
OWL-based Acquisition and Editing of

Computer-Interpretable Guidelines with the

CompGuide Editor

Tiago Oliveira1, Filipe Gonçalves2, Paulo Novais2, Ken Satoh1, and
José Neves2

1National Institute of Informatics, Tokyo, Japan,
{toliveira,ksatoh}@nii.ac.jp

2Algoritmi Research Centre/Department of Informatics, University
of Minho, Braga, Portugal,

fgoncalves@algoritmi.uminho.pt,{pjon,jneves}@di.uminho.pt

January 5, 2021

conflicts of interest: none

Abstract

Computer-Interpretable Guidelines (CIGs) are the dominant medium
for the delivery of clinical decision support, given the evidence-based
nature of their source material. Therefore, these machine-readable versions
have the ability to improve practitioner performance and conformance to
standards, with availability at the point and time of care. The formalisation
of Clinical Practice Guideline (CPG) knowledge in a machine readable
format is a crucial task to make it suitable for the integration in Clinical
Decision Support Systems (CDSSs). However, the current tools for this
purpose reveal shortcomings with respect to their ease of use and the
support offered during CIG acquisition and editing. In this work we
characterise the current landscape of CIG acquisition tools based on the
properties of guideline visualisation, organisation, simplicity, automation,
manipulation of knowledge elements, and guideline storage and dissemination.
Additionally, we describe the CompGuide Editor, a tool for the acquisition
of CIGs in the CompGuide model for CPGs that also allows the editing
of previously encoded guidelines. The Editor guides the users throughout
the process of guideline encoding and does not require proficiency in any
programming language. The features of the CIG encoding process are
revealed through a comparison with already established tools for CIG
acquisition.

1

Tiago Oliveira
Rectangle



1 Introduction

Clinical Practice Guidelines (CPGs) are defined as systematically developed
statements to assist health care professionals in specific circumstances (Lohr,
Field, et al., 1990). They are associated with the reduction of variability in the
application of the procedures and also the decrease of medical errors (Silberstein,
2005). The implementation of Clinical Practice Guidelines (CPGs) in Clinical
Decision Support Systems (CDSSs) has the potential of improving the accep-
tance and application of evidence-based clinical recommendations in daily prac-
tice given that such systems are able to monitor the actions and observations
of health care professionals and provide relevant advice at the point and time
of care (de Clercq, Blom, Korsten, & Hasman, 2004; Peleg, 2013). The deploy-
ment of these CIG-based CDSSs is not trivial as they have to provide a high
level of interactivity with the user, in order to allow the latter to feed the CIG
algorithm all the information necessary to produce tailored recommendations.
This implies handling multiple data entry points and managing aspects of CIG
execution such as the relative order of procedures and temporal constraints, all
the while providing interfaces that can convey these recommendations in a clear
and objective way (Isern & Moreno, 2008). This operationalization of CIGs
has been addressed in previous works which present a system for CIG execu-
tion that aims to provide a greater integration of CPG recommendations in the
daily practice of health care professionals by mapping the interpreted clinical
recommendations, with their respective constraints, onto an agenda of activities
(Oliveira, Silva, Neves, & Novais, 2016).

Yet, to feed the execution algorithms embedded in these systems one has
to develop methods for the assisted encoding of structured CIGs, in order to
assist the transformation of CPGs in their paper versions into executable proce-
dures. The difficulty in this is devising a CIG acquisition work flow that enables
the management of complex and intricate instructions regarding CPG param-
eters. CPGs were not originally conceived to be machine-interpretable and, as
such, their text versions are challenging to transpose into a structured model
(Mart́ınez-Salvador & Marcos, 2016). This led to the development of different
Computer-Interpretable Guideline (CIG) models and tools by different research
groups, covering a wide range of clinical situations (Isern & Moreno, 2008; Pe-
leg, 2013). A model (here used as a synonym for language) aims to provide a
structure for the correct formalisation of a narrative CPG as a CIG that would
be the basis of a CDSS, but by itself it is not sufficient. It is still necessary
to guide CIG design, according to a selected model, to ensure a correct syntax
and disposition of knowledge elements. Such tools include the Protégé Desktop,
the SAGE Workbench, Tallis, GEM Cutter, Asbru View, among others (Isern
& Moreno, 2008). Despite providing assistance in the construction of CIGs,
these tools have not progressed beyond the level of academic research projects.
Additionally, they present limitations in the guidance offered to the user during
the CIG acquisition process, the intelligibility of their interface, the way their
functionalities are conveyed, the visualisation of guideline knowledge elements
and the reuse of this knowledge.

2



The present work is an extension of the one disclosed in (Gonçalves, Oliveira,
Neves, & Novais, 2017). It features a CIG editing tool, the CompGuide Editor,
for the CompGuide ontology, the underlying CIG model (Oliveira et al., 2016),
based on Web Ontology Language (OWL). The contributions of the work are as
follows: a tool for the formalisation of CIGs in a structured format; a step-by-
step work flow for encoding clinical knowledge; and a set of mechanisms that
enable the reuse of guideline knowledge during CIG encoding. The CompGuide
Editor also addresses the limitations identified in existing tools, namely in the
set of automatic features made available in order to facilitate CIG acquisition.
At the same time, the set of properties listed herein may be further used to
assess CIG tools in future works.

