key issue is the ability to split labels and to work with parts of labels.
The mechanism permits the encapsulation of operations on sub-labels. This is an im-
portant feature that, in the present context, allows us to correlate unifications and fibring
functions. Given the modularity of the approach the first step of the construction is to
define unifications (pattern matching for labels) corresponding to the single modality in
the logic we want to study.

Every unification is built from a basic unification defined in terms of a substitution
ρ : Φ 7→ ℑ such that:

ρ : 1ΦC

Φ
i
V 7→ ℑi for everyi ∈ Agt

Φ
A
V 7→ ℑ

This means that a substitutioinρ replaces a constant with the same constant; a varable of
typei can be replaced by anyi-preferred label, while an auxiliary variable can be freely
replaced by any label. This is in agreement with the intuitive meaning of labels that a
constant stands for a possible world, and a variable stands for a set of possible world
(of the appropriate type). Accordingly, we have that two atomic (“world”) labelsu and
v σ -unify iff there is a substitutionρ such thatρ(u) = ρ(v). We shall use[u;v]σ both
to indicate that there is a substitutionρ for u andv, and the result of the substitution.
Theσ -unification is extended to the case of composite labels (path labels) as follows:

[u;v]σ = z iff ∃ρ : h(z) = ρ(h(u)) = ρ(h(v)) andb(z) = [b(u);b(v)]σ

Clearlyσ is symmetric, i.e.,[u;v]σ iff [v;u]σ . Moreover this definition offers a flexible
and powerful mechanism: it allows for an independent computation of the elements of
the result of the unification, and variables can be freely renamed without affecting the
result of a unification.

We are now ready to introduce the unifications corresponding to the modal operators
at hand. For these unification we assume that the labels involved areτ-pure. The first
unification is that forfirst .

[u;v]σfirst = (t0; [h1(u);h1(v)]σ ) iff h(u) = h(v) = t0 and[h1(u);h1(v)]σ

The unification forfirst (σfirst -unification) corresponds to a constant function (the ini-
tial time is unique for the model). Accordingly if two labels end with the same atomic
label (t0) then the two labels denote the same time instant, namely the start of the clock.



For the unification fornext we will use the fact that the time line is a discrete total
order, thus two labels denote the same time instant if they have the same length.

[u;v]σnext = u iff `(u) = `(v), [h1(u);h1(v)]σ andc1(u),c1(v) do not containt0.

The unification for the logic SLTL is defined by the combination of the unifications for
first andnext. Formally

[u;v]σSLTL=

{
[u;v]σfirst

[cn(u);cm(v)]σnext, w0 = [sn(u);sm(v)]σSLTL

The belief logic can be understood a the combination of multipleKD modal logics, one
for each agenti ∈ Agt. Thus we first give the unification for each of such logics and
then we combine in a single unification to be used with the unification for SLTL for FL.

[u;v]σTMLi = [u;v]σ

whereu and v are i-pure. Notice that using the mechanism of counter-segment it is
always possible to split labels into pure sub-labels. Accordingly the definition of the
unification for TML is

[u;v]σTML =


[u;v]σTMLi u,v arei-pure, or

[cn(u);cm(v)]σTMLi cn(u),cm(v) arei-pure, and

w0 = [sn(u);sm(v)]σTML.

The logic FL is is the fibred combination of TML and SLTL, thus according to [9] we
can obtain the unification for it based on the unifications for the component logics. With
σTBL we understood eitherσSLTL or σTML. The unification for FL is:

[u;v]σFL =


[u;v]σTBL

[cn(u);cm(v)]σTBL cn(u),cm(v) arei-pure, and

w0 = sn(u)sm(v)

Theorem 1 TheσFL-unification of two labels u and v can be computed in linear time.

5.3 Inference Rules

For the presentation of the inference rules we assume familiarity with Smullyan-Fitting
unifying notation [7].

α : u
α1 : u
α2 : u

A∧B : u
A : u
B : u

¬(A∨B) : u
¬A : u
¬B : u

¬(A→ B) : u
A : u
¬B : u

(α)

The α-rules are just the familiar linear branch-expansion rules of the tableau method.
For theβ -rules (formulas behaving disjunctively) we exemplify only the rules for→.

β : u
β c

i : v
(i = 1,2)

β3−i : [u;v]σFL

A→ B : u
A : v

B : [u;v]σFL

A→ B : u
¬B : v

¬tA : [u;v]σFL
(β )



The β -rules are nothing but natural inference patterns such as Modus Ponens, Modus
Tollens and Disjunctive syllogism generalised to the modal case. In order to apply such
rules it is required that the labels of the premises unify and the label of the conclusion
is the result of their unification.

