
Faculdade de Engenharia da Universidade do Porto

Mestrado Integrado

Clinical Protocols Enabling

Evidence Based

in Healthcare Software Solutions

Supervisor at FEUP: Prof. António Fernando Vasconcelos Cunha Castro Coelho

Faculdade de Engenharia da Universidade do Porto

Mestrado Integrado em Engenharia Informática e Computação

MIEIC 2007 Masters Project Report

Clinical Protocols Enabling

Evidence Based Medicine Practice

in Healthcare Software Solutions

Hugo André Amaral Rodrigues

Supervisor at FEUP: Prof. António Fernando Vasconcelos Cunha Castro Coelho

April 2008

em Engenharia Informática e Computação

Supervisor at FEUP: Prof. António Fernando Vasconcelos Cunha Castro Coelho

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

i

NOTE: In accordance with the terms of the internship protocol and the confidentiality agreement executed with

Alert Life Sciences Computing, S.A. (“Alert”), this report is confidential and may contain references to inventions,

know-how, drawings, computer software, trade secrets, products, formulas, methods, plans, specifications, projects,

data or works protected by Alert’s industrial and/or intellectual property rights. This report may be used solely for

research and educational purposes. Any other kind of use requires prior written consent from Alert.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

ii

To my parents.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

iii

Abstract

Evidence based medicine (EBM) is an attempt to combine individual clinical expertise with the best

available external evidence in order to provide a faster, more accurate and effective healthcare. The

medical community interest on EBM has been growing increasingly, even though there isn’t a consensus

on the benefits of its use.

Clinical protocols are a form of EBM practice, consisting on decision trees built after solid clinical

evidence, with the purpose of providing pathways for treatment, diagnosis and prevention of certain

pathologies.

The project, entitled “Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare

Software Solutions”, aimed at creating support for building and using clinical protocols within existing

healthcare software. This report describes the analysis of existing solutions in the area, the study of the

problem premises and implementation details for the proposed solution.

Alert® clinical software was used as the basis for the implementation of a protocols module, which will

be made available as a core component, meaning it will be shared by all Alert® products. The final results

met the initial expectations and a stable tool has been implemented and deployed. This work is

therefore not only a proof of concept, but represents a great contribution to Alert®, and may impact

healthcare environments worldwide.

This project serves as the final project for the Masters degree in Informatics and Computing Engineering,

at Oporto University’s Faculty of Engineering (Faculdade de Engenharia da Universidade do Porto).

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

iv

Table of Contents

1. Introduction ... 2

1.1. Enterprise Context ... 3

1.2. Problem Contextualization ... 6

1.3. Planning .. 7

2. Problem Analysis .. 8

2.1. Evidence Based Medicine (EBM) .. 8

2.2. Clinical protocols ..11

2.3. Objectives ...12

2.4. Technological background..13

3. State Of The Art ..20

3.1. Computer interpretable protocol representations ..20

3.2. Visualization tools ..26

3.3. Overview ..37

4. Solution – Clinical Protocols Module in Alert® ...38

4.1. Requirements ...39

4.2. Development Methodologies...44

4.3. Context of the developed work..47

4.4. Flowchart Development ...48

4.5. Protocols Tool Development ..58

4.6. Testing and debugging ...68

5. Conclusions and Future Work ..69

5.1. Results ..69

5.2. Project overview and highlights ...70

5.3. Future work ..73

References ..75

Glossary / Index of Terms...77

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

v

Image Index

Figure 1: Alert software in use at a healthcare unit. .. 3

Figure 2: The Alert® Suite. .. 4

Figure 3: Project Planning - Gantt Diagram. ... 7

Figure 4: Clinical expertise.(5) .. 9

Figure 5: Data flow in Evidence Based Medicine.(adapted from (6)) .. 9

Figure 6: Data flow in Evidence Based Medicine, adapted from (5) .. 9

Figure 7: An example protocol. ..11

Figure 8: Alert® tiered structure. ...13

Figure 9: XRay interface. ..19

Figure 10: Service capture interface – viewing input/output variables. ..19

Figure 11: Protocol representation languages and respective visualization tools.20

Figure 12: The PROforma class model. ..21

Figure 13: Task sub-types in PROforma. ..22

Figure 14: Task state transitions. ...22

Figure 15: Arezzo modules. ..27

Figure 16: Arezzo Performer – Arezzo’s graphical view of the cough guideline encoding in PROforma. ...28

Figure 17: Tallis Composer – building a guideline flow diagram. ...29

Figure 18: Tallis Composer – defining task attributes. ...30

Figure 19: Tallis Tester – Interface components. ...31

Figure 20: Tallis Engine – customizable front-end. ..32

Figure 21: AsbruView - Topological View. ..33

Figure 22: AsbruView – Timeline View. ..33

Figure 23: AsbruView user interface. ...34

Figure 24: CareVis – Logical View. ..35

Figure 25: CareVis – Temporal View. ...35

Figure 26: CareVis – user interface. ...36

Figure 27: Proposed solution ...38

Figure 28: Protocols Use Case Diagram. ..43

Figure 29: Product Life Cycle. ...44

Figure 30: Development workflow for the 3 software layers. ..45

Figure 31: Global product development process – Evolution Model. ...46

Figure 32: Content project development process – modified Waterfall Model. ...47

Figure 33: Context of the project. ..48

Figure 34: Flowchart components interaction. ..50

Figure 35: Box component. ..51

Figure 36: Connectors. ...53

Figure 37: The connector hit area. ...53

Figure 38: Stage component. ..55

Figure 39: Stage with some Boxes and Connectors in place. ...57

Figure 40: ZoomBar component. ...57

Figure 41: Alert® package diagram. ...58

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

vi

Figure 42: Alert® screen components. ...59

Figure 43: Flash Authoring Application: the Object Library. ..60

Figure 44: Flash Authoring Application : layers. ...60

Figure 45: Compiling Flash files. ...62

Figure 46: ProtocolElement components. ...64

Figure 47: Sequence diagram illustrating use of local protocol data across screens.65

Figure 48: Protocol saving workflow. ...66

Figure 49: Applying a protocol to a patient. ..67

Figure 50: Connector routing improvements ...73

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

i

Table Index

Table 1: Alert® Products ... 5

Table 2: Attributes of the generic task. ..23

Table 3: Flowchart components requirements ..40

Table 4: Protocols tool requirements. ...41

Table 5: Box parameters. ...52

Table 6: Box element events. ...52

Table 7: Connector parameters. ..53

Table 8: Connector element events. ..54

Table 9: Stage parameters. ..56

Table 10: Stage element events. ..56

Table 11: ZoomBar parameters. ...58

Table 12: ZoomBar events. ...58

Table 13: Protocol parameters. ..63

Table 14: ProtocolElement parameters. ..64

Table 15: ProtocolElement events. ..64

Table 16: Technologies comparison. ..69

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

2

1. Introduction

“If physiology literally means ‘the logic of life’, and pathology is ‘the logic of disease’, then health

informatics is the logic of healthcare. It is the rational study of the way we think about patients, and the

way that treatments are defined, selected and evolved. It is the study of how clinical knowledge is

created, shaped, shared and applied. (…) It is likely that in the next century, the study of informatics will

become as fundamental to the practice of medicine as anatomy has been to the last.” (1)

Being able to maintain an integrated healthcare software solution, while keeping up with constant

evolution in knowledge and technology is a major challenge. Solid medical operational tools already

exist, that are custom-shaped for each clinical department and enable inter-department collaboration,

and focus is now set on content: content management, content centralization, content sharing and

collaborative content. Organizing information and assuring its quality are key factors to guarantee

efficient and quality health care.

The project described in this report represents part of this effort to create reliable content and make it

accessible to the medical community. By gathering the best available evidence and organizing it in the

form of protocols, it’s also an innovative way to “think about patients, and the way that treatments are

defined, selected and evolved”.

This project is in line with the work previously described on the report Decision Support Systems –

Integrating Guidelines and Bibliography (2), and included the analysis and implementation of a

Protocols module as an important Decision Support System.

This introductory section provides a general context for the research activities developed and for the

implementation of the proposed solution. Section 1.1 describes the “host” company profile, and section

0 provides a contextualization of the problem within the commercialized software. Section 1.3 describes

the project timeline and planned activities.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

3

1.1. Enterprise Context

Alert Life Sciences Computing S.A. (Alert LSC) is currently mainly dedicated to the development of clinical

software solutions, to create paper-free environments within clinical facilities. With a 100% per year

growth, both in profits and in staff, the company currently employs over 400 permanent collaborators,

including medical staff, designers, architects engineers and mathematicians, among others.

Alert LSC’s attained success comes from the innovative nature of the products it commercializes within

the different healthcare departments, which recently started to follow the global tendency to automate

healthcare services. It’s the first Portuguese organization that managed to create innovative solutions for

Emergency departments, having trademarked several brands it uses.

The company is undergoing an internationalization process, which is only possible due to the success

obtained in Portuguese territory. It’s also currently investing in diversified fields such as research,

academic support and data warehouse technologies.

1.1.1. The Alert® Suite

The Alert® software suite is a clinical software solution that provides a 100% paper free environment

with intuitive features and functionalities. This paper free solution can be installed throughout an entire

healthcare facility or individual department.

Alert® was conceived to be used with touch-screen monitors (Figure 1). Its design is customized to each

user profile (doctor, nurse, ancillary personnel, information desk, lab or imaging technician, department

manager, social worker, administrative personnel) and interconnects the activities of all healthcare

professionals through workflow concepts.

Figure 1: Alert software in use at a healthcare unit.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

The application suite began as an operational tool, but grew into content and artificial intelligence,

positioning itself as an enabler o

healthcare departments. The same

functionalities which are common to some or all of them, but each product is adapted to the needs o

the specific environment in which it will be used.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

The application suite began as an operational tool, but grew into content and artificial intelligence,

positioning itself as an enabler of healthcare. Different products exist for distinct purposes and

healthcare departments. The same look & feel is assured for all the products, and there are

functionalities which are common to some or all of them, but each product is adapted to the needs o

the specific environment in which it will be used.

Figure 2: The Alert® Suite.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

4

The application suite began as an operational tool, but grew into content and artificial intelligence,

f healthcare. Different products exist for distinct purposes and

is assured for all the products, and there are

functionalities which are common to some or all of them, but each product is adapted to the needs of

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

5

As shown on Figure 2, the Alert® Suite comprises the products summarized on Table 1.

Table 1: Alert® Products

Product Description

Alert® PFH

(Paper Free

Hospital)

A solution to computerize entire hospitals making it possible to document, integrate

and review all information relating to hospital operations. Increases efficiency and

eases management and cost control tasks.

Alert® EDIS

(Emergency

Department

Information

System)

Complete solution for emergency departments, used to document, review and

integrate all clinical information from emergency department episodes.

Alert®

Inpatient

A clinical and management software for hospital Inpatient Units, used to document

and share information immediately, avoiding legibility and communication problems.

Alert® ORIS

(Operating

Room

Information

System)

Allows for the complete computerization of operating rooms. Increases operating

room efficiency throughout the pre-operative, peri-operative and post-operative

periods. Information is available immediately and can be shared with other users,

avoiding legibility and communication problems.

Alert®

Outpatient

Clinical and management software for Outpatient units, facilitates the management

of staff, processes and technical resources.

Alert® Primary

Care

Solution for the computerization of Primary Care Centers. It’s an efficient

communication system between different healthcare services, making it possible to

access clinical information collected in Primary Care Centers, Hospitals and other

facilities.

Alert® Private

Practice

Software solution for the computerization of private Physician Offices and Outpatient

Clinics. Makes it possible to document and review each individual patient record,

including information collected at other facilities.

Alert® Referral
Integrated computer system that creates a medical information network between

healthcare facilities.

Alert® EHR

(Electronic

Health Record)

Registers, archives and interconnects each patient’s clinical information, including

that originating from other applications and entities, integrating the clinical history of

each patient.

Alert® Data

Warehouse

(ADW)

Archives and analyzes clinical and operational data. Alert® Data Warehouse (ADW)

can perform complex queries, analysis and reporting, with effective control of data

access. Information within ADW, can be used to detect trends and identify patterns

making it a valuable support for accurate interpretation of events within a clinical

environment. Information presented in ADW reports statistics on data obtained

through Alert® applications.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

6

1.2. Problem Contextualization

Evidence-based medicine aims at the prevention, diagnosis and treatment of diseases using medical

evidence (the concept is further explored on section 2.1). Integration of external evidence-based data

sources into the existing clinical information system may allow the definition of appropriate therapy

alternatives for a given patient and a given disease. This is however a major challenge, not feasible

without the aid of IT.

Alert® works as the IT infrastructure for this project. Clinical protocols come in as a decision support

system that relies on evidence-based information, and play an increasingly important role in the field of

health care.

The project aimed at the development of a tool to allow the creation and use of protocols within Alert®

as a Decision Support System. The work is in line with the modules developed for the project Decision

Support Systems in Alert® – Integrating Guidelines and Bibliography (2), previously accomplished

during a curricular internship.

From the user interface perspective, this module can be considered a more complete and complex

version of Alert® Guidelines, sharing some features and background concepts, but taking them one step

further. The use of clinical protocols by healthcare professionals is not something new or even recent,

but their robustness and applicability is evolving rapidly. It’s mostly the valuable combination of clinical

expertise with external evidence that grants a vital importance to protocols as decision support systems.

This work featured implementation of a protocol creation tool, but most importantly its integration as

part of the Alert® products. The tool will be made available to the 6 major Alert® products:

• Alert® Care

• Alert® EDIS

• Alert® Inpatient

• Alert® ORIS

• Alert® Outpatient

• Alert® Private Practice

Protocols can be shared by different Alert® products within an institution, as well as among medical

staff, improving collaboration.

The protocol creation and edition functionality will be accessible from each professional’s personal

definitions area, commonly called BackOffice, while protocol application will be part of the patients’

health record.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

7

1.3. Planning

The project planning defined two distinct phases, being that step 2 is dependent on the infrastructure

built on step 1.

1. Requirements analysis and implementation of the flowchart components

2. Requirements analysis for the protocols module

a. Analysis and implementation of protocol creation functionality

b. Analysis and implementation of protocol application functionality

A plan of action was defined for the implementation of the new tool, estimating task times, milestones

and deliverables. This analysis has been condensed on the Gantt diagram on Figure 3.

Figure 3: Project Planning - Gantt Diagram.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

8

2. Problem Analysis

This section presents the actual problem in analysis, exposing the relevant concepts and underlying

theory. In order to understand clinical protocols, and their importance, it’s important to know the

context in which they exist: a method of medicine practice known as Evidence Based Medicine (EBM).

Section 2.1 describes EBM general concepts and characteristics to some detail, while clinical protocols in

particular are analyzed on section 2.2.

The objectives proposed for the final solution are listed on section 2.3. Because the technologies that will

be used for implementation are defined from the start (they are bounded by the framework in use by

Alert®), a contextualization in terms of background architecture and technologies is also provided on

section 2.4 (Technological background).

2.1. Evidence Based Medicine (EBM)

EBM is a scientific medicine attempt to apply more uniformly the standards of evidence
1
 gained from the

scientific method to certain aspects of medical practice. Specifically, EBM seeks to assess the quality of

evidence relevant to the risks and benefits of treatments (including lack of treatment) (3).

“EBM is the conscientious, explicit, and judicious use of current best evidence in making decisions about

the care of individual patients” (4), using techniques from science, engineering, and statistics, such as

meta-analysis of medical literature, risk-benefit analysis, and randomized controlled trials. It allows

integration of individual clinical expertise with the best available external clinical evidence from

systematic research.

Individual clinical expertise comprises the proficiency and judgment that individual clinicians acquire

through clinical experience and clinical practice (Figure 4). Increased expertise is reflected in many ways,

but especially in more effective and efficient diagnosis and in the more thoughtful identification and

compassionate use of individual patients' predicaments, rights, and preferences in making clinical

decisions about their care.