The present paper is organised as follows. Section 2 provides related work
on CIG acquisition and editing tools. Their most prominent aspects and main
limitations are exposed in this section. This assessment is based on a set of prop-
erties for CIG creation defined in order to compare existing tools with the one
described herein. In Section 3, the CompGuide ontology for CIGs is described
by covering the definition of work flows of procedures, clinical constraints, and
temporal patterns. Section 4 explains the steps taken in the creation of the
CompGuide Editor tool, its main features, and also compares it mainly with the
SAGE Workbench, an existing CIG acquisition tool. Finally, section 5 presents
conclusions about the work developed so far and future work considerations.

2 Computer-Interpretable Guideline Creation
and Editing

As already mentioned, there are several tools that support the acquisition and
editing, either manually or semi-automatically, of CIG knowledge elements, tax-
onomies, and other organisation levels of these machine-readable formats. The
following sections describe properties for the assessment of CIG creation and
editing and also selected tools in light of these properties.

2.1 Properties for Tool Assessment

This section is dedicated to defining properties for the comparison of CIG acqui-
sition and editing tools. The comparative properties were selected as a means
to analyse and evaluate CIG platforms, based on user experience (Bott, 2014).
They consist of the following:

• Guideline Visualisation: a graphical representation (tree, node-link,
network diagrams) of parts or a full CIG work flow. The arrangement of
the representations within a diagram helps the user to understand the work
flow, identify relevant points of the guideline, and manipulate knowledge
elements;

• Organisation: this property is related with how easy the tool is to under-
stand, determined by its structure and the way in which its functionalities

3



are made available and whether they are placed correctly;

• Simplicity: this property conveys the ease of access to the functionalities
of the tool. Complexity may lead to confusion in the use of the tool,
leading users to abandon it;

• Automation: when creating or editing new instances, the user should
only implement the most relevant knowledge elements, with the rest being
automatically completed by the platform;

• Manipulation of Knowledge Elements: the ability to arrange in-
stances in the guideline view and filter the workflow of the CIG with the
help of graphical type links;

• Web/Local Repository: the possibility to save or load CIGs either
locally or onto a cloud repository;

Although organisation and simplicity are related, they convey different mean-
ings. It is possible for an application to provide a wide variety of well organised
features, placed in a logical and coherent way in the interface, but the access
to be far from simple, requiring the user to navigate through numerous menus
until he reaches the desired functionality.

2.2 Assessment of Existing Tools

In terms of related work, the tools selected for analysis are linked to the most
prominent CIG languages. All of the underlying languages follow a Task Net-
work Model (TNM), in which every recommendation is viewed as a clinical
task.

The first tool is the Protégé Desktop, an open source ontology develop-
ment and knowledge acquisition environment developed by Stanford Medical
Informatics (Noy et al., 2003). It is a graphical Java tool, which provides an
extensible architecture for the creation of customised knowledge-based tools and
assist users in the construction of large electronic knowledge bases. It provides
a platform which can be extended with graphical widgets for tables, diagrams,
and animation components. The tool is used to author guidelines in various
models, including the Guideline Interchange Format (GLIF) (Peleg et al., 2000)
and PRODIGY (Purves, Sugden, Booth, & Sowerby, 1999).

The SAGE Workbench is a complete, self-contained environment that uses
the Shareable Active Guideline Environment (SAGE) model (Beard et al., 2002).
This model encodes guideline knowledge needed to provide situation-specific
decision support and uses standardised components for interoperability. The
SAGE Workbench provides a knowledge authoring tool based on Protégé. The
user interface for the SAGE Workbench is organised as a number of tabs for: the
navigation of frames that are directly and indirectly referenced from a selected
instance in a tree structure, expression of integrity constraints about a knowl-
edge base in Protégé axiom language, search of terms in a medical terminology
service, and so forth.

4



The Tallis tool is a relatively recent (when compared to the other tools) Java
implementation of PROforma-based authoring and execution developed by the
Cancer Research UK (Sutton & Fox, 2003). Tallis is based on a later version of
the PROforma model (Steele & Primer, 2002). It is, in fact, a suite of tools in
which the main component is a desktop graphical editor for authoring guidelines.
This editor also includes a test application for simulating interactions with the
encoded CIGs. Workflows are displayed in Tallis both in a network view and
in a tree view, by taking advantage of the hierarchical structure of plans in the
respective CIG language.