γ : u
γ0(xn) : u

∀xP(x) : u
P(xn) : u

¬∃xP(x) : u
¬P(xn) : u

(γ)

The γ rules are the usual “universal” rules of tableaux method with the usual proviso
thatxn is a variable not previously occurring in the tree [7,2].

δ : u
δ0(cn) : u

∃xP(x) : u
P(cn) : u

¬∀xP(x) : u
¬P(cn) : u

(δ )

Theδ rules are the usual “existential” rules of the tableau method, wherecn is a constant
that does not occur previously in the tree.

BiA : u
A : (Wi

n,u)
ν

¬BiA : u
¬A : (wi ,u)

π (µB)

whereWi
n andwi

n are new labels.
The rules forB are the normal expansion rule for modal operators of labelled

tableaux with free variable. The intuition for theν rule is that ifBA is true atu, thenA
is true at all worlds accessible viaRi from u, and this is the interpretation of the label
(Wi

n,u); similarly if BA is false atu (i.e.,¬BA is true), then there must be a world, let
us saywi

n accessible fromu, where¬A is true.

first A : u
A : (t0,u)

¬first A : u
¬A : (t0,u)

nextA : u
A : (tn,u)

¬nextA : u
¬A : (tn,u)

(µT)

wheretn is new.
Given the functional interpretation of the temporal accessibility relation and that the

initial instant is fixed, we have the same expansion of the labels and there is no need to
introduce variables.

A : u | ¬A : u
(PB)

The “Principle of Bivalence” represents the semantic counterpart of the cut rule of the
sequent calculus (intuitive meaning: a formulaA is either true or false in any given
world). PB is a zero-premise inference rule, so in its unrestricted version can be applied
whenever we like. However, we impose a restriction on its application. PB can be only
applied w.r.t. immediate sub-formulas of unanalysedβ -formulas, that isβ formulas for
which we have no immediate sub-formulas with the appropriate labels in the tree.

A(x) : u
¬A(y) : v

×
[ if [u;v]σFL andx andy unify] (PNC)

The rule PNC (Principle of Non-Contradiction) states that two labelled formulas are
σFL-complementary when the two formulas are complementary (i.e., the terms in the
formula unify according to the standard unification for terms) and their labelsσFL-unify.



5.4 Soundness and Completeness

The resulting tableaux system is sound and complete for the logics presented in this
paper. As usual with tableaux systems a proof ofA is a closed tableaux for¬A, thus a
tableaux systems is sound and complete for a particular logic if it is able to generate
closed tableaux for all negation of valid formula, and open tableaux (models) for all
satisfiable formulas. In proving the results for the logics at hand we will make use of
the main result of [9] (Theorem 22) that allows one to obtain a sound and complete la-
belled tableaux system for a fibred logic based on sound and complete labelled tableaux
systems (of the same type of the tableaux system for the fibred logic) for the logics to
be combined. The key idea of the Theorem is to conceive the join point of a unification
where the labels are split in segments and counter-segments as the counterpart of the
fibring function in fibred models.

Theorem 2 KEM is sound and complete for SLTL, TML and FL.

6 Analysing Authentication Protocols

In this section, we first build a theory of trust to specify the TESLA protocol, then
discuss its correctness. With the purpose of making the logic FL appropriate for speci-
fying the protocol, we restrict the time model of FL to guarantee that the time interval
between any moment and its next moment in time has the same length, 1 unit time.
This restriction matches the special timing property that the TESLA scheme satisfies:
the sender sends packets at regular time intervals. The assumption simplifies our dis-
cussion without harming its correctness.

6.1 The Formalization of TESLA

We now establish a theory that describes the behaviour or functions of the protocol
with the scheme PCTS. The basic types of the theory include:Agents= {A,B,S,R, I},
Messages= {X,Y,D,D′} andKeys= {K,K1,K2} whereS,R, I stand for the sender, the
receiver, and the intruder, respectively. In case there are multiple receivers, we may have
R1,R2, . . . in the typeAgents.

Through an analysis of the TESLA protocol, we set a theory to specify it consist-
ing of four modules, Msr (send-receive mode specification), Mmk (message receiving
and knowledge gained), Mms (message sending), and Mar (authentication rules). Each
module consists of several axiom schemata). Several predicates are used to express
these axioms. Given the intuitive reading of the predicates we omit their explanations.