1
 Evidence gained from scientific method can be understood as rules that are believed to be true, given the strong

proof that supports them, based on scientific studies.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Best available external clinical evidence

the basic sciences of medicine, but especially from patient cent

and precision of diagnostic tests (including the clinical examination), the power of prognostic markers,

and the efficacy and safety of therapeutic, rehabilitative, an

evidence both invalidates previously accepted diagnostic tests and treatments and replaces them with

new ones that are more powerful, more accurate, more efficacious, and safer.

Figure 5: Data flow in Evidence B

Books

Clinical observation

data

Magazines

Journals

Healthcare protocols

Clinical trials

Web-based health

information

Best practice

guidelines

Systematic reviews

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Figure 4: Clinical expertise.(5)

Best available external clinical evidence includes all clinically relevant research (

es of medicine, but especially from patient centered clinical research into the accuracy

and precision of diagnostic tests (including the clinical examination), the power of prognostic markers,

and the efficacy and safety of therapeutic, rehabilitative, and preventive regimens. External clinical

evidence both invalidates previously accepted diagnostic tests and treatments and replaces them with

new ones that are more powerful, more accurate, more efficacious, and safer.

: Data flow in Evidence Based Medicine.(adapted from (6))

Clinical state and
circumstances

Research
Evidence

Patient's
preferences
and actions

Evidence-based

Guidelines and

Protocols

information rules

Clinical Expertise

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

9

(Figure 5), often from

red clinical research into the accuracy

and precision of diagnostic tests (including the clinical examination), the power of prognostic markers,

d preventive regimens. External clinical

evidence both invalidates previously accepted diagnostic tests and treatments and replaces them with

Prevention

Treatment

Forecasting

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

10

EBM recognizes that many aspects of medical care depend on individual factors such as quality and

value-of-life judgments, which are only partially subject to scientific methods. EBM, however, seeks to

clarify those parts of medical practice that are in principle subject to scientific methods and to apply

these methods to ensure the best prediction of outcomes in medical treatment, even as debate about

which outcomes are desirable continues.

Evidence based medicine origins extend back to the 19
th

 century, but remains a popular topic for

clinicians, public health practitioners, purchasers, planners, and the general public. Opinions on the

proliferation of EBM practice are divergent. Some critics see evidence based medicine as being old,

others as a dangerous innovation. Its supporters look at it as a way to cut off clinical care costs and as an

indispensible support when it comes to making clinical decisions.

However, both parts seem to agree on some aspects:

• Good doctors use both individual clinical expertise and the best available external evidence, and

neither alone is enough. Without clinical expertise, practice risks becoming tyrannized by

evidence, for even excellent external evidence may be inapplicable to or inappropriate for an

individual patient. Without current best evidence, practice risks becoming rapidly out of date, to

the detriment of patients.

• Evidence based medicine is not "cookbook" medicine. Because it requires a bottom up approach

that integrates the best external evidence with individual clinical expertise and patients' choice,

it cannot result in slavish, cookbook approaches to individual patient care. External clinical

evidence can inform, but can never replace individual clinical expertise, and it is this expertise

that decides whether the external evidence applies to the individual patient at all and, if so, how

it should be integrated into a clinical decision.

• Hijacking of EBM by purchasers and managers to cut the costs of health care must be

considered. This would not only be a misuse of evidence based medicine but suggests a

fundamental misunderstanding of its financial consequences. Doctors practicing evidence based

medicine will identify and apply the most effective interventions to maximize the quality and

quantity of life for individual patients; this may raise rather than lower the cost of their care.

• Despite its ancient origins, evidence based medicine remains a relatively young discipline whose

positive impacts are just beginning to be validated, and it will continue to evolve.

While it might seem out of the context of this project, the analysis of evidence based medicine concepts

and of its acceptance among healthcare professionals was the basis for the definition of the protocols

tool developed. Understanding the end-user needs, expectations and fears regarding evidence based

decision support systems is essential to determine the set of features to be developed for the protocols

solution.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

11

2.2. Clinical protocols

A clinical protocol is a decision support system, specified based in research studies carried out in clinical

trials that rely on EBM (Section 2.1). It can be generically defined as a formal design of an action plan

explaining what will be done, when, how, and why. In a medical context, a protocol provides a precise

and detailed plan for the study of a medical or biomedical problem and/or plans for a treatment regimen

or therapy. In its essence, protocols resemble guidelines, with the advantage of incorporating decision

trees, making them more universal and adaptable.

A protocol typically has an associated diagram defining diagnostic and treatment pathways, which should

be followed according to each specific situation. Starting at the root node of the diagram, usually the title

of the protocol, in each step (node) the professional is requested to perform some task or provide some

kind of input. The following step is determined by comparing the condition(s) on each possible pathway

with the condition of the patient in question and proceeding with the best match.

The process is repeated until a final stage is reached (i.e. one with no subsequent nodes), where the

protocol is considered to have been applied to the patient. Figure 7 shows an example of a clinical

protocol, where the rounded rectangle represents the title node, the rectangular boxes represent task

nodes and the diamond-shaped boxes are decision nodes. Each decision node splits a pathway into two

(or more) distinct paths.

Figure 7: An example protocol.

Patient meets

general criteria?

yes

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

12

Additionally, there can be general criteria that determine a group of patients (cohort) to which the

protocol should be applied. This criteria is to be verified prior to applying the associated protocol to a

patient.

In clinical context and medical literature, protocols are often referred to as Guidelines, Protocols, Care

plans, Plans or less frequently as Consultation Maps, Macros or Templates. These multiplicity of

terminologies can be misleading, thus it’s important to define what is meant by protocol through the

course of this work:

A clinical protocol is a formal specification of a care plan’s possible pathways, with the intent of

preventing, treating, diagnosing or managing a clinical condition associated with a patient.

2.3. Objectives

The purpose of this project was to obtain a tool that would integrate an existing clinical software suite,

providing support for the use of clinical protocols, namely an interface to create protocol flow diagrams,

and the possibility of applying these protocols to patients and interactively following them in real-time.

With this in mind the following general objectives have been defined:

1. Requirements definition

1.1. Analysis of existing literature on evidence based medicine, decision support systems and more

specifically on clinical protocols

1.2. Determine expected use-cases for the protocols module

1.3. Define functional and architectural requirements

1.4. Prioritize functionalities to implement

2. Component planning and development

2.1. Define necessary components

2.2. Determine inter-component interaction methods

2.3. Implement components according to requirements

2.4. Perform unit tests and functional tests on developed components

3. Protocols tool implementation

3.1. Implement a protocol creation tool integrated on the professionals’ BackOffice area in Alert®

3.2. Implement a protocol execution tool integrated on the patients’ clinical record

3.3. Perform unit tests and functional tests on developed protocol modules

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

2.4. Technological background

Although introducing new technologies in Alert® is a possibility (if they bring an extra value to the

software), the priority for this project is to take advantage of the

adopted. Alert®’s architecture and the underlying technologies are therefore exposed on the following

section. The tools used for development are also

capabilities are relevant to define implementation strategies for the proposed solution

2.4.1. Alert® Architecture

Alert® is structured in two main components: the

interchange data through an intermediate

on Figure 8.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

echnological background

introducing new technologies in Alert® is a possibility (if they bring an extra value to the

oftware), the priority for this project is to take advantage of the capabilities of technologies

. Alert®’s architecture and the underlying technologies are therefore exposed on the following

section. The tools used for development are also generally described, since their characteristics and

capabilities are relevant to define implementation strategies for the proposed solution

Alert® Architecture

Alert® is structured in two main components: the Data tier and the Presentation tier

interchange data through an intermediate JAVA tier, which makes up a 3-tiered architecture, as shown

 Figure 8: Alert® tiered structure.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

13

introducing new technologies in Alert® is a possibility (if they bring an extra value to the

of technologies already

. Alert®’s architecture and the underlying technologies are therefore exposed on the following

, since their characteristics and

capabilities are relevant to define implementation strategies for the proposed solution.

Presentation tier. These two layers

tiered architecture, as shown

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

14

Data Tier

The data layer uses Oracle (7) technology, specifically Oracle Database 10g.

The adopted data model supports:

• Multiple institutions: the same database stores configurations and data for different institutions

and healthcare facilities.

• Multiple applications: the same database stores configurations and data related with different

Alert® applications.

• Multiple languages: supports content translations to multiple languages.

• Access control: grants and permissions for each user are controlled from the database.

These characteristics make it possible to use the application in different environments, and the use of a

centralized database shared by multiple institutions with little effort.

Unlike many 3-tiered products that keep the business logic on an intermediate logic layer, Alert®’s

business logic resides on the database layer, which guarantees that any required changes have a reduced

impact on the other layers. This option was made from the beginning to allow a faster development,

since the company had already a strong background on database technologies. However, given the fast-

growing complexity of the software, a migration of the business logic to the Java layer has been studied,

to keep it better structured and database-independent.

The data tier exchanges data with Java through Java Data Base Connection (JDBC, an API for the Java

programming language that defines how a client may access a database, provides methods for querying

and updating data in a database).

Java Tier

Flash does not communicate directly with the database. Instead, there is an intermediate Java layer that

manages the connection between interface and database. Although the Java component of the software

is relatively small when compared to the other layers, and is essentially made of automatically generated

classes, it represents a vital part of the system. It exposes the database functions, providing

corresponding services, which can be accessed remotely. All information between the presentation and

logic/data tiers is exchanged through these Java services, using Flash Remoting. This allows for interface

development to be independent of database structure (and vice-versa), thus any structural changes in

database are transparent to a Flash developer.

This layer is responsible for:

• Database connection management: Java manages every database connection and method

invocation.

• Session management: logins, session timeouts and edit timeouts are managed within this layer.

• Service logging and reports: Java maintains log files to track service exceptions.

Presentation Tier

The top layer consists on the User Interface. It’s developed with Flash technologies, using ActionScript

programming language. Alert® screens are built with reusable and customizable components such as

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

15

DataGrids
2
, MultiChoices

3
, and Keypads

4
. The interface relies on ActionScript classes to implement UI

logic, and takes advantage of inheritance capabilities to generalize concepts and features common to

different screens.

For every screen within Alert® there is a corresponding Flash authoring file (.FLA). This file contains the

basic screen structure and incorporates all the necessary pre-compiled components into the screen. It

also defines build directories for the final *.SWF
5
 files. Besides importing the necessary pre-compiled

components, every .FLA file imports a corresponding ActionScript class, which is defined on a file with

the same name and with the *.AS extension. These procedures are detailed on section 4.5.1 - The Screen

Creation Process.

Data exchange with JAVA Classes is accomplished with Flash Remoting components and JAVA web

services.

2.4.2. Alert® Technologies

As mentioned on section 2.4.1, Flash, Java and Oracle are the foundations of Alert® products at different

levels. These technologies and a summary of their features and advantages are presented on this

section.

Adobe Flash

Flash is an authoring tool widely used to create a diversity of interactive content and applications.

Utilities created with Flash can be as simplistic as a promotional banner, or as complex as 3D games,

charting tools and complete websites. Although Flash is mostly used for web content (in great part due

to its great flexibility, reduced size of the files it produces, and because it’s a cross-browser tool), it’s also

frequently adopted by developers to build their software’s User Interface.

There are several reasons why Flash was chosen as Alert®’s interface authoring tool:

• Flash is extremely flexible. Among other things, it works with vectorized components and does

not rely on strict component layouts. This makes it possible to run a Flash application on displays

with different sizes and resolutions, without compromising its look and feel.

• Making Alert® software remotely accessible to healthcare professionals has been on the

company’s plans since its foundation. This migration is already taking place, and having a Flash-

based interface has greatly simplified this process, since it was designed as a technology for the

web. Apart from programmers, end user requirements to access Alert® remotely are virtually

inexistent: a browser with Flash player plugin is the only software required, and both are found

on most computers or can be easily downloaded.

• In addition to being a powerful design tool, Flash is bundled with its own object-oriented

scripting language, ActionScript, enabling the creation of complex applications behind an

appealing and flexible user interface.

2
 a Datagrid is a component used to display information structured in a grid

3
 A combo box selection component, used in Alert to make selections from a pre-built set of options

4
 A component used in Alert to input numbers and dates

5
 “Small Web Format”, also known as Swiff, the name for the compressed and uneditable files produced by Flash

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

16

Other technologies such as Oracle Forms (8), Windows forms (9), Java Applets (10) or Ajax (HTML and

Javascript) (11) could be eventual alternatives for Flash as Alert®’s interface. In spite of having their own

advantages, whose discussion is out of the scope of this report, Adobe Flash was considered a more

adequate solution for the reasons explained.

ActionScript

The first version of ActionScript was released with Flash 2, in 1997. Since then, it has suffered profound

improvements, and has become a robust scripting language.

ActionScript 2.0 was made available with Flash MX 2004, and it radically improved object-oriented

development in Flash by formalizing objected-oriented programming (OOP) syntax and methodology.

Most of the OOP syntax in ActionScript 2.0 is based on the proposed ECMAScript 4 standard at the time

(12).

ActionScript 2.0 most noticeable features include:

• Class and Class Inheritance support;

• Interface support, used to create abstract data types;

• Formal method-definition syntax, used to create instance methods and class methods in a class

body;

• Formal getter and setter method syntax;

• Formal property-definition syntax, used to create instance properties and class properties in a

class body;

• Controlled access to methods and properties, with private/public declarations;

• Static typing for variables, properties, parameters, and return values, used to declare the data

type for each item. This eliminates careless errors caused by using the wrong kind of data in the

wrong situation;

• Type casting, used to tell the compiler to treat an object as though it were an instance of another

data type, as is sometimes required when using static typing;

• Exception handling, used to generate and respond to program errors;

• Easy linking between movie clip symbols and ActionScript 2.0 classes via the symbol Linkage

properties, allowing easier implementation of MovieClip inheritance.

ActionScript 3.0 has been recently released. This new version brings significant improvements in terms of

performance, and surely all of Alert® will be adapted to use ActionScript 3.0. For the time being

however, and because this transition will require a significant effort and time, version 2.0 is used.

Flash Remoting

Macromedia Flash Remoting MX provides the connection between Flash and web application servers,

simplifying the creation of Rich Internet Applications. All the communication with the server is

accomplished through Flash Remoting components, which implements the AMF (Action Message

Format) protocol. AMF is a binary format used primarily to exchange data between a flash application

and a database, using Remote Procedure Calls.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

17

AMF uses Web Services and delivers high compression rates and, consequently, faster data exchange.

Java

 Java is an object-oriented programming language, which aims to (13):

1. Allow the same program to be executed on multiple operating systems.

2. Contain built-in support for using computer networks.

3. Execute code from remote sources securely.

4. Include the good aspects of other object-oriented languages, making it easy to use.

Perhaps the built-in support for computer networks and the ability to execute remote code securely

were the characteristics that most contributed to choosing Java. Alert® needed a fast, robust and secure

way of interchanging data between multiple interfaces on the users’ equipments and a central database

in a server. Java makes this link possible through the use of web services
6
.

Oracle Database

Introduced in the late 1970s, Oracle databases consist of a collection of data managed by an Oracle

database management system. Oracle's relational database was the world's first database product to

support the Structured Query Language (SQL, now an industry standard), and to run on a variety of

platforms. Oracle stands out as one of the most popular databases of the world.

Alert® uses an Oracle database due to its flexibility and efficiency and because of its small management

costs. The version currently used in Alert® is Oracle10g, which was introduced in the market in 2005.

2.4.3. Development Tools

The tools described next are typically used for software development in Alert®, through the various

development stages.

SVN (Subversion)

SVN (also known as Subversion) is a version control system. It’s targeted at large projects, and especially

useful when concurrent editing of files is needed. It uses a client-server architecture: a server stores the

most current version of the project and its history, and clients connect to the server in order to check out

a complete copy of the project. Clients then work on their local copy and later check in their changes to

the server (repository).

SVN features include:

• Support for concurrent work on the same project, by several developers;

• Automatic merge of changes, if no conflicting changes are made;

• Versioning of files, directories, renames, and file meta-data;

• Branching and tagging (e.g. create a branch for debugging while keeping the main branch for

new features development);

6
 Web services can be considered Web APIs (application programming interface), are functions that can be

accessed over a network, such as the Internet, and executed on a remote system that hosts the requested services.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

18

• Parseable and human-readable output;

• Efficient delta compression (when a file is committed to the server, only the lines that have

suffered changes from the previous version are transmitted and stored, saving on resources).