GEM Cutter is a simple XML editor that facilitates the markup of CPG
texts, and therefore supports the conversion of a guideline document into the
GEM format and publication in a cross-platform manner (Shiffman, Agrawal,
Deshpande, & Gershkovich, 2001). The main window of the tool comprises
three panels, a menu bar, and a button bar. The CPG text is loaded onto the
leftmost panel. The middle panel contains an expandable tree view of the GEM
hierarchy. The rightmost panel shows information regarding the knowledge
element selected at the time. GEM is intended to be used throughout the entire
guideline life-cycle to model information pertaining to guideline development,
dissemination, implementation, and maintenance. Information at both high and
low levels of abstraction can be accommodated

Finally, Asbru View is a graphical user interface for viewing, creating and
modifying Asbru plans. It is based on different views of different aspects of the
plans (Votruba, 2003). The topological view displays mainly the relationships
between plans, without a precise time scale. The temporal view is focused on
the temporal dimension of plans and conditions. In addition to the topological
information, physicians need to be able to see the details of the temporal exten-
sions of plans. It consists of a display that represents each plan with a graphical
object whose features change with the values they depict.

Table 1 shows a comparison between these tools, by using the comparative
properties explained earlier. Important to say that this comparison does not
include plug-ins that can be applied to these platforms in order to add new
features. We can conclude that some properties are absent from the existing
tools and should be developed in the CompGuide Editor tool to improve the
user experience. Although all the tools possess the basic requirement of allowing
the instantiation and editing of CIG elements, they are mainly focused on the
proper functioning of the tool and less on the appearance or ease of management.

Most tools (the exception is GEM Cutter) present some form of graphical
view of the workflow. Whether it is through a network structure or a tree
structure, it is possible to have a general view of the instances that build a
CIG and then focus on particular elements. Although the analysed tools are
clearly well organised, they lack simplicity. Taking Protégé Desktop and SAGE
Workbench as examples, despite their having many useful features available,
the amount of menus they display is significant, which makes the user lose
considerable time trying to understand the different functionalities. As such,
simplicity is a property that should be prioritised. As for the manipulation
of knowledge, namely the ability to dynamically move and arrange knowledge

5



elements, it is absent from existing tools, but an important element in modern
applications, enabling the management of a CIG visual layout. One of the
features that new tools should present is the ability to automatically fill in less
significant data, allowing the user to focus on the information relevant to the
instance he is currently managing, leaving less important details to be handled
by the system. This property includes the automatic creation and filling of
mandatory data fields for an instance, such as the date of creation of a CPG
or its version, the relationships expressing the connection of a clinical task to a
subsequent task, and so forth. This kind of automation is not present in none
of the analysed CIG tools. Another important property is the ability to import
or export CIGs stored locally or in a cloud. Only Protégé Desktop and SAGE
Workbench show this property.

Table 1: Comparison of tools for the acquisition and editing of CIGs. The ”X”
signifies that the tool possesses the property.

Feature/Platform
Protégé
Desktop

SAGE
Work-
bench

Tallis
GEM

Cutter
Asbru
View

Guideline
Visualisation

X X X X

Organisation X X X X X

Simplicity X X X

Automation

Manipulation of
Knowledge
Elements

Local Repository X X X X X

Web Repository X X

3 Ontology for Computer-Interpretable Guide-
lines

The CIG model used in this work is the CompGuide ontology (Oliveira, Novais,
& Neves, 2013). It provides representation primitives for clinical recommenda-
tions based on Web Ontology Language (OWL) by following TNM, in which
each recommendation assumes the form of a task. In this sense, a CPG is an in-
stance of the class ClinicalPracticeGuideline in the ontology. In order to reflect
the TNM, a set of key OWL classes were defined as subclasses of ClinicalTask.
They include the following:

• Action: a task that should be performed by a health care professional such
as an observation, procedure, exam, or treatment application;

• Question: a task to get information about the clinical parameters that
build the state of the patient;

6



• Decision: a task that encodes a decision regarding the state of a patient,
featuring various options and respective conditions;

• Plan: a composed task containing instances of the other tasks defined to
achieve a specific goal. A Plan is the top clinical task and a Clinical-
PracticeGuideline always consists of a Plan within which other tasks are
defined.

In CompGuide there are object properties that connect instances of the
classes as mentioned above in order to define the relative order between tasks.
In this regard, it is possible to define: sequential tasks, in which a task should di-
rectly follow another (with the nextTask property); parallel tasks which should
be executed simultaneously (with the parallelTask property); and alternative
tasks from which one is automatically selected for execution (with the alterna-
tiveTask property). In this sense, a guideline in CompGuide resembles a linked
list of recommendations. Additionally, it is possible to define different types
of conditions that constrain task execution. They are specified with the Con-
dition class and include: trigger conditions to select one amongst alternative
tasks, pre-conditions which must be verified before executing a task, conditions
for options in Decision tasks, and expected outcomes for clinical tasks. The
Condition has specific properties for clinical parameters and their values.