Send-receive mode specification depends on what kind of mode is adopted. We first
consider a simple mode called thezero-delay mode, which is based on two assumptions:
(1) Zero time is spent between sending a message and receiving this message, i.e.,
the sending time of a packetPi is equal to the receiving time of the packet on the
synchronized receiver’s clock, for anyPi ; and (2) the packet rate is assumed to be 1
(i.e., 1 packet per unit time). With this mode, module Msr consists of the following
axiom schemata:



Z1. sends(S,R,X)↔ receives(R,X).
Z2. sends(S,R,〈D,MAC( f ′(K),D)〉)↔ next sends(S,R,X)∧K ∈ X.

The first rule says that, if the sender sends the receiver a message, then the receiver will
receive the message at the same time; and the second one says that the sender sends the
receiver a message packet with a singed commitment to a key if it will send the receiver
a packet containing that key at the next moment in time.

Zero-delay mode is an idealized mode. However, generally the time spent between
sending and receiving messages cannot be zero. Considering this point, we give the
definition of send-receive modes by introducing a generic form.

Definition 6 (time intervals) For a send-receive mode, all packets Pi must arrive within
a certain time interval[u,v] relative to the current time defined as follows:

sends(S,R,Pi)→ next(m) receives(R,Pi),u≤m≤ v.

Let the current time betc (time of sending a packet). Definition 6 indicates that any
packet sent by the sender must arrive at a moment betweentc+u andtc+v.

Definition 7 (time distance of sending)Let d= 1/r, where r is the packet rate (i.e.,
number of packets sent per unit time). We call d thetime distance of sendingbetween
two packets.

Noting that a send-receive mode is in fact determined based on the time interval of
packet arrival and the time distance of sending, we have the formal definition of a mode
as follows:

Definition 8 (send-receive modes)We use the notation m([u,v],d) to represent asend-
receive mode of the PCTS scheme of TESLAor, simply, amodeif u,v,d ∈N , the set
of all natural numbers, and u≤ v, where[u,v] is the time interval of this mode, and d
the time distance of sending with it. We say that m([u,v],d) is asafe modeif v < d.

The following generic rules specify a given modem([u,v],d):4

G1. sends(S,R,X)↔ next(u) receives(R,X)∨ . . .∨next(v)receives(R,X).
G2. sends(S,R,〈D,MAC( f ′(K),D)〉)↔ next(d) sends(S,R,X)∧K ∈ X.

Mode-specific rules are determined whenu,v andd are given. For example, within the
modem([2,3],4), we have

S1. sends(S,R,X)↔ next(2) receives(R,X)∨next(3)receives(R,X).
S2. sends(S,R,〈D,MAC( f ′(K),D)〉)↔ next(4) sends(S,R,X)∧K ∈ X.

Modules Mmk, Mms, and Mar are fixed for any mode. Due to space limitations, they
are listed below without explanations.

Mmk (message receiving and knowledge gained)

4 In what follows we will usenextm to indicatem consecutive occurences ofnext.



G3. receives(A,〈X,Y〉)→ receives(A,X)∧ receives(A,Y).
G4. receives(A,X)→ knows(A,X).
G5. knows(A,K)→ knows(A, f (K))∧knows(A, f ′(K)).
G6. knows(A,{X}SK(B))→ knows(A,X).
G7. knows(A,K)∧knows(A,X)→ knows(A,MAC(K,X)).
G8. knows(A,X)→ next knows(A,X).

whereSK(B) is the private key of agentB and its corresponding public key can be
known by anybody, so we have G8.

Mms(Message sending)
G9. sends(A,B,〈X,Y〉)→ sends(A,B,X)∧sends(A,B,Y).
G10.sends(A,B,X)→ hassent(A,B,X).
G11.hassent(A,B,X)→ next hassent(A,B,X).

Mar (Authentication rules)
G12.is auth(〈X,MAC( f ′(k),D)〉)↔ veri f y success( f (K))∧veri f y success(MAC( f ′(K),D)).
G13.is auth(X)→ hasbeenauth(X).
G14.BR hasbeenauth(X)→ next BR hasbeenauth(X).
G15.receives(R,〈X,MAC( f ′(K),D)〉)∧

BR ¬hassent(S,R,K)→ BR arrive sa f e(〈X,MAC( f ′(K),D)〉).
G16.arrive sa f e(X)→ hasarrive sa f e(X).
G17.BR hasarrive sa f e(X)→ next BR hasarrive sa f e(X).
G18.BR veri f y success( f (K))↔ BR hasarrive sa f e(〈X,MAC( f ′(K),D)〉)∧knows(R,K)∧

BR hasbeenauth(〈D′,MAC( f ′(K),D′)〉)∧ f (K) ∈ D′.
G19.BR veri f y success(MAC( f ′(K),D))↔ BR hasarrive sa f e(〈X,MAC( f ′(K),D)〉)∧

knows(R,K)∧MAC( f ′(K),X) = MAC( f ′(K),D).