All the database scripts and interface source code for Alert® are kept on a Subversion repository and

managed through SVN versioning system. For interface development, access to the repository is

commonly accessed through Eclipse’s Subclipse plugin.

Eclipse

Eclipse is best known for its Integrated Development Environment (IDE), but it’s a multi-purpose open

source platform, which can be used for a variety of software development related tasks. It stands as a

powerful user-friendly platform that increases productivity and efficiency noticeably. Eclipse relies on

plugins to provide integrated utilities for most popular programming languages.

The following plugins have been frequently used during development:

FDT (Flash Development Tool)

FDT is a plugin for Eclipse that adds Flash and ActionScript utilities such as advanced code completion,

live error highlighting, quickfixes, quick source navigation and Javadoc style documentation
7
, among

others. This tool makes Eclipse a better development environment for Actionscript than the Flash

authoring tool itself. This is why all code creation is made within Eclipse, and Flash is only used for

compiling.

SQL Explorer

SQL Explorer adds an SQL Client to Eclipse, making it possible to query and browse any JDBC compliant

database within the development environment. It uses Java drivers to access Alert®’s Oracle database,

and is fully integrated into Eclipse interface. This is extremely useful for developers to switch between

Flash perspective and SQL Explorer perspective to have an understanding of the database structure and

contents.

Subclipse

Subclipse is an SVN client for Eclipse, that adds Subversion integration to the Eclipse IDE.

XRay

Xray (The AdminTool) is a “snapshot viewer” of the state of Flash applications that has no impact on their

performance or file size. Xray can show a hierarchical view of a running application’s components and

properties, and allows real-time manipulation of these properties (Figure 9). Xray also displays

application outputs, which can be used to trace the application flow and for debugging.

7
 Javadoc is a tool for generating HTML documentation from Java source code.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Xray has proven to be a unique tool when it comes to Flash runtime debugging. It’s used very frequently,

especially on testing and debugging stages.

Service Capture

ServiceCapture (Figure 10) is an application that captures all

computer where it’s being executed, and is designed to help Rich Internet Application (RIA) developers in

the debugging, analysis, and testing of their applications.

Figure 10: Service capture interface

Flash components communicate with Alert® server through

tracing problems, by looking at what information is being sent and received.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Figure 9: XRay interface.

Xray has proven to be a unique tool when it comes to Flash runtime debugging. It’s used very frequently,

especially on testing and debugging stages.

) is an application that captures all HTTP traffic sent and received by the

computer where it’s being executed, and is designed to help Rich Internet Application (RIA) developers in

esting of their applications.

: Service capture interface – viewing input/output variables.

Flash components communicate with Alert® server through HTTP, and this tool comes very handy for

t what information is being sent and received.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

19

Xray has proven to be a unique tool when it comes to Flash runtime debugging. It’s used very frequently,

traffic sent and received by the

computer where it’s being executed, and is designed to help Rich Internet Application (RIA) developers in

, and this tool comes very handy for

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

3. State Of The Art

Conventional protocols present population

within such protocols may be difficult to access and apply to a specific patient during

consultation. To be able to create systems capable of interactively determining which protocols are

applicable, and address those protocols independently for individual patient

computer interpretable representations of the

A number of groups are actively developing computer interpretable guideline

languages for this purpose. Groups have adopted different approaches reflecting their interests and

expertise. Nevertheless, many of the approaches have in common a hierarchical decomposition of

guidelines into networks of component tasks

the task-based paradigms, and modeling formats based on this approach are referred to as

Network Models (TNMs). (14)

This chapter provides an overview of existing

graphical visualization tools.

3.1. Computer interpretable protocol representations

PROForma and Asbru are the two most commonly used

interpretable by computers. The following sections

relevant visualization tools associated with each of them

PROforma), AsbruView and CareVis

Figure 11: Protocol representation languages and respective visualization tools.

3.1.1. PROforma

PROforma is a formal knowledge representation language capable of capturing the structure and content

of a clinical guideline in a form that can be interpreted by a computer. The language forms the basis of a

8
 In Alert®, Guidelines and Protocols are distinct concepts. In short, a protocol in Alert® has its tasks organized in

decision trees (or flow charts), while a Guideline’s tasks are an unordered set. However, on most

environments and literature, the terms

support systems that rely on a series of steps that need to be performed. Hence some references to Guidelines

along this chapter. The term plan is also frequently used to refer to Protocols/ Guidelines

PROforma

Arezzo

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

State Of The Art

Conventional protocols present population-based recommendations, and the information contained

within such protocols may be difficult to access and apply to a specific patient during

To be able to create systems capable of interactively determining which protocols are

applicable, and address those protocols independently for individual patients requires

computer interpretable representations of the clinical knowledge contained in protocols.

A number of groups are actively developing computer interpretable guideline
8

languages for this purpose. Groups have adopted different approaches reflecting their interests and

expertise. Nevertheless, many of the approaches have in common a hierarchical decomposition of

guidelines into networks of component tasks that unfold over time. This approach has

, and modeling formats based on this approach are referred to as

This chapter provides an overview of existing CIG representations, as well as an analysis on

Computer interpretable protocol representations

the two most commonly used languages to represent protocols in a way that is

omputers. The following sections expose these languages in more detail, and the most

relevant visualization tools associated with each of them (Figure 11): Arezzo

CareVis (based in Asbru).

: Protocol representation languages and respective visualization tools.

is a formal knowledge representation language capable of capturing the structure and content

of a clinical guideline in a form that can be interpreted by a computer. The language forms the basis of a

In Alert®, Guidelines and Protocols are distinct concepts. In short, a protocol in Alert® has its tasks organized in

decision trees (or flow charts), while a Guideline’s tasks are an unordered set. However, on most

environments and literature, the terms Guideline and Protocol are used interchangeably when referring to decision

support systems that rely on a series of steps that need to be performed. Hence some references to Guidelines

is also frequently used to refer to Protocols/ Guidelines

PROforma

Tallis

Asbru

AsbruView CareVis

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

20

based recommendations, and the information contained

within such protocols may be difficult to access and apply to a specific patient during a medical

To be able to create systems capable of interactively determining which protocols are

requires prior definition of

owledge contained in protocols.

 (CIG) representation

languages for this purpose. Groups have adopted different approaches reflecting their interests and

expertise. Nevertheless, many of the approaches have in common a hierarchical decomposition of

that unfold over time. This approach has been described as

, and modeling formats based on this approach are referred to as Task-

an analysis on associated

languages to represent protocols in a way that is

expose these languages in more detail, and the most

 and Tallis (based in

: Protocol representation languages and respective visualization tools.

is a formal knowledge representation language capable of capturing the structure and content

of a clinical guideline in a form that can be interpreted by a computer. The language forms the basis of a

In Alert®, Guidelines and Protocols are distinct concepts. In short, a protocol in Alert® has its tasks organized in

decision trees (or flow charts), while a Guideline’s tasks are an unordered set. However, on most clinical

are used interchangeably when referring to decision

support systems that rely on a series of steps that need to be performed. Hence some references to Guidelines

CareVis

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

21

method and a technology for developing and publishing executable clinical guidelines. Applications built

using PROforma software are designed to support the management of medical procedures and clinical

decision making at the point of care.

In PROforma, a guideline application is modeled as a set of tasks and data items. The notion of a task is

central - the PROforma task model (Figure 12) divides from the keystone (generic task) into four types:

plans, decisions, actions and enquiries.

Figure 12: The PROforma class model.

Plan

A plan is a set of tasks to be carried out in order to achieve a clinical goal. Plans are the basic building

blocks of a guideline, and may contain any number of tasks of any type, including other plans, usually

with an imposed ordering.

Decision

A decision is a task involving choices of some kind, such as a choice of investigation, diagnosis or

treatment. The PROforma specification of a decision task defines the decision options, relevant

information and a set of argument rules which determine which of the options should be chosen

according to current data values.

Action

An action is typically a clinical procedure (e.g. administering an injection) which needs to be carried out.

Component

Data Item Candidate Argument Warning

Condition

Parameter Source

Keystone

(generic

task)

Plan Decision Enquiry Action

Task

Model

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

22

Enquiry

An enquiry is an action returning required information, typically a request for information or data from

the user. To specify an enquiry, a description of the information required and a method for getting it are

required.

Any specific clinical task is seen as an instance of some more general class of tasks. Each class is

eventually a specialization of a root task. Any class can be further specialized into particular sub-types.

For example, plans may be specialized into research protocols and routine guidelines and decisions can

be specialized into diagnosis and treatment decisions, or others as shown on Figure 13:

Figure 13: Task sub-types in PROforma.

When tasks are enacted, the communication of information between tasks is achieved by passing

messages between encapsulated task objects, rather than by explicit procedure calls or other

mechanisms that require access to the internal definition of a task. Task states and possible transitions

between states are displayed on Figure 14

Figure 14: Task state transitions.

Every task inherits part of its specification from the classes above it in the hierarchy, expressed as a set

of attributes. A task is distinguished from its parents by the possession of additional attributes, and

distinguished from its siblings by different values for their common attributes.

PROforma supports the definition of clinical guidelines and protocols in terms of:

completed

in progress

dormant

discarded

Decision

diagnosis treatment referral prescribing

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

23

• A well-defined set of tasks that can be composed into networks representing plans or

procedures carried out over time. These enable the high level structure of a guideline to be

represented.

• Logical constructs (such as situations, events, constraints, pre and post-conditions, and inference

rules) which allow the details of each task and inter-relationships between tasks to be defined

using templates.

The properties and behavior of each task type are determined by its attributes and the values attached

to them. These determine how and when a task is processed when the electronic guideline of which they

form a part, is enacted.

Attributes of the (top level) root task are generic and are inherited by each task class and sub-class;

attributes of task classes are specific to that class and only inherited by sub-classes of that type.

Attributes and their allowable values are specified in templates. These show us, for example, that every

task has a description, a title and preconditions, but only tasks of type action have a procedure, and only

tasks of type decision have candidates. The attributes of the root (generic) task are shown in Table 2.

Table 2: Attributes of the generic task.

Attribute Description

Name Unique identifier of task

Caption Descriptive title of task

Description Textual description of task

Goal Purpose of task

Pre-conditions Conditions necessary before a task may be started

Trigger conditions Conditions which will initiate a task

Post-conditions Conditions true on task completion

Development of a PROforma application is a two-step process:

• Developing a high level diagram which describes the outline of the protocol in terms of the

PROforma set of tasks (logical and temporal relationships between tasks are captured naturally

by linking them as required with arrows);

• Converting and storing this graphical structure in a database, using software implementations of

the task templates, with the detailed procedural and medical knowledge required to execute the

guideline.

Both these steps are carried out using a graphical editor (or knowledge authoring tool) such as the

Arezzo Composer or Tallis Composer. The resulting computerized clinical guideline is tested and executed

using a PROforma-compatible engine, such as Arezzo Performer or Tallis Engine.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

24

3.1.2. Asbru

Asbru is a time-oriented, intention-based, skeletal plan-specification representation language that is

used in the Asgaard Project to represent clinical guidelines and protocols in XML.(15)

Asbru is part of an effort to create information technologies capable of supporting protocol based care. It

was developed with the purpose of capturing all aspects of a medical treatment plan into a guideline

representation language. This language tries to deal with real world domain complex aspects like time

constraints, temporal uncertainties, intentions, plan conditions…

Asbru can be used to express clinical protocols as skeletal plans that can be instantiated for every

patient. It was designed specifically to the set of plan management tasks. Asbru enables the designer to

represent both the prescribed actions of a skeletal plan and the knowledge roles required by the various

problem-solving methods performing the intertwined supporting subtasks.

Language features include:

• continuity of prescribed actions and states;

• intentions, conditions, and world states as temporal patterns;

• flexible representation of uncertainty in temporal scopes and parameters by bounding

intervals;

• sequential, parallel, periodical, custom-ordered or unordered plan execution;

• plan execution monitoring, by defining particular conditions;

• Statement of explicit intentions and preferences separately for each plan.

The following example shows parts of an Asbru plan for artificial ventilation of newborn infants. The plan

is represented in XML and contains domain definitions and a set of sub-plans. The ventilation plan

consists of conditions and the plan body including a sequential execution of the initial plan and

controlled ventilation plan.

1: <?xml version="1.0" encoding="UTF-8"?>
2: <!DOCTYPE plan-library SYSTEM "asbru_7_3.dtd">
3: <plan-library>
4: <domain-defs>
5: <domain name="controlled_ventilation_domain">
6: ...
7: </domain>
8: </domain-defs>
9: <plans>
10: <plan-group>
11: <plan name="ventilation_plan">
12: <intentions> ... </intentions>
13: <conditions>
14: <complete-condition>
15: <constraint-combination type="and">
16: <parameter-proposition parameter-name="FiO2" >
17: <value-description type="less-or-equal">
18: <numerical-constant value="40"/>
19: </value-description>
20: ...
21: </constraint-combination>
22: </complete-condition>
23: <abort-condition>
24: <constraint-combination type="or">

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

25

25: <parameter-proposition parameter-name="FiO2" >
26: <value-description type="greater-than">
27: <numerical-constant value="90"/>
28: </value-description>
29: ...
30: </constraint-combination>
31: </abort-condition>
32: </conditions>
33: <plan-body>
34: <subplans type="sequentially">
35: ...
36: <plan-activation>
37: <plan-schema name="initial_plan"/>
38: </plan-activation>
39: <plan-activation>
40: <plan-schema name="controlled_ventilation_pl an"/>
41: </plan-activation>
42: </subplans>
43: </plan-body>
44: </plan>
45: ...
46: <plan name="controlled_ventilation_plan">
47: <plan-body>
48: <subplans type="parallel">
49: ...
50: <plan-activation>
51: <plan-schema name="handle_PCO2_plan"/>
52: </plan-activation>
53: <plan-activation>
54: <plan-schema name="handle_tcSaO2_low_plan"/>
55: </plan-activation>
56: <plan-activation>
57: <plan-schema name="handle_tcSaO2_high_plan"/ >
58: </plan-activation>
59: </subplans>
60: </plan-body>
61: </plan>
62: ...
63: </plan-group>
64: </plans>
65: </plan-library>

This format provides not only machine-readable plans, but also human-readable content (to some

extent). However, it’s clear that for slightly more complex situations, the length and density of the code

would make it impossible to be interpreted for any average person.

This language would clearly benefit with a visualization tool, and projects such as AsbruView, or CareVis

were created for that purpose.

3.1.3. Other languages

EON

Developed at Stanford University, EON(16) is intended to provide a suite of models and software

components for creating guideline-based applications. It views the guideline model as the core of an

extensible set of models, such as a model for performing temporal abstractions. EON uses a task-based

approach to define decision-support services that can be implemented using alternative techniques.

EON’s guideline execution server uses formalized clinical guidelines and patient data to generate

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

26

situation specific recommendations. A temporal data mediator supports queries involving temporal

abstractions and temporal relationships. A third component provides explanation services for other

components.

GLIF

The Guideline Interchange Format (GLIF)(17) has been collaboratively developed by groups at Columbia,

Stanford and Harvard universities (working together as the InterMed Collaboratory). GLIF stresses the

importance of sharing guidelines among different institutions and software systems. GLIF tries to build

on the most useful features of other guideline models, and to incorporate standards that are used in

health care. Its expression language was originally based on the Arden Syntax (a subsequent object-

oriented language, GELLO, is now being refined for consideration as an HL7
9
 standard), and its default

medical data model is based on the HL7 Reference Information Model (RIM).

GUIDE

GUIDE (18)is part of a guideline modeling and execution framework being developed at the University of

Pavia and supports:

1. integrating modeled guidelines into organizational workflows,

2. using decision analytical models such as decision trees and influence diagrams, and

3. simulating guideline implementation in terms of Petri nets.

GUIDE considers issues such as patient data, the implementing facility’s organizational structure, and

resource allocation. This paper considers the guideline model as presented in the GUIDE tool, which is a

graphical authoring tool that a modeler uses to create a guideline flowchart.

