7,752 research outputs found

    A unified system for clinical guideline management and execution

    Get PDF
    There are several approaches to Computer-Interpretable Guidelines (CIG) representation and execution that offer the possibility of acquiring, executing and editing CPGs. Many CIG approaches aim to represent Clinical Practice Guidelines (CPGs) by computationally formalising the knowledge that they enclose, in order to be suitable for the integration in Clinical Decision Support Systems (CDSS). However, the current approaches for this purpose lack in providing a unified workflow for management and execution of CIGs. Besides characterising these limitations and identifying improvements to include in future tools, this work describes the unified architecture for CIG management and execution, a unified approach that allows the CIG acquisition, editing and execution.This work has been supported by COMPETE: POCI-01-0145-FEDER-0070 43 and FCT – Funda ̧c ̃aopara a Ciˆencia e Tecnologia within the Project Scope UID/CEC/ 00319/2013

    Design of a goal ontology for medical decision-support

    Get PDF
    Thesis (S.M.)--Harvard-MIT Division of Health Sciences and Technology, 2005.Includes bibliographical references (leaves 34-36).Objectives: There are several ongoing efforts aimed at developing formal models of medical knowledge and reasoning to design decision-support systems. Until now, these efforts have focused primarily on representing content of clinical guidelines and their logical structure. The present study aims to develop a computable representation of health-care providers' intentions to be used as part of a framework for implementing clinical decision-support systems. Our goal is to create an ontology that supports retrieval of plans based on the intentions or goals of the clinician. Methods: We developed an ontological representation of medical goals, plans, clinical scenarios and other relevant entities in medical decision-making. We used the resulting ontology along with an external ontology inference engine to simulate selection of clinical recommendations based on goals. The ontology instances used in the simulation were modeled from two clinical guidelines. Testing the design: Thirty-two clinical recommendations were encoded in the experimental model. Nine test cases were created to verify the ability of the model to retrieve the plans. For all nine cases, plans were successfully retrieved. Conclusion: The ontological design we developed supported effective reasoning over a medical knowledge base.(cont.) The immediate extension of this approach to be fully developed in medical applications may be partially limited by the lack of available editing tools. Many efforts in this area are currently aiming to the development of needed technologies.by Davide Zacacagnini [i.e. Zaccagnini].S.M

    Clinical protocols enabling evidence based medicine practice in healthcare software solutions

    Get PDF
    Estágio realizado na ALERT Life Sciences Computing, S. A.Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    OWL-based acquisition and editing of computer-interpretable guidelines with the CompGuide editor

    Get PDF
    Computer-Interpretable Guidelines (CIGs) are the dominant medium for the delivery of clinical decision support, given the evidence-based nature of their source material. Therefore, these machine-readable versions have the ability to improve practitioner performance and conformance to standards, with availability at the point and time of care. The formalisation of Clinical Practice Guideline knowledge in a machine-readable format is a crucial task to make it suitable for the integration in Clinical Decision Support Systems. However, the current tools for this purpose reveal shortcomings with respect to their ease of use and the support offered during CIG acquisition and editing. In this work, we characterise the current landscape of CIG acquisition tools based on the properties of guideline visualisation, organisation, simplicity, automation, manipulation of knowledge elements, and guideline storage and dissemination. Additionally, we describe the CompGuide Editor, a tool for the acquisition of CIGs in the CompGuide model for Clinical Practice Guidelines that also allows the editing of previously encoded guidelines. The Editor guides the users throughout the process of guideline encoding and does not require proficiency in any programming language. The features of the CIG encoding process are revealed through a comparison with already established tools for CIG acquisition.COMPETE, Grant/Award Number: POCI-01-0145-FEDER-007043; FCT - Fundacao para a Ciencia e Tecnologia, Grant/Award Number: UID/CEC/00319/201

    A Proposal for the Inclusion of Accessibility Criteria in the Publishing Workflow of Images in Biomedical Academic Articles

    Get PDF
    AbstractIn spite of the importance of visual content in academic publishing, biomedical articles do not offer accessible images, mainly because of the lack of text alternatives. According to a process-oriented accessibility philosophy, this article proposes the use of image-related texts, such as captions or mentions, as text alternatives of images, since they are solutions based on the current practices of authors of biomedical images. We also present two tools created to guide authors in writing comprehensive text alternatives. The aim of this proposal is to increase the opportunities of an actual application of accessibility principles within the biomedical academic publishing

    A Generic Approach to Supporting the Management of Computerised Clinical Guidelines and Protocols