The classes that enable the representation of temporal restrictions are all
subclasses of TemporalElement (Oliveira et al., 2016). The relationship between
these temporal classes and the classes in ClinicalTask are shown in Figure 1,
along with the properties used to connect them. One of the subclasses of Tem-
poralElement is TemporalUnit which represents the different units in which a
temporal constraint may be expressed. It is an enumerated class consisting
of the instances second, minute, hour, day, week, month, and year. The main
classes that enable the definition of temporal restrictions about the execution
of tasks are:

• Duration: definition of how long Actions and Plans should last;

• WaitingTime: definition of a delay in the start of a clinical task;

• Periodicity : definition of the frequency of a clinical task. This temporal
pattern can be defined for any type of task. An instance of Periodicity
can also be connected to an instance of Duration through the hasDuration
object property, thus determining for how long a periodic task should take
place;

• CyclePartDefinition: definition of a nested temporal pattern. Within it,
is possible to define a new duration for each instance of the periodic task
or a new periodicity through the CyclePartPeriodicity class;

• CyclePartPeriodicity : a nested temporal pattern for the definition of a
periodicity within a periodicity.

7



In regards to Periodicity, if one wants to state the number of times the
clinical task should take place, i.e. the number of cycles of the periodic task),
it is necessary to formulate a repetition constraint, which is possible with the
repetitionValue data property, with a range of integer numerical values. It could
also be the case that periodic task should only occur until a condition about
the state of a patient is verified. To express this, one uses the hasStopCondition
object property to connect an instance of Periodicity to instances of the class
Condition.

Figure 1: Representation of the CompGuide ontology with clinical tasks and
respective temporal elements.

Temporal reasoning about the state of a patient is enabled by the Temporal-
Restriction class, whose instances can be associated with a Condition through
the hasTemporalRestriction property. With the hasTemporalOperator property
a TemporalOperator is specified for the restriction. TemporalOperator con-
sists of two instances, within the last and within the following. The operator
within the last is used when one aims to express that a condition about the pa-
tient state must have held true at least once, within a period of time just before
execution time. It is used in trigger conditions, pre-conditions and conditions of
rules in Decision instances. This operator is interpreted by checking if, in the
state of the patient, there is a record regarding the parameter in the condition,
registered within the specified time frame, whose value validates the condition.
As for the within the following operator, it expresses a condition about the fu-
ture, in which one aims to observe the effect a clinical task has after being
applied to a patient. Such conditions are used in task outcomes. Within the
context of a CPG for the diagnosis and treatment of colon cancer, an exam-

8



ple of a temporal restriction would be an Action that advised chemotherapy
with an outcome stating that the tumour should become operable within six
months. In this case, there is a condition with a temporal restriction featuring
a within the following operator.

A distinctive feature of CompGuide, when compared to other CIG models,
is that it does not require any proficiency in a programming language in order
to define constraints. Instead, all is done with the basic elements of an ontol-
ogy: classes, instances, and properties. It was showed in (Oliveira, Novais, &
Neves, 2015) that this CIG ontology was able to provide sufficiently expressive
constructors for CPGs from different medical specialities and categories.

The work flow of tasks, their clinical constraints, and their temporal con-
straints demand a formalisation tool that is capable of providing instructions for
the definition of the intricate and complex patterns of CPG recommendations.

4 CompGuide Editor for the Management of
Guidelines

The CompGuide Editor was developed as a Protégé Desktop plug-in, given
the need to create software capable of implementing all the features offered by
this application, more specifically the functionality of managing the data of an
ontology through the use of a graphical interface, along with the development
of new features capable of solving the limitations in existing projects. Another
advantage that came from using Protégé was the ability to implement extra
features from other plug-ins in a simple and intuitive way. Since OWL is one
of the ontology languages supported by Protégé and, at the same time, the
underlying language of the CompGuide ontology, using this application as the
basis for the editor was the logical decision to make.

4.1 Methods for the Development of the Plug-in

The development process of the CompGuide Editor for the management of CIGs
was designed based on the main goal of drastically reducing the learning curves
for the creation of ontology-enabled representations and the time required to
become acquainted with its concepts. Other aims, such as the creation of an
open source software based solution supported by a big community platform
and the capacity to import extra features from different tools, were also taken
into account in this project.

Currently, the most used versions of Protégé vary between versions 3, 4 and
5, being 3 the oldest and 5 the newest. Since version 3 is the oldest, it is also the
version with the greater number of plug-ins created for the application, which
are incompatible with versions 4 and 5. As such, the selected version of the
Protégé Desktop application was version 4, since the CompGuide ontology was
developed using this release. Protégé Desktop 3 uses OWL API 1 while Protégé
Desktop 4 uses OWL API 2. The development of the plug-in required the use

9



of various OWL and Protégé extension APIs, such as the the Jena API (pro-
vides services of parsing, database persistence, and querying), the Protégé/OWL
API (ontological base for creating, manipulating and serialising OWL ontolo-
gies) and the Protégé OWL API (employs graphical user interfaces and delivers
classes/methods to manage OWL files). Figure 2 displays the Protégé appli-
cation system and summarises the required APIs. Although there are other
APIs used in the Protégé Desktop application, the list presented shows only
the required APIs used in the creation of the functionalities of the CompGuide
Editor.

Figure 2: Protégé Ontology Editor and Knowledge Acquisition System.