PRODIGY

Developed at the University of Newcastle upon Tyne, the purpose of PRODIGY(19) is to provide support

for chronic disease management in primary care. The PRODIGY project has aimed to producing the

simplest, most readily comprehensible model necessary to represent this class of guidelines. The

language has been used to encode three complex chronic disease management guidelines, and at least

two vendors have integrated PRODIGY components into their clinical information systems for general

practitioners.

3.2. Visualization tools

The first implementation of software to create, visualize and enact PROforma guidelines was Arezzo,

now a commercial product available from InferMed Ltd.. Arezzo® is designed for Microsoft Windows

platforms, and comprises Composer, a graphical knowledge authoring tool, and Performer, an application

tester and execution engine.

Tallis is a Java implementation of PROforma-based authoring and execution tools developed by Cancer

Research UK. Tallis is based on a later version of the PROforma language model. It comprises Composer

(to support creation, editing, and graphical visualization of guidelines), Tester and Engine (to enact

9
 Health Level Seven (HL7), is an organization involved in development of international healthcare standards. “HL7”

is also used to refer to some of the standards created by the organization (i.e. HL7 RIM etc.).

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

27

guidelines and allow them to be manipulated by other applications). Tallis is also designed for delivering

web-based services; applications will run on any platform and integrate with other components,

including 3
rd

 party applications.

The Tallis Publisher (based on Java Servlets) forms part of the Tallis software suite, and has also been

built to allow guidelines to be published and enacted over the internet.

The Institute of Software Technology and Interactive Systems at Vienna University of Technology is

developing AsbruView and CareVis, two graphical user interfaces to support visualization and

understanding of Asbru guidelines.

3.2.1. Arezzo

Arezzo technology consists of three main modules: the Composer, a knowledge authoring tool, the

Tester, and the Performer, an application enactment engine. Figure 15 illustrates the different purposes

of these modules.

Figure 15: Arezzo modules.

Composer / Tester

The Composer is a graphical editor or knowledge authoring tool which uses PROforma notation to

capture the structure of a guideline (laid out by an author) and generate an executable specification. The

Arezzo Composer tool is the developer's GUI. The building blocks used to construct a guideline of any

level of complexity are the four PROforma task types, each type being represented by its own icon. Data

items and their properties to be collected during protocol enactment are also defined using the

Composer. The Tester is used to test the guideline logic before deployment. Guideline applications can

be run, debugged and validated within this module.

Composer

Tester

Performer

Arezzo

Executable

Protocol

Electronic

Medical

Record

(EMR)

Arezzo

Step 3: Run personalized patient

protocol at point of care

Step 1:

Create Protocol

Step 2:

Test Protocol

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

28

 Performer

The Arezzo enactment engine (the Performer) tests and executes guidelines defined in the PROforma

language. The Performer interprets the guideline specification and during guideline enactment, prompts

the user to perform actions, collects data, carries out procedures and makes decisions as required

(Figure 16). During enactment, the Performer also maintains a local database of patient data, which is

added to by the user and queried by the Engine to evaluate specified conditions.

Figure 16: Arezzo Performer – Arezzo’s graphical view of the cough guideline encoding in PROforma.

3.2.2. Tallis

The Tallis toolset relies on the PROforma language to model clinical processes (20). Developed at the

Advanced Computation Laboratory (ACL) of Cancer Research UK it’s a suite of software tools to support

authoring, publishing and enacting of clinical knowledge applications over the web – applications

designed to support the management of medical procedures and clinical decision making at the point of

care. The Tallis Composer is a graphical editor that supports the authoring process. The resulting clinical

knowledge application can then be tested in the Tallis Tester. Finally, the Tallis Engine enables the

execution of the clinical application over the web.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

29

Composer

Tallis Composer is a tool for creating and editing PROforma applications, or “process-descriptions”:

descriptions in the PROforma language of the tasks that are to be carried out by interacting agents,

whether human beings or software components, in order to accomplish some objective.

Using the set of PROforma task types (plans, actions, enquiries and decisions), the high level structure of

the process is laid out and assembled as a network.

Figure 17: Tallis Composer – building a guideline flow diagram.

Figure 17 shows a network of tasks making up part of a guideline for cancer diagnosis and treatment.

The work flows in the direction of the arrows, from left to right. It begins with an enquiry about the

patient's problem (green diamond,), which in this example is unexplained weight loss. The enquiry is

followed by a diagnosis decision (pink circle,). In this case the diagnosis decision is a choice among a

number of diseases that might be the cause of the weight loss. If cancer is diagnosed the workflow

continues with a second decision: whether to treat the cancer with chemotherapy or surgery. Depending

on the decision taken, the guideline is completed by enacting the appropriate treatment plan (red

rounded rectangle,).

Process-descriptions are displayed in Tallis both in a network view and in a tree view:

• The tree view displays the process-description’s hierarchical structure

• The network view displays task ordering according to scheduling constraints

The hierarchy of a process-description is based on plans: each plan defines a new level in the hierarchy.

• You can view all the plans and their contents at a glance in the tree view.

• The network is more suited for viewing the contents of one plan at a time.

The detailed knowledge that is required to enact each component task is entered as task attributes.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

30

Figure 18: Tallis Composer – defining task attributes.

Each task type is defined by sets of generic and specific attributes. On the left side of Figure 18 there is a

set of fields where the author can enter values for the generic attributes of the selected task (here, an

enquiry). On the right side is a set of fields that represent the distinguishing attributes of the task type.

Once the PROforma application is developed, it can be tested in the Tallis Tester.

Tester

The Tallis Tester is a tool for testing and debugging the logic of a developed PROforma application, or

“process-description”.

The Tester keeps track of which tasks need to be performed to advance the process, and provides

information regarding the current state of the process. It can also receive messages indicating that

certain tasks have been completed, or that data relevant to the running of the process has been

provided.

The Tallis Tester is used in the authoring process, and is not intended for clinical use. It differs from the

web enactment interface in some respects:

User interface modifications such as customized web pages do not appear in the Tallis Tester.

As the Web Enactment is based around a sequential set of web pages (rather than a set of interactive

panels as in the Tester) there are certain other minor differences in the runtime behavior (most notably

concerning the relationship between sources and enquiries).

Tallis Tester is a stand-alone application, which can be launched from Tallis Composer. When a process-

description is submitted to the Tallis Tester, it is first checked for syntactic and basic semantic errors. If

no errors are found, the Tallis Tester is launched, and the process-description is enacted.

The selected task

Generic task attributes

Task specific attributes

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

31

The process-description is displayed in a tree view (Figure 19), similar to the one in Tallis Composer. The

colors of the tasks change during the enactment, as they represent task states.

Figure 19: Tallis Tester – Interface components.

Once the PROforma application is tested and debugged, it can be enacted over the web using the Tallis

Engine.

Engine

PROforma applications, or “process-descriptions”, can be enacted by the Tallis Engine. The engine keeps

track of which tasks need to be performed to advance the process, and provides information to external

agents regarding the current state of the process. The engine can also receive messages from agents

indicating that they have completed certain tasks or provided data relevant to the running of the

process.

The Tallis Engine can enact PROforma applications either locally or over the web. The enactment

interface consists of dynamically generated web pages that take the end-user through the application's

component tasks. The standard web pages can be replaced, if required, by web pages customized for an

individual application (Figure 20).

Procedure

Tree View

Menu Toolbar

Requested Data

Confirmable Decisions

Confirmable Actions & Keystones

Candidates

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

32

Figure 20: Tallis Engine – customizable front-end.

3.2.3. AsbruView

An Asbru plan offers some readability to humans, since it’s represented in XML. However, understanding

a plan in such a representation requires training as well as semantic and syntactic knowledge about the

language. This kind of knowledge is not frequently found among physicians – supposedly the end users

of the care plan. The formal representation needs to be translated into a visually richer format, one that

is familiar to domain experts.

AsbruView (21), as the name itself indicates, is visualization and user interface to deal with treatment

plans expressed in Asbru. It uses graphical metaphors to make the underlying concepts easier to grasp,

employs glyphs to communicate complex temporal information and colors to make it possible to

understand the connection between views.

This tool is essentially made up of two distinct views, Topological View and Temporal View. The

topological view stands out as it’s actually a set of metaphors used to illustrate concepts.

Topological view

Each plan is displayed as a running track (Figure 21). The time dimension (from left to right) is symbolic,

as it does not actually reflect the plan’s duration. The traffic signs symbolize the preconditions: the "no

entrance with exceptions" stands for the filter precondition (which must be true for the plan to be

applicable at all); the barrier symbolizes the setup precondition (which must also be true - but which can

be achieved by other plans if it is not - for the plan to be applicable).

The colors of the lights of the traffic lights stand for one further condition:

• Red: the abort condition (which specifies when the plan has to be stopped and regarded as

failed);

• Yellow: the suspend condition (which defines when a plan has to be interrupted to treat an

emergency, for example);

• Green: the reactivate condition (which specifies when a suspended plan can be continued).

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

33

The finishing flag, finally, symbolizes the complete condition, which specifies when the plan has reached

its goal and can be considered successful.

Plans can have sub-plans, which are then stacked on top of the containing plan.

Figure 21: AsbruView - Topological View.

Timeline view

The timeline or temporal view is based on timelines (Figure 22). The focus of this view is not so much the

topology of plans (which is also visible), but the exact temporal dimensions of plans and conditions

(unlike the Topological view).

Figure 22: AsbruView – Timeline View.

The combination of these views provides a much more intuitive solution to display Asbru based

protocols, than plain XML (Figure 23).

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

3.2.4. CareVis

An alternative to AsbruView for interactive visualization of protocol

project.

CareVis provides “multiple simultaneous views to co

structure of treatment plans and patient data”

a logical view, which is tightly coupled with the first and presents

important feature, since physicians are accustomed to this type of graphical representation of protocols.

Additionally there is the QuickView Panel

variables are displayed.

Logical View

The logical view (Figure 24) uses a technique entitled

treatment plan specification data.

flowcharts. The representation is adapted

Asbru.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Figure 23: AsbruView user interface.

for interactive visualization of protocol-based care plans is the

provides “multiple simultaneous views to cover different aspects of a complex underlying data

structure of treatment plans and patient data” (22). There is a temporal view, similarly to

a logical view, which is tightly coupled with the first and presents steps on a flowchart view. This is an

important feature, since physicians are accustomed to this type of graphical representation of protocols.

QuickView Panel, where the most important patient parameters and plan

uses a technique entitled AsbruFlow, and provides a representation of the

treatment plan specification data. Information is displayed as clinical algorithm maps in the form of

The representation is adapted to depict the characteristics of a treatment plan formulated in

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

34

based care plans is the CareVis

ver different aspects of a complex underlying data

There is a temporal view, similarly to AsbruView, and

steps on a flowchart view. This is an

important feature, since physicians are accustomed to this type of graphical representation of protocols.

the most important patient parameters and plan

provides a representation of the

mation is displayed as clinical algorithm maps in the form of

to depict the characteristics of a treatment plan formulated in

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

35

Figure 24: CareVis – Logical View.

Temporal View

The temporal representation of treatment plans is based on the idea of LifeLines (Figure 25). Lifelines are

essentially similar to the timelines used in AsbruView, and feature:

• display of hierarchical decomposition as well as the complex time annotations used in Asbru;

• interactive representation of temporal intervals;

• hierarchical decomposition and simple element characteristics;

• encapsulated bars, representing minimum and maximum duration, bounded by two caps that

represent the start and end intervals. Encapsulated bars can be shifted within the constraints of

two mounted caps.

Figure 25: CareVis – Temporal View.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

36

QuickView Panel

The QuickView panel displays currently valid variable and parameter values. The panel consists of

rectangular areas that can be assigned to the available parameters and variables. For each parameter, its

current value is displayed, along with its name, unit, and a trend indicator. These values are put at a

prominent position, enlarged in size and without the need for displaying the complete history in an

additional facet.

Figure 26 shows CareVis user interface, containing the logical, temporal and quick view panels.

Figure 26: CareVis – user interface.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

37

3.3. Overview

Stanford Medical Informatics researchers arranged a case-study to compare some computer

interpretable guideline representation formats: Asbru, EON, GLIF, GUIDE, PRODIGY, and PROforma. The

resulting report – Comparing Computer-Interpretable Guideline Models: A Case-Study Approach(14) –

provides some interesting feature comparisons, revealing differences but also some similarities among

formats.

In collaboration with representatives of each group that created the representation models, two test

guidelines were represented in each of the languages and eight components and several aspects were

compared. As a conclusion, some components were found to be consensual to all models, and good

candidates to be part of a standard, while aspects such as decision models, goal representations, use of

scenarios, and structured medical actions are approached differently.

Aspects that are common to the different languages include:

1. Organization of guidelines as plans that unfold over time, by linking plan components in

sequence, in parallel, and in iterative and cyclic structures, thus defining control-flow.

2. Support for nesting of plans, as well as expression of temporal constraints on plan components.

3. All models would benefit with the creation of a patient information model standard.

4. A standard medical concept model would also be beneficial. However, standardization is

currently out of reach since existing vocabularies have not been explicitly designed for clinical

decision support and have limitations for such applications. Standardizing definitions of abstract

terms would only be possible after a common expression language, patient information model,

and medical concept model have been standardized.

The solution proposed for Alert® should take into account aspects 1 and 2, by supporting workflows and

sub-protocols (protocols as part of other protocols).

However, and since Alert® already has a complex underlying infrastructure and internal representation

methods for patient information and concept models, it would benefit minimally of the use of standards.

Not disregarding interoperability, which is actually a key concern for the product, “building a protocol

tool with a set of features as complete as possible” will have priority over “building a protocol tool that

will easily communicate with other protocol tools”.

There’s also important feedback to be taken from the user interfaces considered. A visually simple and

intuitive interface is required, as well as a graphical representation of sequential steps. Also, different

components of a protocol should be visually distinguishable.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

38

4. Solution – Clinical Protocols Module in Alert®

In general terms, the proposed solution aimed to the creation of a complete clinical protocols tool that

would allow introducing existing protocols in a healthcare software solution, and enacting them

according to patients’ health records (Figure 27).

Figure 27: Proposed solution

Clinical Protocols Patient Health Record
Healthcare software

(Alert®)

Clinical Protocols Module in Alert®

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

39

This section describes all the stages involved on the development of the proposed solution. It starts by

describing the requirements and development methodologies adopted, and contextualizing the activities

carried out to implement the solution. Finally, it describes the implemented solution itself with

implementation details.

4.1. Requirements

To plan the development of the protocols tool, the existing solutions were analyzed and taken into

consideration, specifically those described on the State Of The Art section. Nevertheless, the purpose of

this work was not to mimic other software’s capabilities but fulfill these general objectives:

• create an integrated protocol authoring tool;

• integrate the tool seamlessly with Alert® design and functionalities;

• generate workflow in Alert® from protocol task requests.

Comparing to existing alternatives, some aspects have been simplified such as timeline-oriented views

which were considered superfluous for the desired purpose. Other features were further explored such

as integration and interactive traversing the protocols.

Developing a protocol creation tool for Alert represented a challenge to user interface development,

since it required components unlike any of those already existing in Alert®. These components are

described in detail on the following sections, given their importance for this project.

There has been an effort to make the components as generic and independent as possible, so that they

can be reused in other contexts if necessary, and to keep the source code conveniently modularized.

Functional requirements have been separated into flow chart framework requirements (section 4.1.1)

and protocol tool functional requirements (section 0).

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

40

4.1.1. Flowchart framework functional requirements

The following functionalities are expected from this tool, and must be implemented prior to protocols

implementation:

Table 3: Flowchart components requirements

Requirement Description Priority

Add box elements

(nodes) to the diagram

It should be possible to insert new text nodes in the diagram.

This can be done without user interaction and through drag &

drop.

High

Add connectors

(directed lines)

It should be possible to insert connectors in the diagram.

Connectors must link two box elements and may be added

without user interaction and through drag & drop.

High

Move box
It should be possible to reposition box elements on the diagram,

maintaining the incoming and outgoing connectors.
Medium

Remove box and

connector elements

It should be possible to remove elements from the diagram.

Removing a box element also removes its incoming/outgoing

connectors.