    Get PDF
    Clinical guidelines or protocols (CGPs) are statements that are systematically developed for the purpose of guiding the clinician and the patient in making decisions about appropriate healthcare for specific clinical problems. Using CGPs is one of the most effective and proven ways to attaining improved quality, optimised resource utilisation, cost containment and reduced variation in healthcare practice. CGPs exist mainly as paper-based natural language statements, but are increasingly being computerised. Supporting computerised CGPs in a healthcare environment so that they are incorporated into the routine used daily by clinicians is complex and presents major information management challenges. This thesis contends that the management of computerised CGPs should incorporate their manipulation (operations and queries), in addition to their specification and execution, as part of a single unified management framework. The thesis applies modern advanced database technology to the task of managing computerised CGPs. The event-condition-action (ECA) rule paradigm is recognised to have a huge potential in supporting computerised CGPs. In this thesis, a unified generic framework, called SpEM and an approach, called MonCooS, were developed for enabling computerised CGPs, to be specified by using a specification language, called PLAN, which follows the ECA rule paradigm; executed by using a software mechanism based on the ECA mechanism within a modern database system, and manipulated by using a manipulation language, called TOPSQL. The MonCooS approach focuses on providing clinicians with assistance in monitoring and coordinating clinical interventions while leaving the reasoning task to domain experts. A proof-of-concepts system, TOPS, was developed to show that CGP management can be easily attained, within the SpEM framework, by using the MonCooS approach. TOPS is used to evaluate the framework and approach in a case study to manage a microalbuminuria protocol for diabetic patients. SpEM and MonCooS were found to be promising in supporting the full-scale management of information and knowledge for the computerised clinical protocol. Active capability within modern DBMS is still experiencing significant limitations in supporting some requirements of this application domain. These limitations lead to pointers for further improvements in database management system (DBMS) functionality for ECA rule support. The main contributions of this thesis are: a generic and unified framework for the management of CGPs; a general platform and an advanced software mechanism for the manipulation of information and knowledge in computerised CGPs; a requirement for further development of the active functionality within modern DBMS; and a case study for the computer-based management of microalbuminuria in diabetes patients

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Multimethod teaching strategies to integrate selected QSEN competencies in a Doctor of Nursing Practice distance education program

    Get PDF
    The Quality and Safety Education for Nurses (QSEN) initiative identified 6 competencies for the education of nurses (patient-centered care, teamwork and collaboration, evidence-based practice, quality improvement, safety, and informatics) and the related knowledge, skills, and attitudes (KSAs) for each competency. The initial QSEN focus was on competency development during prelicensure nursing education, with subsequent attention on adapting the KSAs for graduate programs that prepare advanced practice nurses for clinical roles. Description of successful QSEN competency integration in Doctor of Nursing Practice (DNP) programs is limited. Although the ultimate goal is executing DNP programs where quality and safety is thoroughly integrated throughout the curricula, the focus of this article is on multimethod teaching strategies to integrate selected QSEN KSAs into an existing online post-master’s DNP quality and safety course

    Development and implementation of clinical guidelines : an artificial intelligence perspective

    Get PDF
    Clinical practice guidelines in paper format are still the preferred form of delivery of medical knowledge and recommendations to healthcare professionals. Their current support and development process have well identified limitations to which the healthcare community has been continuously searching solutions. Artificial intelligence may create the conditions and provide the tools to address many, if not all, of these limitations.. This paper presents a comprehensive and up to date review of computer-interpretable guideline approaches, namely Arden Syntax, GLIF, PROforma, Asbru, GLARE and SAGE. It also provides an assessment of how well these approaches respond to the challenges posed by paper-based guidelines and addresses topics of Artificial intelligence that could provide a solution to the shortcomings of clinical guidelines. Among the topics addressed by this paper are expert systems, case-based reasoning, medical ontologies and reasoning under uncertainty, with a special focus on methodologies for assessing quality of information when managing incomplete information. Finally, an analysis is made of the fundamental requirements of a guideline model and the importance that standard terminologies and models for clinical data have in the semantic and syntactic interoperability between a guideline execution engine and the software tools used in clinical settings. It is also proposed a line of research that includes the development of an ontology for clinical practice guidelines and a decision model for a guideline-based expert system that manages non-compliance with clinical guidelines and uncertainty.This work is funded by national funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project PEst-OE/EEI/UI0752/2011"

    The Morningside Initiative: Collaborative Development of a Knowledge Repository to Accelerate Adoption of Clinical Decision Support

    Get PDF
    The Morningside Initiative is a public-private activity that has evolved from an August, 2007, meeting at the Morningside Inn, in Frederick, MD, sponsored by the Telemedicine and Advanced Technology Research Center (TATRC) of the US Army Medical Research Materiel Command. Participants were subject matter experts in clinical decision support (CDS) and included representatives from the Department of Defense, Veterans Health Administration, Kaiser Permanente, Partners Healthcare System, Henry Ford Health System, Arizona State University, and the American Medical Informatics Association (AMIA). The Morningside Initiative was convened in response to the AMIA Roadmap for National Action on Clinical Decision Support and on the basis of other considerations and experiences of the participants. Its formation was the unanimous recommendation of participants at the 2007 meeting which called for creating a shared repository of executable knowledge for diverse health care organizations and practices, as well as health care system vendors. The rationale is based on the recognition that sharing of clinical knowledge needed for CDS across organizations is currently virtually non-existent, and that, given the considerable investment needed for creating, maintaining and updating authoritative knowledge, which only larger organizations have been able to undertake, this is an impediment to widespread adoption and use of CDS. The Morningside Initiative intends to develop and refine (1) an organizational framework, (2) a technical approach, and (3) CDS content acquisition and management processes for sharing CDS knowledge content, tools, and experience that will scale with growing numbers of participants and can be expanded in scope of content and capabilities. Intermountain Healthcare joined the initial set of participants shortly after its formation. The efforts of the Morningside Initiative are intended to serve as the basis for a series of next steps in a national agenda for CDS. It is based on the belief that sharing of knowledge can be highly effective as is the case in other competitive domains such as genomics. Participants in the Morningside Initiative believe that a coordinated effort between the private and public sectors is needed to accomplish this goal and that a small number of highly visible and respected health care organizations in the public and private sector can lead by example. Ultimately, a future collaborative knowledge sharing organization must have a sustainable long-term business model for financial support
    corecore