The support for interactively navigating the relationships in OWL was pro-
vided by the OntoGraf plugin. It supports various layouts for automatically
organising the structure of the ontology. Different relationships are supported:
subclass, individual, domain/range of object properties, and equivalence. On-
toGraf makes it possible to filter relationships and node types to help create the
desired view (da Silva & Freitas, 2011).

Figure 3 shows a UML class diagram of two important classes in the domain:
ClinicalPracticeGuideline and Plan. It provides an overview of the representa-
tion of a CPG within the system, with additional elements that complement
the description of the ontology in Section 3. ClinicalPracticeGuideline is the
starter class of a CPG and it is associated with a Scope and a Plan. The Scope
manages information about the purpose and range of the CPG such as the
clinical specialty, the guideline category or conditions for the application of the
CPG. Also, ClinicalPracticeGuideline has a set of attributes that convey admin-
istrative information, namely authorship, date of creation, date of last update,

10



version number, and so forth. The Plan class is a subclass of ClinicalTask and
manages the set of clinical tasks to be executed in the CPG. At least one task
must be implemented in the hasFirstTask relationship and it is mandatory for
a ClinicalPracticeGuideline to have a Plan. The figure also shows the Duration
and the Periodicity classes, with their respective attributes that allow the def-
inition of maximum, minimum and average values for these temporal patterns,
as well as temporal units. There is also the possibility to implement a stop
condition, related with a clinical parameter, to the task within the Periodicity
class, under which its execution is immediately halted. The purpose of the Con-
dition class is to define the constraints about the state of the patient, whether
they are expressed through numerical or qualitative values, for different clinical
situations. TriggerConditionSet, PreConditionSet, and OutcomeConditionSet
represent the different possible situations, with a direct correspondence to the
description in Section 3. The Condition can be further enhanced with a Tempo-
ralRestriction in order to express a temporal horizon over which the condition
should be verified. The classes depicted in Figure 3 and the remaining classes
in the system correspond to a direct and complete mapping of the classes and
properties defined in the CompGuide ontology.

Figure 3: Class diagram of ClinicalPracticeGuideline and Plan and respective
dependency relationships.

4.2 Main Features

The most significant contribution of the CompGuide Editor is the employment
of software assistants. Based on a set of rules, these assistants guide the user
step-by-step in the task they want to perform, through the use of wizards.
Furthermore, the software assistants automatically handle the skeleton of the
managed instances (according to the CompGuide ontological data structure),

11



link the data of the managed instances, ensure the correctness of data types,
automatically implements less relevant data (dates, version handling, etc.) and
carry out a smart management of digital resources. These wizards guarantee the
intended straightforwardness as they ensure that the users have an easy access
to the functionalities demanded by the task to be carried out. Other existing
Protégé-based tools, namely Protégé Desktop and the SAGE Workbench, pos-
sess complex functionalities but do not provide simple access to them, which is
an improvement with regards to existing tools.

In the CompGuide Editor, there are three different wizards, i.e. the Creation
Wizard (dedicated to adding new clinical knowledge to the CompGuide ontol-
ogy), the Edit Wizard (used to update the existing clinical guidelines) and the
Delete Wizard (to either delete full clinical guidelines or erase parts of existing
guidelines). Furthermore, these wizards share an interface similarity, offering an
organised, simple, and matching design, providing the means for a fast-learning
and superior user experience. Figure 4 shows images of the editor regarding
the automated management process of a CIG, through the use of the Creation
Wizard. In this case, the editor is guiding the guideline encoder through the
process of creating a new CPG instance and filling in administrative and scope
information.

Focusing on the main interface of the CompGuide Editor, Figure 5 shows
its simplicity. The tool is a single tab in Protégé, consisting of two main views:
CGuide Wizard Options and OntoGraf. The CGuide Wizard Options view
(bottom view) has the set of features to manage the CIG plus the options to
download/upload the CompGuide ontology file, while the OntoGraf view pro-
vides a 2D dynamic graphical representation of the ontology. In addition to the
graphical view of the CIG, it is possible to see CIG elements in a list, organised
by the class to which they belong, through the Individuals by Type view. The
number shown in front of the the name of the class represents the number of
individuals that exist in that OWL class. When accessing the CIG management
features, a new window will appear, in which a uncomplicated step-by-step pro-
cedure will start. In order to complete this process, the user must follow the
instructions of the corresponding wizard and insert all the required data. In the
end, the CompGuide Editor tool will insert all changes in the ontology, where
the wizards process all the data structures and automatically fill in the names of
instances, dates, versions and establishes the connections between instances. An
example of this is that a CPG instance is always associated with an instance of
Scope, which specifies the range of the CPG. When the CPG instance is created,
the skeleton for the Scope instance is immediately and automatically generated.
In the case of CPG instance deletion, both CPG instances and corresponding
Scope will be eliminated.