High

Add/Edit box contents

(text)
It should be possible to edit the box elements text contents. High

Add/Edit description to

connector elements

It should be possible to attach and edit a description to each

connector element.
Medium

Zoom in/out on

diagram

Scaling the diagram should be possible, to allow an overall view

of it.
Low

Drag diagram
Dragging the diagram vertically and horizontally, allowing the

creation of complex flowcharts wider than the viewing window.
Medium

Signal user interactions
Signaling user actions (e.g. press, release, type, drag, resize) is

essential so that they may be detected by other components.
Medium

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

41

4.1.2. Protocol tool functional requirements

In addition to the items mentioned on section 4.1.1, this module has the following requirements

regarding protocol authoring and application:

Table 4: Protocols tool requirements.

 Requirement Description Priority

General

parameters

Set main parameters

Set generic parameters for the protocol:

• Title (text)

• Pathology (from standards list)

• Type of protocol (from list of values)

• Environment (from list of values)

• Specialty (from list of values)

• Professional to which it is destined (from list of

values)

• Edit Permissions (from list of values)

High

Set inclusion criteria

Set parameters that if verified by a patient make the

protocol applicable to him/her:

• Gender

• Minimum age limit

• Maximum age limit

• Maximum Body Mass Index (BMI)

• Minimum height

• Maximum height

• Minimum systolic blood pressure

• Maximum systolic blood pressure

• Minimum diastolic blood pressure

• Maximum diastolic blood pressure

• Other Criteria

Medium

Set exclusion criteria

Set parameters that if verified by a patient make the

protocol NOT applicable to him/her. Same fields as

inclusion criteria.

Medium

Set related

information

Define content that is related with the protocol:

• Context help

• EBM

• Title

• Adapted by

• Media type

• Author

• Editor

• Edition Place

• Edition

• Edition date

• Availability and access

• Original language

• Image

• Subtitle

• Language

Low

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

42

Edit diagram

Add different types of

box elements:

Different diagram elements should be available when

building a diagram:

• Title (the starting element)

• Question (a decision node)

• Task (a task recognized by alert)

• Instruction (textual instruction)

• Protocol (link to another existing protocol)

High

Add connectors with

pre-defined values

It should be possible to add a connector to the diagram,

with a list of possible values to choose from
Medium

Assign

protocol to

patient

Automatically
Automatically recommend a protocol to a patient by

matching criteria with patient attributes
Medium

Manually

Assign a protocol to a patient manually, selecting it

either:

• Through free-text search

• Browsing categories

High

Go through protocol

steps, requesting tasks

Follow protocol steps interactively, generating workflow

when requesting tasks.
Medium

 View protocol details
The details of the parameters defined for a protocol, its

author(s) and editing history should be made available.
Low

View status for

protocol / tasks

It should be possible to view the current and past status

of each protocol applied to a patient and the

corresponding tasks.

Medium

4.1.3. Restrictions and Validations

Complementing the required features, the following restrictions must be verified:

• A protocol cannot be saved if any of the mandatory fields are left unset;

• A protocol must have at least a Title element, and a second element connected to the Title;

• Multiple task selection is restricted to tasks that can be executed concurrently on the front

office;

• Tasks that are part of a protocol but that are not available at the institution in which it’s being

applied should be distinguishable and should not be possible to request;

• Professionals should only be able to execute a task if they have the required permissions. Other

tasks should be distinguishable and impossible to request.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

43

4.1.4. Use cases

Figure 28 summarizes the expected use cases for the tool according to the different user permissions

and profiles.

Professional with

create permissions

View Protocol

Add Task

Protocols Tool

Protocol Definition (BackOffice)

Protocol Application (FrontOffice)

Create Protocol

Edit Protocol

Remove Task

Edit Task

parameters

«uses»

«uses»

«uses»

Duplicate Protocol

«uses»

«uses»

Edit flow diagram

Save Protocol

«uses»

«uses»

Add Box

Add Connector

Manipulate tasks

«uses»

«uses»

«uses»

Edit Protocol

criteria

«uses»

Professional with

editing permissions

Professional with

viewing permissions

Set editing

permissions

«uses»

Doctor / Nurse

«extends»

Assign Protocol to

patient

View protocols

assigned to patient

View automatically

suggested protocols

View manually

assigned Protocols

Request task

Suspend task

Manipulate

protocol task state

Set task request

parameters

«uses»

«uses»

«uses»

«uses»

«uses»

Cancel task

Resume task

«uses»

«uses»

Follow protocol

flow diagram

«uses»

Ignore protocol

step

«uses»

Cancel Protocol

Figure 28: Protocols Use Case Diagram.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

4.2. Development Methodologies

There are several processes at different levels of any Alert® product life cycle. The most general process

involves a number of steps from requirements definition to product installation and maintenance

described next.

4.2.1. Product Life Cycle

The life cycle of any Alert® product consists of a sequential set of phases as illustrated on

These steps are executed sequentially and each step requires prior completion of the preceding one.

Requirements / Visual Design

All development originates from a set of requirements, w

• End-users requests for features. These are usually compiled by the requirements team;

• Identification of potentially useful features from inside the company (e.g. Product Managers);

• Necessities imposed by quality standa

Requirements from all these sources are analyzed, filtered, compiled and prioritized, resulting on a list of

features and use-cases to be implemented, with associated priority levels.

The design team is responsible for taking the requirements list

style related issues, namely:

• screen layouts;

• colors, sizes, positions of components;

• component functionality and interaction;

• icons to be used.

These items are compiled on a set of

sets are divided in different documents, typically one for each functionality.

Development

On this stage, development teams take the drawings produced by the design team and implement the

infrastructure that will provide

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Development Methodologies

There are several processes at different levels of any Alert® product life cycle. The most general process

involves a number of steps from requirements definition to product installation and maintenance

Product Life Cycle

The life cycle of any Alert® product consists of a sequential set of phases as illustrated on

Figure 29: Product Life Cycle.

These steps are executed sequentially and each step requires prior completion of the preceding one.

Requirements / Visual Design

All development originates from a set of requirements, which can have distinct proveniences:

users requests for features. These are usually compiled by the requirements team;

Identification of potentially useful features from inside the company (e.g. Product Managers);

Necessities imposed by quality standards.

Requirements from all these sources are analyzed, filtered, compiled and prioritized, resulting on a list of

cases to be implemented, with associated priority levels.

The design team is responsible for taking the requirements list and creating documentation defining all

colors, sizes, positions of components;

component functionality and interaction;

These items are compiled on a set of drawings with associated comments to clarify functionalities. These

sets are divided in different documents, typically one for each functionality.

On this stage, development teams take the drawings produced by the design team and implement the

infrastructure that will provide the required functionalities. This process involves developers from all

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

44

There are several processes at different levels of any Alert® product life cycle. The most general process

involves a number of steps from requirements definition to product installation and maintenance, as

The life cycle of any Alert® product consists of a sequential set of phases as illustrated on Figure 29 (2).

These steps are executed sequentially and each step requires prior completion of the preceding one.

hich can have distinct proveniences:

users requests for features. These are usually compiled by the requirements team;

Identification of potentially useful features from inside the company (e.g. Product Managers);

Requirements from all these sources are analyzed, filtered, compiled and prioritized, resulting on a list of

and creating documentation defining all

to clarify functionalities. These

On this stage, development teams take the drawings produced by the design team and implement the

the required functionalities. This process involves developers from all

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

three layers: Interface, Java and Database. The Database team creates (or updates) the data model to

accommodate the new features and creates the needed data access functions. Java dev

generate the corresponding packages and Interface developers create the Flash structures that will use

those packages. This is typically processed iteratively and in this order, due to the dependencies between

layers (Figure 30).

Figure

Although the new components will undergo integration t

developers’ job to unit test the new features. This will greatly reduce further problems and unexpected

behavior.

Most of the work described on this document took place on this stage of the development, more

specifically on the Interface development phase.

Verification / Testing

In spite of the great effort from the development team to minimize errors, minor

malfunctions are likely to occur after the development stage finishes. It’s the Tests department

responsibility to thoroughly test the developed features, to guarantee that the application functions as

expected before it’s deployed.

This is a vital stage, with special importance in software as critical as medical frameworks.

Implementation

Implementation consists in all activities related to the installation of Alert® on a client institution. It

involves software and hardware configuration, and the setup of all the necessary interfaces with existing

solutions already in use at the institution.

Maintenance

After a version of the software is developed and tested, it’s released and implemented at the client

institution. Ideally, no further action should be required from the development team, at least until the

following version is released. The clients can ho

improvements, or report errors they run into. These are reported back to the requirements team, who

will prioritize the reported issues and start the cycle over again with the new necessities

10

 a fault or defect in a system or machine

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

three layers: Interface, Java and Database. The Database team creates (or updates) the data model to

accommodate the new features and creates the needed data access functions. Java dev

generate the corresponding packages and Interface developers create the Flash structures that will use

those packages. This is typically processed iteratively and in this order, due to the dependencies between

Figure 30: Development workflow for the 3 software layers.

Although the new components will undergo integration tests on the verification stage, it’s the

developers’ job to unit test the new features. This will greatly reduce further problems and unexpected

Most of the work described on this document took place on this stage of the development, more

cally on the Interface development phase.

In spite of the great effort from the development team to minimize errors, minor

malfunctions are likely to occur after the development stage finishes. It’s the Tests department

ponsibility to thoroughly test the developed features, to guarantee that the application functions as

This is a vital stage, with special importance in software as critical as medical frameworks.

consists in all activities related to the installation of Alert® on a client institution. It

involves software and hardware configuration, and the setup of all the necessary interfaces with existing

solutions already in use at the institution.

After a version of the software is developed and tested, it’s released and implemented at the client

institution. Ideally, no further action should be required from the development team, at least until the

following version is released. The clients can however provide feedback and suggestions for

improvements, or report errors they run into. These are reported back to the requirements team, who

will prioritize the reported issues and start the cycle over again with the new necessities

a fault or defect in a system or machine

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

45

three layers: Interface, Java and Database. The Database team creates (or updates) the data model to

accommodate the new features and creates the needed data access functions. Java developers then

generate the corresponding packages and Interface developers create the Flash structures that will use

those packages. This is typically processed iteratively and in this order, due to the dependencies between

ests on the verification stage, it’s the

developers’ job to unit test the new features. This will greatly reduce further problems and unexpected

Most of the work described on this document took place on this stage of the development, more

In spite of the great effort from the development team to minimize errors, minor bugs
10

 and

malfunctions are likely to occur after the development stage finishes. It’s the Tests department

ponsibility to thoroughly test the developed features, to guarantee that the application functions as

This is a vital stage, with special importance in software as critical as medical frameworks.

consists in all activities related to the installation of Alert® on a client institution. It

involves software and hardware configuration, and the setup of all the necessary interfaces with existing

After a version of the software is developed and tested, it’s released and implemented at the client

institution. Ideally, no further action should be required from the development team, at least until the

wever provide feedback and suggestions for

improvements, or report errors they run into. These are reported back to the requirements team, who

will prioritize the reported issues and start the cycle over again with the new necessities

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

4.2.2. Development Process

This project took place on the development stage of the product life cycle. At this stage, and since the

Alert® suite is currently a large scale product made of a diversity of modules, development is made

iteratively according to the Evolution Model descr

Figure 31

After a version of the product is released, development

independently on the module of their responsibility, and maintains its own development process. Each

team’s adopted development model is decided by the respective product manager, and depends mainly

on the nature of the modules being developed, and on the available team elements.

For the development of the Protocols module

is based on the Waterfall Model. It involves a set of well defined steps, from requirements definition to

product deployment and stabilization, with different alternative workflows.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Development Process

took place on the development stage of the product life cycle. At this stage, and since the

Alert® suite is currently a large scale product made of a diversity of modules, development is made

iteratively according to the Evolution Model described on Figure 31.

31: Global product development process – Evolution Model.

After a version of the product is released, development for the next version starts. Each team works

independently on the module of their responsibility, and maintains its own development process. Each

team’s adopted development model is decided by the respective product manager, and depends mainly

e of the modules being developed, and on the available team elements.

Protocols module, the Content team followed the model on

is based on the Waterfall Model. It involves a set of well defined steps, from requirements definition to

product deployment and stabilization, with different alternative workflows.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

46

took place on the development stage of the product life cycle. At this stage, and since the

Alert® suite is currently a large scale product made of a diversity of modules, development is made

for the next version starts. Each team works

independently on the module of their responsibility, and maintains its own development process. Each

team’s adopted development model is decided by the respective product manager, and depends mainly

e of the modules being developed, and on the available team elements.

, the Content team followed the model on Figure 32, which

is based on the Waterfall Model. It involves a set of well defined steps, from requirements definition to

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Figure 32: Content project

This development module is essentially the well known Waterfall Model where each phase starts after

the previous is complete, ideally with no need to retu

where agile development is needed, or when minor conflicts arise on the Implementation stage that

don’t affect software design, the emergency workflow (red arrows) is used.

4.3. Context of the developed work

The Content Development team assigned to these project consist

Oracle/PLSQL programmers, and

automatically updated when changes are made to the database, t

programmer in the team. Instead, a request was sent to the Java team each time changes were

necessary. The team proved to be very cohesive and organized, maintaining good communication, which

made development easier and faster

The work developed was focused on the Development stage, specifically on User Interface

(Flash/ActionScript) programming (

procedures, since database is kept transparent to the User interface.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

: Content project development process – modified Waterfall Model

This development module is essentially the well known Waterfall Model where each phase starts after

the previous is complete, ideally with no need to return to a previous stage. However, in situations

where agile development is needed, or when minor conflicts arise on the Implementation stage that

don’t affect software design, the emergency workflow (red arrows) is used.

Context of the developed work

ontent Development team assigned to these project consisted of four programmers, two of them

Oracle/PLSQL programmers, and other two Flash/Actionscript programmers. Since the Java layer is semi

automatically updated when changes are made to the database, there wasn’t a permanent Java

programmer in the team. Instead, a request was sent to the Java team each time changes were

necessary. The team proved to be very cohesive and organized, maintaining good communication, which

made development easier and faster.

The work developed was focused on the Development stage, specifically on User Interface

(Flash/ActionScript) programming (Figure 33). This section describes mainly t

procedures, since database is kept transparent to the User interface.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

47

modified Waterfall Model.

This development module is essentially the well known Waterfall Model where each phase starts after

rn to a previous stage. However, in situations

where agile development is needed, or when minor conflicts arise on the Implementation stage that

programmers, two of them

Flash/Actionscript programmers. Since the Java layer is semi-

here wasn’t a permanent Java

programmer in the team. Instead, a request was sent to the Java team each time changes were

necessary. The team proved to be very cohesive and organized, maintaining good communication, which

The work developed was focused on the Development stage, specifically on User Interface

). This section describes mainly the Interface related

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

4.4. Flowchart Development

The development of a flowchart framework consisted essentially on the creation of

components that interrelate with each other

development, while 4.4.2 presents details of the developed components themselves.

4.4.1. Component development process

A component is a movie clip with parameters that are set during authoring in Macromedia Flash, and

with ActionScript methods, properties, and events that allow you to customize the component’s

appearance and behavior at runtime.

code, and to encapsulate complex functionality that designers can u

ActionScript. Flash comes bundled with a set of customizable components such as Buttons and radio

boxes, and allows the creation of reusable user

A component typically consists of

movie clip symbol that must be linked to the AS file in both the Linkage Properties and the Component

Definition dialog boxes.

The movie clip symbol has two frames and two layers. The first layer is an Actions

global function on Frame 1. The second layer is an Assets layer with two keyframes: Frame 1 contains a

bounding box; Frame 2 contains all other assets, including graphics and base classes, used by the

component.

11

 Abridged from Flash Documentation

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Figure 33: Context of the project.

Development

The development of a flowchart framework consisted essentially on the creation of

with each other. Section 4.4.1 explains the process inherent to component

presents details of the developed components themselves.

Component development process11

is a movie clip with parameters that are set during authoring in Macromedia Flash, and

ActionScript methods, properties, and events that allow you to customize the component’s

appearance and behavior at runtime. Components are designed to allow developers to reuse and share

code, and to encapsulate complex functionality that designers can use and customize without using

ActionScript. Flash comes bundled with a set of customizable components such as Buttons and radio

boxes, and allows the creation of reusable user-built components.