Thus, we have obtained a theoryT = Msr ∪Mmk∪Mms∪Mar specifying the PCTS
scheme of TESLA given in Section 2, where each module contains the relevant axioms
given above.

6.2 Correctness Analysis

The correctness condition for a given TESLA scheme should guarantee that if the re-
ceiver (receivers) can verify that a packet is authentic, then the packet was indeed sent
by the sender.

Definition 9 (correctness condition) The local correctness for a TESLA scheme to
the receiver R who receives messages from the sender S means that, if R has ver-
ified that a packet is authentic, then the packet was indeed sent by S. That is,
∀X (BR hasbeenauth(X)∧hassent(A,R,X)→A= S). Furthermore, the (global) cor-
rectness for the TESLA scheme means that the local correctness for the scheme to all
receivers holds.

The theory discussed above is based on a time model where the clock is regarded
as the synchronized receiver’s clock (correspondingly to the global clock). It provides a
basis for the receiver to verify stream messages received through the PCTS scheme of
TESLA if the scheme with its send-receive mode satisfies the correctness condition.

Based on the theory developed above, we can show that the correctness condition
of the TESLA protocol holds within the scheme.



Proposition 1 The PCTS scheme with the mode m([u,v],d) mode is secure (i.e., it sat-
isfies the correctness condition)if m([u,v],d) is a safe mode.

We can also use the theory to show that the PCTS scheme with an unsafe mode, e.g,
the modem([1,4],2), provides chances for the intruder to attack the system. Consider
the case: assume that packetsPi andPi+1 are sent out by the sender at timet (the current
moment in time) and att +2 (the next next moment), respectively. The intruder,I , first
interceptsPi at t +2 and then, att +3, again interceptsPi+1 when it arrives. By creating
a packetP′i , instead ofPi , using keyKi in packetPi+1, I masquerades as the sender send
packetP′i to the receiver. The attack will be successful ifP′i reaches the receiver att +4.

6.3 Mechanising Correctness Proofs

In order to automatically analyse the correctness of a scheme of the protocol, we need to
mechanize the theory describing the behaviour of the protocol in an appropriate proof
system. In our approach, such system-specific trust theories developed for specifying
communications protocols do not depend on a specific implementation. The user is
therefore allowed to freely choose the tools for mechanizing these theories. Below we
will show how modal tableaux can be used to verify the properties of the TESLA pro-
tocol. Modular structure offers convenience to the user for translating a theory to an
executable code (program) in a mechanised proof system, such as Isabelle [18] or the
SMV model checker [17].

With the labelled modal tableaux system KEM, to show a safe mode satisfies
the correctness condition, we only need to show that in this modeA = S is a KEM-
consequence of a set of formulasΓ = {BR hasbeenauth(X),hassent(A,R,X)}. Due
to space limitations, we only give a simple case to show how the labelled tableaux
system works on checking the properties of TESLA. With the send-receive mode
m([2,3],4), we assume that the message has arrived safely and it has been authenti-
cated based on the time the message was received and the contents of the message:

H1. first next(3) receives(R,〈X,Y〉)
H2. first next(7) receives(R,X1)∧K ∈ X1
H3. MAC( f ′(K),X) = Y
H4. first next(8) BR is auth(〈X,Y〉)

Then, we can prove the following property:

(A). first next(8) BR (is auth(〈X,Y〉)→ (first sends(S,R,〈X,Y〉)∨
first next sends(S,R,〈X,Y〉)))

It basically says that if at timet8, agentR believes that if the message is authenticated,
then it must have been sent at either timet0 or timet1 (agentRdoes not really know the
exact time when the message was sent, however, it knows about the time interval).

In the following we show the tableaux proof of the property. All the rules of the
PCTS scheme of TESLA are at our disposal as well as the assumptions made above;
each is labelled with a generic universal label that would unify with any given label.
Tableaux rules have been applied exhaustively until all the branches have been com-
pleted (details of proof steps are omitted). We also assume a that biconditional (such as
S1 used in the proof) is the conjunction of two implications.