As for the OntoGraf view, its aim is to promote a better understanding of
CompGuide ontology concepts and support for interactively navigate the rela-
tionships of the CompGuide knowledge by manipulating the graphical represen-
tation of a CPG, through the selective expansion of nodes and drag-and-drop
features. Additionally, various layouts are supported for automatically organis-
ing the graphical structure of the ontology, to filter data links and node types to

12



Figure 4: Management of the creation of a CPG with the Creation Wizard.

help create the desired view, and to glance at a node information by placing the
mouse on top of it. A small example pertaining to a CPG for the management
of coronary heart disease is shown in Figure 6, using this plug-in’s view. More
details can be explored on the OntoGraf’s website 1. Other plug-ins can be
added into the CompGuide Editor Tab as a way of enriching the content and
functionalities available for the user, in a simple and easy way.

The interaction of users with this tool is represented in the architecture of
Figure 7. In it, the main users of the system are health professionals acting as
CIG encoders.

They are responsible for creating, modifying or deleting clinical steps or
aspects in a CIG file, with the help of the software assistants. These users can
also download the latest available version of the CompGuide ontology, or share
their modified CIG file to the CompGuide development team, wich, in turn,
validates it. If the file is considered to be valid, it is stored in the Git repository

1https://protegewiki.stanford.edu/wiki/OntoGraf

13

https://protegewiki.stanford.edu/wiki/OntoGraf


Figure 5: CompGuide Editor main interface.

Figure 6: Graph containing the instances of a Plan for the management of
coronary heart disease.

for further use in the editor. Based on the user’s needs and feedback, this group
is responsible for applying changes (if required) to the CompGuide Editor, that
can positively influence its use.

Both the ontological model and the plug-in can be accessed through the use
of the CompGuide GitHub repository2 or the ontology and plug-in library of
the Protégé wiki page3.

2https://github.com/CompGuideRepository/CompGuide-Editor
3https://protegewiki.stanford.edu/wiki

14

https://github.com/CompGuideRepository/CompGuide-Editor
https://protegewiki.stanford.edu/wiki


Figure 7: The CompGuide Editor System.

4.3 Assessment remarks

To verify the usability of the CompGuide Editor, a CPG from the National
Comprehensive Cancer Network (NCCN) for the Diagnosis and Management
of Colon Cancer (Benson et al., 2013) was fully represented in the CompGuide
ontology. The CPG contains numerous clinical tasks with complex relation-
ships. The process of representing the guideline resulted in an owl file with 680
instances, out of which 223 were task instances. Among the clinical tasks, 95 of
them had temporal constraints, of which the most common was the Periodicity,
featured in 79 tasks. Figures 8 shows an example of the creation process of
the NCCN Plan and the association with the corresponding first task. Since
this is a lengthy CPG, the CompGuide facilitated its acquisition by providing
information step-by-step on which fields are required for the definition of each
task and associated constraints. This was particularly useful in the definition
of the procedural logic of the CPG, the sequence of clinical tasks, and splitting
points in the CPG workflow, where it is necessary to choose one from multiple
alternative tasks. The graphical view was particularly useful in the visualisa-
tion of this last aspect, allowing a rapid comprehension of the CPG workflow by
selectively expanding and shrinking parts of the graph. These were the aspects
in which CompGuide proved to be more useful.

Another important aspect is the capacity to re-utilise the knowledge con-
tained in the ontology. This feature is shown in Figure 8 where the user selects
a set of condition instances which are applied to the new CPG. While proceed-
ing the creation/editing process, the wizard verifies if all the required data is
correctly inserted. In case this verification process fails the system notifies which
information is to be revised. Figure 9 shows the output of an unsuccessful veri-
fication case, where the Periodicity restriction of an Action clinical has missing

15



data. Given the complex and sensitive nature of treatments for cancer, namely
in the definition of chemotherapy regimens, the clinical tasks reflecting these
medical recommendations are bounded by numerous constraints. An example
of is the statement: “CapeOx (the name of a chemotherapy regimen) should be
applied every 3 months, with the administration of capecitabine every 12 hours
for 14 days” (Benson et al., 2013). In this case there is a nested periodicity of
12 hours within the initial periodicity of 3 months. There is also a duration
(14 days) bounding the nested periodicity. This kind of complex task has to be
accurately defined and, thus, having it checked by the wizard upon knowledge
acquisition is necessary.

As described earlier, when the management process is complete the wizard
manages the structure of the instances. While this is happening, the tool also
handles less relevant data, such as dates and versions. Since the tool has au-
tomation features, it allows the user to focus on the guideline’s most crucial
information, i.e. the actual clinical tasks. Figure 10 confirms the automatic
management of the newly created CPG and Plan instances (as seen in the
Protégé Entities tab) with the version and dates managed by the wizard.

.

Figure 8: Creation of the Global Colon Cancer Plan.

Taking as an example the SAGE Workbench, which is the closest knowledge
acquisition tool to the one presented herein, there are a number of aspects over
which the CompGuide Editor can be considered an improvement. The SAGE
Workbench spawns over eight knowledge tabs for the management of elements
(SAGE Project, 2006), which increases the complexity of knowledge acquisi-

16



.

Figure 9: Failed verification based on incomplete inserted data.