A component typically consists of a Flash (FLA) file and an ActionScript (AS) file. The FLA file contains a

movie clip symbol that must be linked to the AS file in both the Linkage Properties and the Component

The movie clip symbol has two frames and two layers. The first layer is an Actions

global function on Frame 1. The second layer is an Assets layer with two keyframes: Frame 1 contains a

bounding box; Frame 2 contains all other assets, including graphics and base classes, used by the

Abridged from Flash Documentation (25)

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

48

The development of a flowchart framework consisted essentially on the creation of several independent

explains the process inherent to component

presents details of the developed components themselves.

is a movie clip with parameters that are set during authoring in Macromedia Flash, and

ActionScript methods, properties, and events that allow you to customize the component’s

are designed to allow developers to reuse and share

se and customize without using

ActionScript. Flash comes bundled with a set of customizable components such as Buttons and radio

The FLA file contains a

movie clip symbol that must be linked to the AS file in both the Linkage Properties and the Component

 layer and has a stop()

global function on Frame 1. The second layer is an Assets layer with two keyframes: Frame 1 contains a

bounding box; Frame 2 contains all other assets, including graphics and base classes, used by the

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

49

The ActionScript code specifying the properties and methods for the component is in a separate

ActionScript class file. This class file also declares which, if any, classes the component extends. The

name of the AS class file is the name of the component plus the ".as" extension. For example,

MyComponent.as contains the source code for the MyComponent component.

A component’s AS class must contain some mandatory methods and parameters

1. import mx.core.UIComponent;
2.
3. class Dial extends UIComponent
4. {
5. // Components must declare these to be proper
6. // components in the components framework.
7. static var symbolName:String = "Dial";
8. static var symbolOwner:Object = Dial;
9. var className:String = "Dial";
10.
11. // The private member variable "__value" is pub licly
12. // accessible through implicit getter/setter me thods,
13. private var __value:Number = 0;
14.
15. // Constructor;
16. // Constructor must be empty with zero argument s.
17. // All initialization takes place in a required init()
18. // method after the class instance has been con structed.
19. function Dial() {
20. }
21.
22. // Initialization code:
23. // This method is required for components exten ding UIComponent.
24. // It must call its parent class init() method with super.init().
25. function init():Void {
26. super.init();
27. // other initializations here
28. }
29.
30. // Create children objects needed at start up:
31. // Required for components extending UIComponen t.
32. public function createChildren():Void {
33. size();
34. }
35.
36. // The draw() method is required for v2 compone nts.
37. // It is invoked after the component has been
38. // invalidated by someone calling invalidate().
39. // This is better than redrawing from within th e set() function
40. // for value, because if there are other proper ties, it's
41. // better to batch up the changes into one redr aw, rather
42. // than doing them all individually. This appro ach leads
43. // to more efficiency and better centralization of code.
44. function draw():Void {
45. super.draw();
46. }
47.
48. // The size() method is invoked when the compon ent's size
49. // changes. This is an opportunity to resize th e children.
50. // This method is required for components exten ding UIComponent.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

50

51. function size():Void {
52. super.size();
53. invalidate();
54. }
55.
56. // Getters and setters for component properties
57. // The [Inspectable] metadata makes the propert y appear
58. // in the Property inspector. Calling invalidat e
59. // forces the component to redraw, when the val ue is changed.
60. [Bindable]
61. [ChangeEvent("change")]
62. [Inspectable(defaultValue=0)]
63. function set value (val:Number)
64. {
65. __value = val;
66. invalidate();
67. }
68.
69. function get value ():Number
70. {
71. return __value;
72. }
73.
74. }

4.4.2. Flowchart component development

To implement flowchart capabilities in Alert, five components were created:

• Box

• Connector

• Stage

• ProtocolElement

• ZoomBar

These components are independent but interact together to create and display flowchart diagrams.

Figure 34: Flowchart components interaction.

Stage

Box

Connector

ProtocolElement

contains

has incoming

has outgoing *

*

*
1

1

1

Flowchart

Can drop

1

ZoomBar Can have
1

*

1

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

51

Box

The Box element is a central component of the flowchart. It represents a node in the diagram to which

connectors can be attached to create a directed graph. In a protocol context, this element represents a

stage of the protocol that may pose a question to determine which path to follow, or contain

instructions or tasks that need to be performed before proceeding.

Apart from the background graphics defining the header background color, border color and box

background color, these component contains the following elements:

• A title text field;

• An editable text area, for user input information;

• A static text area, to display non-editable contents;

• A customizable icon.

Internal structure Usage Example

Figure 35: Box component.

This component exposes a series of properties that control its appearance and behavior. These may be

set at compile time, through the authoring tool, and/or changed at runtime in response to user

interactions.

Perform these

analysis:

 - Urine

 - Blood

Task

Perform these

analysis:

 - Urine

 - Blood

Task

Normal: Selected:

Editable text field

Static text field

Title text field icon

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

52

Table 5 lists the editable properties for the Box component.

Table 5: Box parameters.

Parameter Type Description Default value

static_content String

Sets the text on the static text field.

The box height is adjusted as

necessary.

<empty string>

content String

Sets the editable text field contents.

Unless editable is set to false, this

content can be changed by direct user

text input.

<empty string>

selected Boolean Gets or sets selected state on the box. false

borderColor Number
Defines color for the border and title

background (when box is not selected)
0x787864

borderSelectedColor Number
Defines color for the border and title

background when box is selected.
0x919178

editable Boolean

Gets or sets editable state of the box.

If true, box content may be edited

through user inputs.

False

Other components need to be aware of changes performed to the Box component, e.g. to readjust

size/position or trigger other actions. The Box element dispatches a series of events that may be caught

and externally processed, as shown on Table 6.

Table 6: Box element events.

Event name Description

boxPressed Dispatched when a mouse button is pressed over the box’s visible area.

boxPressedTwice
Dispatched when a mouse button is pressed twice over the box’s visible area,

within a 500 millisecond interval (double-click).

boxResized Dispatched when the visible area of the box changes.

boxUnselected Dispatched when a box loses focus (becomes unselected)

boxSelected Dispatched when a box gains focus (becomes selected)

Connector

The connector element is a directed line that will define possible flows for the diagram. A connector

must always be attached to two Box elements, one at each end, except when it’s being drawn. The

source and destination box may be one and the same.

The connector automatically “reroutes” itself according to the relative positions of its adjacent boxes. It’s

however unaware of the existence of other Connectors or Boxes on the same diagram, and therefore

does not avoid collisions with other objects. This has been marked as a future improvement to the

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

53

component, but at the moment the user must take into account the Boxes positioning to avoid

connector overlays. The fact that Boxes may be easily reorganized through drag & drop eases this task.

Figure 36 shows all possible relative box positions, and illustrates the way connectors are drawn on each

of the cases.

Figure 36: Connectors.

As the Box component, a Connector may be manipulated through the properties it exposes, as shown on

Table 7.

Table 7: Connector parameters.

Parameter Type Description Default value

text String Gets or sets the connector description. <empty string>

startObject Object Gets or sets the element where the connector starts. null

endObject Object Gets or sets the element where the connector ends. null

selectable Boolean
Gets or sets selectable property, indicating if the

connector can be selected (catch focus).
false

editable Boolean
Gets or sets editable property, indicating if the

connector text can be edited by the user.
false

Because it’s necessary to detect when a user selects a connector (by pressing it), and since visually this

component is a thin line, there is an area surrounding the connector that is not visible to the user but

which is responsible for capturing mouse clicks, as shown on Figure 37.

Figure 37: The connector hit area.

text Invisible hit area

NW N NE

W E Source

SW S SE

Fixed height

Fixed height

Variable height

Variable height

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

54

Events dispatched by the Connector simply signal if it was pressed or released (Table 8).

Table 8: Connector element events.

Event name Description

connectorPressed
Dispatched when a mouse button is pressed within the area surrounding the

connector or its text.

connectorReleased
Dispatched when a mouse button is released within the area surrounding the

connector or its text.

Stage

The Stage component works as a container for the flowchart boxes and respective connectors. It’s used

to arrange the elements on a regular grid, thus keeping the diagram organized. Elements can be added

to the stage in one of the following ways:

• Without user intervention, through invocation of the appropriate ActionScript method, e.g.

when a previously built diagram is open;

• Dynamically, e.g. dragging a ProtocolElement into the appropriate position (See ProtocolElement

details on section 0).

Zooming and Panning operations performed on the diagram are interpreted by the Stage, which is

responsible for the required transformations.

Upon creation, the Stage is configured by setting variables such as the boxes width (the same for all

boxes), minimum height and spacing. Although the visual appearance of the Stage component is just a

solid color, the component class defines an underlying structure that is used for element positioning as

shown on Figure 38.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

55

Figure 38: Stage component.

As the other components, the Stage has its own properties that make it configurable (Table 9). Some Box

parameters are common to all Box components contained on the stage. Thus, parameters like

boxTitleTextFormat , boxesWidth can be set on the Stage component and be reflected on the

Boxes it contains or those subsequently added.

Boxes width

(fixed)

Boxes

minimum

height

Box placeholders

(not visible)

Horizontal spacing Horizontal spacing

Vertical

spacing

Vertical

spacing

Vertical

spacing

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

56

Table 9: Stage parameters.

Parameter Type Description Default value

editable Boolean

Gets or sets editable property, indicating if

the stage contents can be edited by the

user.

false

boxTitleTextFormat TextFormat
Gets or sets the text format for the box

title text.

boxContentTextFormat TextFormat
Gets or sets the text format for the box

contents.

backgroundColor Number Gets or sets the stage background color. 0xC3C3A5

borderColor Number Gets or sets the stage border color. 0xEBEBC8

boxesWidth Number
Gets or sets the width for the boxes in the

stage.
128

boxesMinimumHeight Number

Gets or sets the minimum height for the

boxes in the stage. The actual height of

each box depends on its contents but is

never below this parameter value.

64

stageHeight Number The total height of the stage in pixels. 768

stageWidth Number The total width of the stage in pixels. 576

The Stage dispatches its own event notifications, such as backgroundPressed or

elementReleasedOnStage but it also forwards Events received from underlying objects, such as

boxSelected or connectorPressed , which may be useful for whatever screen contains the

flowchart (Table 10).

Table 10: Stage element events.

Event name Description

boxSelected Dispatched when some box contained in the stage is selected.

boxUnselected
Dispatched when some box contained in the stage is

unselected.

connectorPressed
Dispatched when any connector contained in the stage is

pressed

connectorInserted Dispatched when a connector is inserted on the stage

elementReleasedOnStage
Dispatched when a ProtocolElement is dragged and dropped

on the Stage.

backgroundPressed Dispatched when the background of the stage is pressed.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

57

Apart from the background color, the stage has no other visible components. Box placeholders are

dynamically resized and used internally for box positioning but are not displayed. Figure 39 shows the

stage component containing some example box and connector components.

Figure 39: Stage with some Boxes and Connectors in place.

ZoomBar

A flowchart can become extensive and as a result difficult to visualize as a whole. On the other hand,

trying to view the entire diagram by reducing the components’ size would make text unreadable. For

these reasons, a zooming tool is required to provide a flexible way of visualizing the diagrams.

Other areas in Alert® already used a zooming widget for the same purpose, and this component has

been adapted so that it could be used with the flowchart components. Graphically, the component

resembles a horizontal scrollbar, where scrolling left will zoom out, and scrolling right zooms in (Figure

40).

Figure 40: ZoomBar component.

This component takes an object (Table 11) whose _xscale and _yscale 12 properties will be manipulated

proportionally, as the scroll is dragged left or right.

12

 _xscale and _yscale are MovieClip properties that define its horizontal and vertical scaling, respectively.

Perform these

analysis:

 - Urine

 - Blood

Title

Perform these

analysis:

 - Urine

 - Blood

Question

Perform these

analysis:

 - Urine

 - Blood

Task

Perform these

analysis:

 - Urine

 - Blood

Task

Yes No

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Parameter Type

zoomObject Object

The ZoomBar dispatches an event signaling that the zooming factor has changed, when the scroll is

dragged (Table 12).

Event name Description

zoomChanged Dispatched when the zoom factor on the object is changed (by dragging the scroll).

4.5. Protocols Tool Development

The developed modules are part of Alert® core functionalities, as schematized on

From the user interface perspective, each package represents a set of screens that fit together

coherently. Some screens are specific to particular products, others

shared by all or some of the Alert® products. In spite

parameterized to be used by Alert® Outpatient, Alert® Private Practice and Alert® Primary Care. This

customization is made on the database, and no changes will be required to the interface to make these

modules available to other products in the future.

Alert®’s User Interface is made up of SWF files, which interrelate in different ways. After successful

authentication and selection of the institution (a user may have access to multiple institutions), the main

screen for the selected environment (Outpatient, Inpatient, ER, etc…) is loaded.

Once logged in, most of Alert® screens have the layout shown on

as the Header, DeepNav and Action Buttons.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Table 11: ZoomBar parameters.

Description Default value

The object to zoom when the scroll is dragged null

The ZoomBar dispatches an event signaling that the zooming factor has changed, when the scroll is

Table 12: ZoomBar events.

Description

Dispatched when the zoom factor on the object is changed (by dragging the scroll).

Development

The developed modules are part of Alert® core functionalities, as schematized on Figure

Figure 41: Alert® package diagram.

From the user interface perspective, each package represents a set of screens that fit together

coherently. Some screens are specific to particular products, others, such as the Protocols screens,

shared by all or some of the Alert® products. In spite of being core functionalities,

parameterized to be used by Alert® Outpatient, Alert® Private Practice and Alert® Primary Care. This

customization is made on the database, and no changes will be required to the interface to make these

available to other products in the future.

Alert®’s User Interface is made up of SWF files, which interrelate in different ways. After successful

authentication and selection of the institution (a user may have access to multiple institutions), the main

reen for the selected environment (Outpatient, Inpatient, ER, etc…) is loaded.

Once logged in, most of Alert® screens have the layout shown on Figure 42, and share co

as the Header, DeepNav and Action Buttons.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

58

Default value

null

The ZoomBar dispatches an event signaling that the zooming factor has changed, when the scroll is

Dispatched when the zoom factor on the object is changed (by dragging the scroll).

Figure 41.

From the user interface perspective, each package represents a set of screens that fit together

, such as the Protocols screens, are

nctionalities, Protocols are

parameterized to be used by Alert® Outpatient, Alert® Private Practice and Alert® Primary Care. This

customization is made on the database, and no changes will be required to the interface to make these

Alert®’s User Interface is made up of SWF files, which interrelate in different ways. After successful

authentication and selection of the institution (a user may have access to multiple institutions), the main

, and share components such

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Every different screen in Alert® has a corresponding SWF file, which defines the main screen area

contents. This file is loaded by the application controller upon request. The

that interacts directly with the main screen area,

utilities without the need to change the main screen.

The header shows summarized patient information. The application buttons are shortcuts to different

areas of the application and the

Action buttons perform actions over the screen contents such as record insertion and deletion, printing

or viewing context help.

Of the described elements, the most relevant and the ones who wer

developed are the main screen area

different application screens that are available in all Alert® software solutions.

4.5.1. The Screen Creation Process

Creating a screen for Alert® (2)

steps described next are the basis of all the more complex programming tasks that were part of this

work. They are included as an illustration of how interface logic and design are linked in Flash.

1. Creating a new Flash document (*.FLA) on the Flash authoring environment.

The *.FLA file contains all the components that will make up the screen. It also defines the target

directory and file name for the compiled .SWF file.

2. Importing the necessary pre

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

Figure 42: Alert® screen components.

Every different screen in Alert® has a corresponding SWF file, which defines the main screen area

contents. This file is loaded by the application controller upon request. The Viewer

that interacts directly with the main screen area, showing relevant information. It also provides access to

utilities without the need to change the main screen.

shows summarized patient information. The application buttons are shortcuts to different

areas of the application and the DeepNav allows navigation through the different sections of those areas.

Action buttons perform actions over the screen contents such as record insertion and deletion, printing

Of the described elements, the most relevant and the ones who were directly affected by the work

main screen area and the Viewer. Each of the modules developed consist on a set of

different application screens that are available in all Alert® software solutions.