1. sends(S,R,〈X,Y〉)↔ next(2) receives(R,〈X,Y〉)∨next(3)receives(R,〈X,Y〉) : W1
2. first next(3) receives(R,〈X,Y〉) : W2
3. first next(8) BR is auth(〈X,Y〉) : W3
4. ¬first next(8) BR (is auth(〈X,Y〉)→ (first sends(S,R,〈X,Y〉)∨

first next sends(S,R,〈X,Y〉))) : W4
5. ¬next(8) BR (is auth(〈X,Y〉)→ (first sends(S,R,〈X,Y〉)∨

first next sends(S,R,〈X,Y〉))) : (t0,W4)
6. ¬next(7) BR (is auth(〈X,Y〉)→ (first sends(S,R,〈X,Y〉)∨

first next sends(S,R,〈X,Y〉))) : (t1,(t0,W4))
7. . . . (expansion rule fornext is applied 7 times,µT )
8. ¬BR (is auth(〈X,Y〉)→ (first sends(S,R,〈X,Y〉)∨

first next sends(S,R,〈X,Y〉))) : (t8,(. . .(t1,(t0,W4)) . . .)
9. ¬(is auth(〈X,Y〉)→ (first sends(S,R,〈X,Y〉)∨

first next sends(S,R,〈X,Y〉))) : (wi ,(t8,(. . .(t1,(t0,W4)) . . .))
10. is auth(〈X,Y〉) : (wi ,(t8,(. . .(t1,(t0,W4)) . . .))
11. ¬(first sends(S,R,〈X,Y〉)∨first next sends(S,R,〈X,Y〉)) : (wi ,(t8,(. . .(t1,(t0,W4)) . . .))
12. ¬first sends(S,R,〈X,Y〉) : (wi ,(t8,(. . .(t1,(t0,W4)) . . .))
13. ¬first next sends(S,R,〈X,Y〉)) : (wi ,(t8,(. . .(t1,(t0,W4)) . . .))
14. ¬sends(S,R,〈X,Y〉) : (t0,(wi ,(t8,(. . .(t1,(t0,W4)) . . .)))
15. ¬next sends(S,R,〈X,Y〉)) : (t0,((wi ,(t8,(. . .(t1,(t0,W4)) . . .)))
16. ¬sends(S,R,〈X,Y〉)) : (t1,(t0,((wi ,(t8,(. . .(t1,(t0,W4)) . . .))))
17. sends(S,R,〈X,Y〉)→ next(2) receives(R,〈X,Y〉)∨next(3)receives(R,〈X,Y〉) : W1
18. next(2) receives(R,〈X,Y〉)∨next(3)receives(R,〈X,Y〉)→ sends(S,R,〈X,Y〉) : W1
19. ¬(next(2) receives(R,〈X,Y〉)∨

next(3)receives(R,〈X,Y〉)) : (t1,(t0,((wi ,(t8,(. . .(t1,(t0,W4)) . . .))))
20. ¬next(2) receives(R,〈X,Y〉) :(t1,(t0,((wi ,(t8,(. . .(t1,(t0,W4)) . . .))))
21. ¬next(3)receives(R,〈X,Y〉)) :(t1,(t0,((wi ,(t8,(. . .(t1,(t0,W4)) . . .))))
22. next(3) receives(R,〈X,Y〉) : (t0,W2)
23. next(2) receives(R,〈X,Y〉) : (t1,(t0,W2))
24. ×[(t1,(t0,((wi ,(t8,(. . .(t1,(t0,W4)) . . .)))) and(t1,(t0,W2)) unify]

This proof has only one branch which is closed. This shows that agentR’s belief
has been justified based on the assumptions.

7 Concluding Remarks

With the logic FL, we use a simple case of the fibred semantics arising from Kripke
models with a single time model. However, it is not difficult to extend it with other
different time models. Such extensions would be needed when one wants to deal with
different local clocks for multi-agent systems.

We have discussed an application of the logic FL in analysing the TESLA protocol.
Archer [1] uses the theorem prover TAME, and Broadfootet al [3] use model checking
techniques, to analyse TESLA. The advantage of these methods is that some properties
of the protocol can easily be captured through proof systems, but a drawback is that
the formal representations involved in such proofs are often not easily validated by the
user. Our approach separates the theory from its implementation and helps a protocol
designer to capture the meanings of the theory as a whole. Our analysis has shown that
the PCTS scheme of TESLA with a safe send- is secure given that the correctness con-
dition is satisfied. We believe that this approach can be easily extended for the analysis
of other schemes of the TESLA protocol, and for other security protocols.
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