Figure 10: CPG and Plan creation result.

tion and the ability to establish or see the relationships between the different
instances. By condensing the management of all elements in one view, the

17



CompGuide Editor allows one to keep, at all times, a sense of all the connec-
tions. The layered acquisition of CIGs and the focus on each kind of knowledge
element is supported by the assistants in a guided way. Such guidance is absent
from the SAGE Workbench, which demands a deeper understanding of the CIG
model at the start of guideline encoding, thus implying a longer adaption time
to the acquisition tool. Furthermore, the SAGE Workbench requires proficiency
in Protégé Axiom Language, whilst in the CompGuide Editor the definition of
clinical and temporal constraints is completely self-contained, in the sense that
these tasks are fulfilled by using the basic elements of the ontology. In terms
of the manipulation of knowledge elements, the graphical view offered by the
SAGE Workbench is static and does not allow the dynamic visualisation and
disposition of CIG knowledge elements. Notwithstanding the issues regarding
automation, simplicity, and knowledge manipulation, there are features that the
CompGuide Editor does not yet possess and are present in the SAGE Work-
bench. The first is the connection to a medical terminology service that ensures
that the medical terms used throughout the CIG are correct, unambiguous, and
homogeneous. The second is the automatic validation of CIGs. Currently in the
CompGuide Editor, the verification performed is related with the data types of
the attributes and presence/absence of necessary attributes upon acquisition,
but no form of semantic validation of CIG content is performed. For this pur-
pose, the functionalities of Protégé reasoners should be explored to their fullest
extent. Their goal is to determine ontology consistency, identify subsumption
relationships between classes, and so forth.

5 Conclusions and Future Work

The CompGuide ontology for CIGs aims to be self-contained and provide all the
constructors for the definition of a work flow of procedures, clinical constraints,
and temporal constraints using the basic elements of OWL, namely classes,
properties, and instances. Following this intention, the CompGuide Editor was
developed to acquire CPG knowledge in this ontology. Based on the properties
of guideline visualisation, organisation, simplicity, automation, manipulation of
knowledge elements, and the existence of a web or local repository, we have
assessed existing CIG acquisition tools and identified aspects to improve. Such
aspects were mainly related with the lack of simplicity and ease of comprehen-
sion showed by the current tools, allied to a poor guidance offered during CIG
acquisition and the absence of automation in dealing with less important but
needed information. Such features are implemented in the CompGuide Editor,
largely through the software assistants for the three main CIG acquisition tasks:
create, edit, and delete. Through a comparative analysis, we were able to estab-
lish herein in what way the contributions of the presented plug-in for Protégé
are improvements over the current state of the art.

As future work, the integration of the editor with a medical terminology
service is a necessity for ensuring the correctness of medical terms and will
play an important role in the procedures for the semantic validation of the

18



CIG. The Unified Medical Language System (UMLS) (U.S. National Library
of Medicine, 2016) is the open source medical terminology service chosen for
integration, given the numerous source vocabularies it uses. At the same time,
a usability study for the tool is necessary. Such a study has not been conducted
yet given the difficulty in creating the necessary conditions for it. The current
proposal for assessment is to gather volunteers to encode the same CPG using
the CompGuide Editor and then having them answer a user experience ques-
tionnaire. Another group of volunteers would also encode the CPG, but using
another tool from the state of the art, in order to have additional information to
compare with the CompGuide Editor group. The challenge is that it is necessary
to gather volunteers who are familiar with medical terms and they have to re-
ceive training in both the ontology and the tool beforehand, making this a time
consuming process. Currently, the possibility of resorting to a crowdsourcing
platform to perform this task is being studied.

Acknowledgements

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043
and FCT – Fundação para a Ciência e Tecnologia within the Project Scope
UID/CEC/ 00319/2013.

References

Beard, N., Campbell, J. R., Huff, S. M., Leon, M., Mansfield, J. G., Mays, E.,
. . . others (2002). Standards-based sharable active guideline environment
(sage). In Amia annu symp proc.

Benson, A., Bekaii-Saab, T., Chan, E., Chen, Y.-J., Choti, M., Cooper, H.,
& Engstrom, P. (2013). NCCN Clinical Practice Guideline in Oncology
Colon Cancer (Tech. Rep.). National Comprehensive Cancer Network. Re-
trieved from http://www.nccn.org/professionals/physician{ }gls/

f{ }guidelines.asp

Bott, R. (2014). Summary of the Guideline Workbenches Evaluation. Igarss
2014 (1), 1–5. doi: 10.1007/s13398-014-0173-7.2

da Silva, I., & Freitas, C. (2011). Using visualization for exploring relationships
between concepts in ontologies. In 2011 15th international conference on
information visualisation (p. 317-322). doi: 10.1109/IV.2011.40

de Clercq, P. A., Blom, J. A., Korsten, H. H. M., & Hasman, A. (2004).
Approaches for creating computer-interpretable guidelines that facilitate
decision support. Artificial Intelligence in Medicine, 31 , 1–27. doi: 10
.1016/j.artmed.2004.02.003