The Screen Creation Process

(2) is not different from creating any other flash movie. The tutorial

steps described next are the basis of all the more complex programming tasks that were part of this

d as an illustration of how interface logic and design are linked in Flash.

a new Flash document (*.FLA) on the Flash authoring environment.

ile contains all the components that will make up the screen. It also defines the target

ory and file name for the compiled .SWF file.

the necessary pre-compiled components and movie clips to the library.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

59

Every different screen in Alert® has a corresponding SWF file, which defines the main screen area

 is a separate SWF file

showing relevant information. It also provides access to

shows summarized patient information. The application buttons are shortcuts to different

ows navigation through the different sections of those areas.

Action buttons perform actions over the screen contents such as record insertion and deletion, printing

e directly affected by the work

Each of the modules developed consist on a set of

is not different from creating any other flash movie. The tutorial-like

steps described next are the basis of all the more complex programming tasks that were part of this

d as an illustration of how interface logic and design are linked in Flash.

a new Flash document (*.FLA) on the Flash authoring environment.

ile contains all the components that will make up the screen. It also defines the target

compiled components and movie clips to the library.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

The library holds all the objects, components and movie clips that can be used on the screen

They can be either dragged into the movie canvas to create instances or dynamically imported using

ActionScript commands.

Figure

3. Inserting the components in the document

Most elements used in Alert® are pre

them at runtime
13

. Instead, they are placed and resized as appropriate within the authoring

environment. These visually added elements can still be accessed from ActionScript and edited in

runtime.

The objects dragged into the screen can be organized in different layers

hidden, locked or masked with other layers as desired. Layers are useful to keep elements visually

organized and modularized. However, the existence of layers is transparent to ActionScript. It accesses

elements by their instance name, and objects created

a common layer.

It’s a common practice, although not mandatory, to create a lay

exclusively for ActionScript code.

13

 the period of time during which a program is executing

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

The library holds all the objects, components and movie clips that can be used on the screen

They can be either dragged into the movie canvas to create instances or dynamically imported using

Figure 43: Flash Authoring Application: the Object Library.

the components in the document

Most elements used in Alert® are pre-compiled components and static, so there’s no reason to create

. Instead, they are placed and resized as appropriate within the authoring

ronment. These visually added elements can still be accessed from ActionScript and edited in

The objects dragged into the screen can be organized in different layers (Figure

hidden, locked or masked with other layers as desired. Layers are useful to keep elements visually

organized and modularized. However, the existence of layers is transparent to ActionScript. It accesses

nstance name, and objects created in runtime from ActionScript classes are placed on

It’s a common practice, although not mandatory, to create a layer (conventionally named

exclusively for ActionScript code.

Figure 44: Flash Authoring Application : layers.

the period of time during which a program is executing

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

60

The library holds all the objects, components and movie clips that can be used on the screen (Figure 43).

They can be either dragged into the movie canvas to create instances or dynamically imported using

compiled components and static, so there’s no reason to create

. Instead, they are placed and resized as appropriate within the authoring

ronment. These visually added elements can still be accessed from ActionScript and edited in

Figure 44), which can be

hidden, locked or masked with other layers as desired. Layers are useful to keep elements visually

organized and modularized. However, the existence of layers is transparent to ActionScript. It accesses

from ActionScript classes are placed on

er (conventionally named actions)

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

61

4. Creating an ActionScript class with the same name as the *.FLA document.

Associated with the .FLA authoring file will be an ActionScript class with the .AS extension. For

organization purposes, this file commonly has the same name as the authoring file. It will contain all the

logic inherent to the screen, and uses functions, variables and event handlers in an object oriented

approach. A very simple class file can have these contents:

66: /* Imports */
67: import mx.utils.Delegate;
68:
69: class MyScreen extends MovieClip {
70:
71: /* Class Variables */
72: private var label_tf : TextField;
73:
74: /* Class Constructor */
75: public function MyScreenClass() {
76:
77: /* create references to objects on stage */
78: label_tf = _root[“myLabelInstanceName”];
79:
80: /* Add event listeners */
81: label_tf.onRelease=Delegate.create(this,myFunc);
82: }
83:
84: /* Other functions and event handlers */
85: private function myFunc () {
86: Label_tf.text = “New text for the label” ;
87: }
88:
89: }

This example represents a basic structure for a class file. The first instructions on the file are the

necessary imports. On this example we import the Delegate class from Flash core libraries. Then we

declare the class itself and any classes it inherits (on this case the MovieClip class). Class variables

should be declared before everything else. On line 72: we declare an object of the type TextField ,

which will reference a text field that we previously inserted on the stage.

The constructor function has the same name as the class, and is executed when a new instance of this

class is created, by invoking:

new MyScreen();

Inside the constructor we make any initializations that are necessary, like assigning stage objects to class

variables and attaching event listeners to objects as exemplified on lines 78: and 81: , respectively.

Event handling functions, and any other functions used by the screen can be defined inside the class.

They can be private (available only to functions within the same class) or public (accessible from other

classes) and have access to the class variables previously defined, as lines 85: to 87: show.

There are other functions that are commonly found in every Alert® screen:

• buttonClick() : This function executes whenever an action button is pressed, and receives

the code for the button. This code is then used to decide which action to take.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

• onUnloadScreen() :

contains instructions to delete unnecessary references and form variables

• buttonUpdate() :

invoked when an action that can affect button states is performed. It then sets every bu

active, inactive or not available according to a set of pre

5. Importing the new class,

The association of the screen to the corresponding class is accomplished by importing the class file and

creating a reference to it. For example, to include the ActionScript MyScreen, the following instructions

would be added to the actions layer of

1: import mypackage.screens.MyScreen;
2:
3: new MyScreen();

The class is first imported, and then instantiated by

the MyScreen.SWF (see step 6) file is loaded.

6. Compiling the document to create a SWF file.

The final step is compiling the screen (compile is also called

compressed and uneditable file with the SWF extension (

a Shockwave player, load and be loaded by other SWF files.

14

 Form variables are kept in memory

any screen and are deleted only when exiting Alert or when explicitly removed with

Form variables are used to pass information between different screen classes.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

onUnloadScreen() : This function is called when the user leaves the current screen. It

contains instructions to delete unnecessary references and form variables
14

 This function concentrates all action button states logic. It’s explicitly

invoked when an action that can affect button states is performed. It then sets every bu

active, inactive or not available according to a set of pre-verified conditions.

the new class, creating a new instance

The association of the screen to the corresponding class is accomplished by importing the class file and

ference to it. For example, to include the ActionScript MyScreen, the following instructions

would be added to the actions layer of MyScreen.FLA :

import mypackage.screens.MyScreen;

new MyScreen();

The class is first imported, and then instantiated by invoking it’s constructor. This code is executed when

the MyScreen.SWF (see step 6) file is loaded.

the document to create a SWF file.

The final step is compiling the screen (compile is also called publish in Flash). This will produce a

d and uneditable file with the SWF extension (Figure 45). This object can then be viewed with

a Shockwave player, load and be loaded by other SWF files.

Figure 45: Compiling Flash files.

Form variables are kept in memory. Once set, with setFormVar(var_name, value), they become a

any screen and are deleted only when exiting Alert or when explicitly removed with deleteFo

Form variables are used to pass information between different screen classes.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

62

This function is called when the user leaves the current screen. It
14

This function concentrates all action button states logic. It’s explicitly

invoked when an action that can affect button states is performed. It then sets every button as

verified conditions.

The association of the screen to the corresponding class is accomplished by importing the class file and

ference to it. For example, to include the ActionScript MyScreen, the following instructions

invoking it’s constructor. This code is executed when

in Flash). This will produce a

). This object can then be viewed with

(var_name, value), they become accessible from

deleteFormVar(var_name).

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

63

4.5.2. Protocol BackOffice development

Protocols are created and edited on the application BackOffice. There, parameters such as general

protocol details, inclusion and exclusion criteria and other related information are set on a first screen

(Table 13).

Table 13: Protocol parameters.

Protocol Parameters

Protocol Details Inclusion/exclusion Criteria Other Information

Title

Pathology

Type of protocol

Environment

Specialty

Professional to which it is

destined

Edit Permissions

Gender

Minimum age limit

Maximum age limit

Maximum Body Mass Index (BMI)

Minimum height

Maximum height

Minimum systolic blood pressure

Maximum systolic blood pressure

Minimum diastolic blood pressure

Maximum diastolic blood pressure

Other Criteria

Context help

EBM

Title

Adapted by

Media type

Author

Editor

Edition Place

Edition

Edition date

Availability and access

Original language

Image

Subtitle

Language

Moving on to the next screen, the flow diagram associated with the protocol can be created. This flow

chart editing screen gathers all the components mentioned on section 4.4.2 to provide a diagram

authoring tool. There, different types of “nodes” can be added to the diagram, by dragging the

corresponding ProtocolElement objects:

• Question: A node of this type is meant to contain a question that is input as free text.

Connectors originating from a Question node represent the possible answers to it.

• Warning: A Warning node is meant to have some kind of relevant notice to the user. This

warning is input as free text.

• Instruction: This type of node, also input with free text, provides some instruction that does not

fit within any of the available tasks.

• Protocol: This node allows the user to insert a protocol within the protocol being edited at the

moment. The user can select among the previously defined protocols, which will appear as static

text on the box. It’s also possible to append a free text description to the node.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

64

• Task: of all the types of nodes this is perhaps the most relevant when building a protocol. On a

Task node, the user may append one or more tasks, of a certain task type. The available task

types include:

o Analysis

o Appointments

o Image Exams

o Procedures

o Nurse Teachings

o Nurse interventions

o Other Exams

o Local medication

o External medication

o Opinion

 The selected tasks descriptions will be shown as static text on the box, and some free text

description can be appended.

ProtocolElement

Each ProtocolElement component provides an object that may be dragged into the Stage. This object has

an associated visual representation and a name. Figure 46 shows the ProtocolElements that are available

when building a protocol. The parameters for these components and the dispatched events are listed on

Table 14 and Table 15, respectively.

Figure 46: ProtocolElement components.

Table 14: ProtocolElement parameters.

Parameter Type Description Default value

iconColor Number The color of the icon to display. null

iconName Text The name of the icon MovieClip. <empty string>

iconWidth Number The width in pixels of the icon. 64

text Text The text to display. <empty string>

Table 15: ProtocolElement events.

Event name Description

elementReleased Dispatched the object is released, after it has been dragged.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

65

Local structures

Typically, client side data of Alert® (the user computer) is not persistent. This means that when a user

navigates through different screens in Alert®, the data that is required for a given screen is requested to

the database every time that screen is loaded, and saved to database when exiting the screen. When

editing a protocol diagram, and after selecting to attach a task, the user is forwarded to the task

selection screen, returning afterwards to the diagram editing screen. This would mean having to load the

diagram data twice just for this simple operation. A different approach has been adopted for the

protocols.

When the user chooses to edit a protocol, the corresponding diagram and tasks’ details are loaded from

database. This data is mapped into an internal structure that will be updated as the user inserts, removes

or edits elements, or any time a task is added. This avoids having to set all the data associated with the

protocol every time any change is made. After the user finishes editing, and confirms the intent to save

the changes made, the modified structure is then “uploaded”, replacing the previous one (Figure 47).

Figure 47: Sequence diagram illustrating use of local protocol data across screens.

This approach saves time and network traffic, since it eliminates the need for some (often redundant)

instructions to exchange data with the server. Additionally, it enables the “help-save” feature as

described next.

Database User Interface User

Request protocol details Load protocol

Create local

structure

edit

edit

edit

edit

Confirm changes
Commit changes

Protocol details

UI structure

with protocol

data

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

66

“Help-save” feature

The fact that all the data related with a protocol is always known to the interface while it’s being edited

(and not just within the flowchart screen) allowed the implementation of a save confirmation dialog

when a user exits abnormally.

If a user selects a different application area while editing a protocol, he is prompted to commit or discard

his changes. While he is not able to go back and continue editing from where he left, due to limitations

on Alert®’s core framework, he has an option to save the changes made up to that point. This is only

possible if all mandatory fields were set and all requirements to save are verified, otherwise changes will

be discarded. This workflow is illustrated on Figure 48.

Figure 48: Protocol saving workflow.

4.5.1. Protocol Front Office development

Protocols are accessible within the patient clinical record, under the Clinical Decision application area.

Selecting the Protocols DeepNav, all the protocols previously assigned to the patient, or automatically

recommended are listed. If the patient has no assigned or recommended protocols, the advanced search

screen is displayed instead, where the user can select from existing protocols.

User is Editing protocol

Do you wish to save?

Changes discarded

User exits normally

Proceed and save?

Abnormal exit

No

Changes saved

Yes

Yes

No

Required

fields set

Required

fields not set

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

67

Selecting a protocol, its associated diagram is displayed, and focus is set on the element immediately

after the title box, where the protocol flow starts. When executing a protocol, there is always an active

element at any given moment. There is a set of actions that may be performed according to the active

element type (Figure 49):

• Question: The options displayed correspond to the connectors originating from this question.

The next active element is decided according to the selected option.

• Task: The user can IGNORE the task and proceed, or choose to PERFORM the task, in which case

he will be forwarded to the appropriate requisition screen. This will generate workflow to the

responsible professionals. Performing a task may not be possible if the user does not have

enough privileges or if the task is not available within that particular software or institution.

• Protocol: The user can IGNORE the protocol and proceed or PERFORM the protocol. In the latter

case, he will be forwarded to the diagram of the “nested” protocol, where it can be followed.

• Instruction: The user may select IGNORE or EXECUTE the instruction, proceeding in both cases to

the next element. None of these options will generate workflow, since an instruction is simply a

textual indication of some task(s) that cannot be indicated in a Task element.

• Warning: The user may confirm acknowledgement of the warning, selecting READ.

Figure 49: Applying a protocol to a patient.

Although the protocol flow should be followed according to the pathways defined by the connectors’

arrow, the user has the option to override this flow by activating any box element on the protocol at any

given time.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

68

4.6. Testing and debugging

Although no specific test framework has been adopted during development, all code produced and

adapted was thoroughly tested to ensure that no user action can lead to undesired consequences. These

tests included (23):

4.6.1. Black box tests15

When functions are created or modified for the user interface, or new classes are implemented, the

affected functionalities are “black box tested”. Correct and erroneous input values are passed to these

components, and the output produced is then analyzed to trace errors or misbehavior of the

components. When no visual output is produced by these objects, they are forced to output trace

messages that show if the result in the end is the one expected. For viewing these runtime messages, the

Flash console is used when possible. When testing on Alert® environment, the XRay tool (see section 0)

was used to capture outputs.

It’s also very common to invoke a database function and receive back some output values which can be

evaluated and compared to the expected results. This testing that is performed on the database from

the user interface point of view is also a good example of black box testing.

4.6.2. White box tests16

For white box tests, XRay has been used to explore flash objects and their parameters. XRay provides the

state of all objects on screen in real-time, providing an internal view of the objects and thus allowing

testing for abnormal conditions.

15

 Black box testing takes an external perspective of the test object to derive test cases. These tests can be

functional or non-functional, though usually functional. The test designer selects valid and invalid input and

determines the correct output. There is no knowledge of the test object's internal structure. (25)
16

 White box testing (a.k.a. clear box testing, glass box testing or structural testing) uses an internal perspective of

the system to design test cases based on internal structure. It requires programming skills to identify all paths

through the software. The tester chooses test case inputs to exercise paths through the code and determines the

appropriate output. (25)

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

69

5. Conclusions and Future Work

The final result is extremely positive and the developed tool is in line to what was proposed as the

project objectives. The analysis of existing technologies on this area has provided valuable information

that was used to define a pathway for development of Alert®’s protocol tool.

Section 5.1 provides a comparison between the developed solution and the technologies exposed on the

State Of The Art section. On section 5.2 the project highlights are summarized, as well as some setbacks

and debatable issues. Section 5.3 presents some aspects that should be addressed in future

developments for this solution.

5.1. Results

Comparing the developed tool with the most relevant technologies in the field, there has been a

somewhat different approach towards the problem. This is mostly due to the context for which the

programs were developed, their purpose and their priorities.