Gonçalves, F., Oliveira, T., Neves, J., & Novais, P. (2017). CompGuide: Ac-
quisition and Editing of Computer-Interpretable Guidelines. In Á. Rocha,
A. M. Correia, H. Adeli, L. P. Reis, & S. Costanzo (Eds.), Recent advances
in information systems and technologies: Volume 1 (pp. 257–266). Cham:

19

http://www.nccn.org/professionals/physician{_}gls/f{_}guidelines.asp
http://www.nccn.org/professionals/physician{_}gls/f{_}guidelines.asp


Springer International Publishing. Retrieved from http://dx.doi.org/

10.1007/978-3-319-56535-4{ }26 doi: 10.1007/978-3-319-56535-4 26
Isern, D., & Moreno, A. (2008). Computer-based execution of clinical guidelines:

a review. International journal of medical informatics, 77 (12), 787–808.
doi: 10.1016/j.ijmedinf.2008.05.010

Lohr, K. N., Field, M. J., et al. (1990). Clinical practice guidelines: directions
for a new program (Vol. 90) (No. 8). National Academies Press.

Mart́ınez-Salvador, B., & Marcos, M. (2016). Supporting the refinement of
clinical process models to computer-interpretable guideline models. Busi-
ness & Information Systems Engineering , 58 (5), 355–366. doi: 10.1007/
s12599-016-0443-3

Noy, N. F., Crubézy, M., Fergerson, R. W., Knublauch, H., Tu, S. W.,
Vendetti, J., . . . others (2003). Protege-2000: an open-source ontology-
development and knowledge-acquisition environment. In Amia annu symp
proc (Vol. 953, p. 953).

Oliveira, T., Novais, P., & Neves, J. (2013). Representation of clinical prac-
tice Guideline components in OWL. In J. B. Pérez et al. (Eds.), Ad-
vances in intelligent systems and computing (Vol. 221). Springer In-
ternational Publishing. Retrieved from http://dx.doi.org/10.1007/

978-3-319-00563-8{ }10 doi: 10.1007/978-3-319-00563-8 10
Oliveira, T., Novais, P., & Neves, J. (2015). Assessing an Ontology for

the Representation of Clinical Protocols in Decision Support Systems.
In J. Bajo et al. (Eds.), Advances in intelligent systems and computing
(Vol. 372, pp. 47–54). Springer International Publishing. doi: 10.1007/
978-3-319-19629-9 6

Oliveira, T., Silva, A., Neves, J., & Novais, P. (2016). Decision Support Provided
by a Temporally Oriented Health Care Assistant. Journal of Medical
Systems, 41 (1), 13. doi: 10.1007/s10916-016-0655-6

Peleg, M. (2013). Computer-interpretable clinical guidelines: A methodological
review. Journal of Biomedical Informatics, 46 (4), 744–763. doi: 10.1016/
j.jbi.2013.06.009

Peleg, M., Boxwala, a. a., Ogunyemi, O., Zeng, Q., Tu, S., Lacson, R., . . .
Greenes, R. a. (2000). GLIF3: the evolution of a guideline representation
format. In Proceedings / amia ... annual symposium. amia symposium
(pp. 645–649). doi: D200640[pii]

Purves, I. N., Sugden, B., Booth, N., & Sowerby, M. (1999, jan). The PRODIGY
project–the iterative development of the release one model. In (pp. 359–
63).

SAGE Project. (2006). SAGE Guideline Encoding Tools. Retrieved 28/07/2017,
from http://sage.wherever.org/encoding/encoding{ }tools.html

Shiffman, R. N., Agrawal, A., Deshpande, A. M., & Gershkovich, P. (2001).
An approach to guideline implementation with gem. Studies in health
technology and informatics(1), 271–275. doi: 10.3233/978-1-60750-928-8
-271

Silberstein, S. (2005). Clinical practice guidelines. Journal of Neurosurgery
Pediatrics, 25 (10), 765–766. doi: 10.1111/j.1468-2982.2005.01014.x

20

http://dx.doi.org/10.1007/978-3-319-56535-4{_}26
http://dx.doi.org/10.1007/978-3-319-56535-4{_}26
http://dx.doi.org/10.1007/978-3-319-00563-8{_}10
http://dx.doi.org/10.1007/978-3-319-00563-8{_}10
http://sage.wherever.org/encoding/encoding{_}tools.html


Steele, R., & Primer, F. J. T. P. (2002). Introduction to proforma language and
software with worked examples (Tech. Rep.). Technical report. London,
UK: Advanced Computation Laboratory, Cancer Research.

Sutton, D. R., & Fox, J. (2003). The syntax and semantics of the proforma
guideline modeling language. Journal of the American Medical Informatics
Association, 10 (5), 433–443. doi: doi.org/10.1197/jamia.M1264

U.S. National Library of Medicine. (2016). Unified Medical Language Sys-
tem (UMLS). Retrieved 28/07/2017, from https://www.nlm.nih.gov/

research/umls/

Votruba, P. (2003). Structured knowledge acquisition for asbru. Viena University
of Technology.

21

https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/