Table 16 presents a comparison of the technologies chosen to implement the different tools.

Table 16: Technologies comparison.

Alert®

protocols

Asbru PROforma

+ AsbruView + CareVis Arezzo Tallis

Interface Flash Java Java Java Java

Storage
Oracle

database
XML XML

Internal

storage format

Internal

storage format

Plan Focus Task Oriented Time Oriented Time Oriented Task Oriented Task Oriented

Graphical

representation
Flowchart

Timeline +

Topological

Timeline +

Flowchart
Flowchart

Tree +

Flowchart

Platform
Cross-

platform
Cross-platform Cross-platform Windows Cross-platform

As previously explained, while the focus of both Asbru and PROforma based software is interoperability

and standardization of a guideline representation language, Alert® protocols are intended to integrate

fully into Alert®. This is reflected on the chosen technologies. Even though Alert® is cross-platform (and

consequently Alert® protocols as well), it relies on Flash and Oracle, both commercial and proprietary

technologies. The other tools rely on Java for graphical interface implementation and Asbru uses XML for

data storage, which eases interoperability.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

70

Alert® protocols are task-oriented, meaning their main focus is on tasks themselves, their requisitions

and generated workflows, and not as much on time constraints or temporal factors, even though it’s

possible to define scheduling and time parameters on protocols’ tasks.

Regarding graphical representation of protocols, flowcharts were given priority over other methods such

as timelines or tree views. This type of representation was considered more intuitive and essential for

most protocols, and thus was the only implemented view. Other visualization methods are not excluded

however, and may be considered for later releases.

5.2. Project overview and highlights

Even though the project was focused on the development of a graphical interface, there has been a

significant research component. It also demanded an effort to innovate on the way components are built

into Alert®, and to maintain them appropriately organized, structured and documented, which

contributed to develop some good working and programming practices.

5.2.1. Research

When a new feature aims to convert between different formats, in this case from paper-based

schematics to a computer representation, it’s essential to have a profound knowledge of both.

Furthermore, the type of content that makes up the source format – paper based protocols – must be

taken into account, so that the developed feature may fully respond to the user needs.

This work called for a close contact with the Content department on a first stage to clarify what was

intended with this tool (as exposed on section 4.1), and later to validate that the developed tool

corresponded to users’ necessities.

5.2.2. Innovative Challenges

The developed protocols module is in its essence an innovation in Alert®, especially concerning user

interface, as explained before. It demanded new methods of interaction for the user that represented a

challenge to user interface development. This added extra value to the project, since there was some

space to think out of the box and not to just having activities focused on creating yet another set of

Alert® screens.

5.2.3. Component reuse

The developed interface components were built with reusability in mind. Even though they were created

as an infrastructure to protocols, they were designed in a way that allows their use for other

applications. The flow chart components could be used to represent workflows of some sort, or

individual components could be given completely different uses. The Connector object for example, may

be used to visually interconnect two interface objects that relate to each other in some way (e.g.

associate a medication on a grid to a problem on another grid).

This focus on reusability motivated the development of robust, yet flexible modules, emphasizing

programming and documentation best practices.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

71

5.2.4. Setbacks

Being a relatively unexplored field, protocol automation is a task prone to cause uncertainties and

setbacks. This work placed some pertinent questions, of both ethical and technical nature, some with

answers that are not consensual.

What can be automated and how?

 It’s not easy to determine an ideal method to define and store protocol information. Storing information

in free text maximizes flexibility but on the other hand reduces interoperability and is error prone,

degenerating data quality considerably. Using predefined discrete sets of contents improves usability,

standardization, integration and interoperability, but also reduces input flexibility for the user and if

contents are not carefully chosen may narrow the amount of information that can be introduced.

A solution that has been implemented on the developed tool was to combine both information

originating from medical standards (disease, medication and treatment nomenclatures, among others)

and information freely entered by the user. This is meant to combine the best of both worlds, but still

doesn’t account for all possible situations (e.g. one can’t prescribe something that was entered manually

by the user, since this information can’t be interpreted by the application)

Where to stop automation?

This is a question that divides opinions. Assuming that the required patient data is known to the

application, and that treatment tasks can be requested autonomously, should it still be done without

human interference? How much trust should be put in a machine?

While perhaps most people will agree that a clinical professional must at least validate requests before

they are made by the system, opinions diverge on whether the system should even suggest a treatment

automatically (possibly misleading the user instead of aiding).

In Alert®, it has been decided not to automate task requests (even though it would be possible), but to

present them as a suggestion to the user, requiring an explicit action from the professional confirming

the request. Protocols are automatically suggested to patients that fit within the criteria, but merely as

suggestions, and this is stressed out to the end users when presenting the product.

How to guarantee credible and current information?

This is a pertinent question nowadays, where digital content is shared worldwide often with little,

uncertain or no information about its origins. While at a smaller scale, this problem can be found within

Alert®. Given that a large number of people can freely create protocols for other people to use,

information credibility must be questioned. Information on who created and edited a protocol is

available to the user, but there is no reliable method of guaranteeing protocols contents’ validity. A

possible way to improve this issue would be to centralize protocol validation on a restrict set of people

with the required knowledge.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

72

How to “navigate” a Protocol?

There are several concerns to take into account regarding the way a user is directed through a protocol.

o The next step should be made available after the previous has completed, or after it was

requested, independently of whether it was actually performed?

o Should it be possible to ignore a given step of a protocol?

o Should the user be allowed to “override” the natural sequence of the protocol and

select/perform previous or subsequent steps? What should happen if a step is

performed multiple times, or if it’s performed but later on canceled?

There is no ideal solution for these issues; they’re decisions that must be taken according to what brings

the most benefits and flexibility to the user, without compromising usability and safety. With this in

mind, and since a protocol is viewed as a suggested pathway, Alert® allows the users to override the

natural sequence of a protocol, enabling the user to ignore steps and to “jump” to other out of context

steps. The protocol flows immediately after a task is requested, whether or not it has been completed.

Interoperability vs completeness?

As previously mentioned, there is usually a compromise between the differentiating features supported

by an application and its interoperability capabilities. As previously explained, developments were

focused on creating an integrated and complete tool and interoperability with other systems was given a

lower priority.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

73

5.3. Future work

This work has filled an existing gap on Alert® products, and although it’s usable and robust as it is, there

is much space for future improvements, which will surely increase as feedback from costumers becomes

available. Features that are planned as future work at the moment include

Improve connector routing

Connectors currently use a somewhat primitive method for directing themselves. Their position is

decided independently of other components’ positions, often becoming overlaid or confusing. In most

cases this can be solved by repositioning the Boxes as appropriate, but a possible future improvement is

shown on Figure 50, where connectors avoid crossing with boxes and “jump” over other Connectors by

displaying a slight curvature.

Perform these

analysis:

 - Urine

 - Blood

Task

Perform these

analysis:

 - Urine

 - Blood

Task

Perform these

analysis:

 - Urine

 - Blood

Task

Perform these

analysis:

 - Urine

 - Blood

Task

Perform these

analysis:

 - Urine

 - Blood

Task

Figure 50: Connector routing improvements

Allow multiple task types on same element

Because each type of tasks has its own parameters, and since they must be set before any request, it’s

impossible to request tasks of different types at the same time. For this reason, the user can’t place tasks

of different types on a same Box element. This is definitely a worthwhile improvement that could be

accomplished by setting default values for the tasks’ parameters when creating the protocol and/or

presenting a summary screen where the user can set parameters for each selected task, when executing

the protocol.

Automatic path suggestion based on patient data

As previously mentioned, automation may not be desired and/or recommended. Suggestion of paths to

follow might be done automatically by the system if the required patient information is known. This may

be a possible future improvement.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

74

Other protocol views (timeline, tree view, text view)

The developed tool provides a flow chart view of the protocol diagram, which was considered the most

meaningful. Some of the analyzed protocol software programs provide different perspectives on a

protocol flow, such as timeline views, tree views and even textual versions of the diagram. Although

superfluous, these alternative perspectives would bring value and flexibility to the functionality.

Study alternative applications for the developed tools

The flowchart components implementation was done in a way that will allow their use within other

contexts. They may be adopted in the future e.g. to build screen workflows, to create relations between

interface elements, or even to document functionalities.

Also, it’s worth considering the commercialization of the protocols tool as a standalone feature (an

independent Alert® product), given that this feature can be made completely independent from the rest

of the applications.

This work contributed to take some weight off of clinical professionals, by using technology to accurately

store and share knowledge, and leaving professionals responsible for judging it.

“It's ridiculous to live 100 years and only be able to remember 30 million bytes.

You know less than a compact disc. The human condition is really becoming

more obsolete every minute.” (Marvin Minsky
17

)

17

 Professor and researcher at MIT Media Lab and MIT AI Lab

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

75

References

1. Coiera, Enrico. Guide to Health Informatics. s.l. : Hodder Arnold, 2003.

2. Rodrigues, Hugo. Decision Support Systems in Alert® – Integrating Guidelines and Bibliography. Porto :

Edições FEUP, 2007.

3. Wikipedia. Evidence-Based Medicine. Wikipedia. [Online] 02 09, 2008. [Cited: 02 21, 2008.]

http://en.wikipedia.org/wiki/Evidence-based_medicine.

4. DL, Sackett, et al. Evidence based medicine: what it is and what it isn't: It's about integrating individual

clinical expertise and the best external evidence. 1996.

5. School of Rural Health, University of Sydney. What is Evidence Basesd Medicine. Medical

Informatics@SRHDubbo. [Online] [Cited: 02 28, 2008.] http://srhdb.com/ebm_whatis.htm.

6. Stolba, Nevena and Tjoa, A Min. An Approach Towards the Fulfilment of Security Requirements for

Decision Support Systems in the Field of Evidence Based Healthcare. 2006.

7. Oracle. Oracle Homepage. [Online] http://www.oracle.com/.

8. —. Oracle Forms. [Online] [Cited: 04 01, 2008.]

http://www.oracle.com/technology/products/forms/index.html.

9. Microsoft Corporation. WindowsClient.net. [Online] http://windowsclient.net/.

10. Java. Applets. [Online] [Cited: 04 01, 2008.] http://java.sun.com/applets/.

11. Wikipedia. Ajax (programming). [Online] [Cited: 04 01, 2008.]

http://en.wikipedia.org/wiki/Ajax_(programming).

12. Netscape. ECMAScript 4 Netscape Proposal. [Online] 06 30, 2003. [Cited: 04 01, 2008.]

www.mozilla.org/js/language/es4.

13. Wikipedia. Java. Wikipedia. [Online] [Cited: 04 01, 2008.]

http://en.wikipedia.org/wiki/Java_(programming_language).

14. Peleg, Mor, et al. Comparing Computer-Interpretable Guideline Models: A Case-Study Approach.

Stanford, : Stanford Medical Informatics, 2003.

15. Aigner, Wolfgang and Miksch, Silvia. Communicating the Logic of a Treatment Plan Formulated in

Asbru to Domain Experts. Vienna : s.n., 2004.

16. Tu, S.W. and Musen, M.A. A flexible approach to guideline modeling. 1999.

17. Peleg, M., Boxwala, A. and Ogunyemi, O. GLIF3: The Evolution of a Guideline Representation Format.

2000.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

76

18. Quaglini, S., et al. Flexible Guideline-based Patient Careflow Systems. 2001.

19. Johnson, P.D., et al. Using Scenarios in Chronic Disease Management Guidelines for Primary Care.

2000.

20. Tallis Training. COSSAC - IRC in Cognitive Science and Systems Engineering. [Online] 9 28, 2007. [Cited:

02 22, 2008.] http://www.cossac.org/tallis/.

21. Faculty of Informatics of the Vienna University of Technology. AsbruView. The ASGAARD Project ::

Plan Authoring. [Online] 03 10, 2006. [Cited: 02 21, 2008.]

http://www.asgaard.tuwien.ac.at/asbruview/index.html.

22. Aigne, Wolfgang and Miksch, Silvia. The CareVis Project. Information Engineering Group - Vienna

University of Technology. [Online] 04 27, 2005. [Cited: 02 22, 2008.]

http://ieg.ifs.tuwien.ac.at/projects/carevis/.

23. Wikipedia. Software Testing. [Online] [Cited: 03 18, 2008.]

http://en.wikipedia.org/wiki/Software_testing.

24. —. Black Box Testing. [Online] 08 10, 2007. [Cited: 08 28, 2007.]

http://en.wikipedia.org/wiki/Black_box_testing.

25. Adobe. Flash 8 LiveDocs. [Online] 3 30, 2007. [Cited: 12 05, 2007.]

http://livedocs.adobe.com/flash/8/.

26. Wikipedia. White Box Testing. [Online] 07 10, 2007. [Cited: 04 01, 2008.]

http://en.wikipedia.org/wiki/White_box_testing.

27. Hans-Ulrich Prokosch, Joachim Dudeck. Hospital Information Systems: Design and Development

Characteristics, Impact and Future Architecture. s.l. : Elsevier, 1995.

28. Kosara, Robert and Miksch, Silvia. Metaphors of Movement: A Visualization and User Interface for

Time-Oriented, Skeletal Plans. Vienna : s.n., 2001.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

77

Glossary / Index of Terms

Alert LSC Alert Life Sciences Computing, the company where the internship took place.

AS ActionScript, or ActionScript file format, the object-oriented scripting language based on

ECMAScript, used for Flash-based software development.

Care Plan See Plan.

Clinical

Protocol

A Clinical Protocol, or just Protocol, is a streamlined plan for carrying out a scientific study

or a patient’s treatment regimen. In Alert®, Clinical Protocols are looked at as Guidelines

with a decision tree associated. In clinical contexts, the term Protocol is often used when

referring to Guidelines or Care Plans.

Datagrid A Flash component used to display information on screen organized in a scrollable and

customizable grid.

DSS Decision Support System(s). Frameworks that aid medical professionals in diagnosing and

general decision making.

EBM Evidence Based Medicine, an attempt to apply the evidence gained from the scientific

method to certain aspects of medical practice. Assess the quality of evidence relevant to

the risks and benefits of treatments (including lack of treatment). According to the Centre

for Evidence-Based Medicine, “Evidence-based medicine is the conscientious, explicit and

judicious use of current best evidence in making decisions about the care of individual

patients”.

FLA Flash file, contains source material for the Flash application. Flash authoring software can

edit FLA files and compile them into .SWF files. Proprietary to Adobe.

Guideline A Guideline or Clinical Practice Guideline is a systematically developed statement used to

assist practitioners and patients in making decisions about appropriate health care

specific clinical circumstances. Has a global perspective that must be interpreted at local

level. In clinical contexts, the term Guideline is often used when referring to Protocols or

Care Plans.

HL7 Health Level Seven, is an organization involved in development of international

healthcare standards. “HL7” is also used to refer to some of the standards created by the

organization (i.e. HL7 RIM etc.).

IT Information Technology, the study, design, development, implementation, support or

management of computer-based information systems, particularly software applications

and computer hardware.

OOP Object Oriented Programming. A programming paradigm that uses "objects" to design

applications and computer programs. Uses techniques like inheritance, modularity,

polymorphism, and encapsulation.

PHR Personal Health Record. Provides the health and medical history of an individual.

PL/SQL Procedural Language/Structured Query Language. Oracle Corporation's proprietary

server-based procedural extension to the SQL database language.

Clinical Protocols Enabling Evidence Based Medicine Practice in Healthcare Software Solutions

78

Plan A Plan or Care Plan is a “roadmap” to guide those involved with a patient’s care. The term

is often used when referring to clinical Protocols or Guidelines.

PM Product Manager. The person who deals with the product planning at all stages of the

product lifecycle.

Protocol See Clinical Protocol.

SNOMED CT Systematized Nomenclature of Medicine Clinical Terms, is a computerized clinical

terminology covering clinical data for diseases, clinical findings, and procedures

developed by the College of American Pathologists.

SQL Structured Query Language. A computer language designed for the retrieval and

management of data in relational database management systems.

SVN Subversion, a version control system “inspired” on CVS (Concurrent Versions System).

SWF Small Web Format file (also commonly called Swiff file), is the compressed and uneditable

file produced by Flash after compiling a .fla file.

UI User Interface

