1,037 research outputs found

    EXPLORING TECHNOLOGY TRUST IN BITCOIN: THE BLOCKCHAIN EXEMPLAR

    Get PDF
    The acceptance of Bitcoin as an electronic currency is steadily on the rise. This implies there is a surge in the diffusion and adoption of the blockchain technology introduced by Bitcoin as well. Moreover, the potential of this novel disruptive technology has been acknowledged by academic researchers and practitioners alike. IS research has shown that trust is a significant antecedent enabling the adoption of a novel technology and attenuating the apprehensions of risk and uncertainty among consumers. Trust in a technology is formed by the trusting beliefs of a trustor regarding the trustworthiness of the IT artifact. The blockchain technology, the trustee, has features like cryptography, decentralization, hash functions, digital signature, consensus mechanism, which embody trust in the technology. We present an extensive description of Bitcoin as an instantiation of the blockchain technology, while offering a detailed account of the literature on trust in a technology. We conceptually present, through the use of knowledge mapping, how blockchain ensures trust in the technology. We propose future research directions for trust research in the blockchain context and urge IS academics to explore trust in this novel context

    A strategic framework for e-government security: the case in Nigeria

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyCountries across the globe are striving towards full-scale implementation of e-government. One of the issues arising with the efforts to this realization is the assurance of secure transactions while upholding high privacy standards. In order to engage citizens in the process, there must be transparency and confidence that the e-government systems they are using are reliable and will deliver the services with integrity, confidentiality and accountability. Different systems require different levels of security according to the services they provide to their users. This research presents an investigation into reasons why e-government security frameworks developed by researchers with the claim that it is one-size-fits-all issue may not hold true, particularly in the case of Nigeria, based on certain identified realities. The claim of a generalized framework appears very challenging because there seem to be much diversity across different governments. Countries differ in one or more of the following characteristics: political systems, legal systems, economic situation, available technological infrastructure, Internet and PC penetration, availability of skills and human resources, literacy levels, computer literacy levels, level of poverty, leadership, and ethnic diversities in terms of norms, languages, and expertise. Security measures implemented in e-government projects in some developed countries, beginning with more established e-government systems around the world, were evaluated and a strategic framework for e-government security proposed which considers both technical and non-technical factors that involve people, processes and technologies. The framework is proposed to advance the rapid adoption of practices that will guarantee e-government security. It seeks to provide a flexible, repeatable and cost-effective approach to implementing e-government security. This research examines the issues of enclosure in the implementation of e-government from the perspective of security and ultimately survivability

    Security-Oriented Formal Techniques

    Get PDF
    Security of software systems is a critical issue in a world where Information Technology is becoming more and more pervasive. The number of services for everyday life that are provided via electronic networks is rapidly increasing, as witnessed by the longer and longer list of words with the prefix "e", such as e-banking, e-commerce, e-government, where the "e" substantiates their electronic nature. These kinds of services usually require the exchange of sensible data and the sharing of computational resources, thus needing strong security requirements because of the relevance of the exchanged information and the very distributed and untrusted environment, the Internet, in which they operate. It is important, for example, to ensure the authenticity and the secrecy of the exchanged messages, to establish the identity of the involved entities, and to have guarantees that the different system components correctly interact, without violating the required global properties

    Information Sharing: A Study of Information Attributes and their Relative Significance During Catastrophic Events

    Get PDF
    We live in a digital era where the global community relies on Information Systems to conduct all kinds of operations, including averting or responding to unanticipated risks and disasters. This can only happen when there is a robust information exchange facilitation mechanism in place, which can help in taking quick and legitimate steps in dealing with any kind of emergent situation. Prior literature in the field of information assurance has focused on building defense mechanisms to protect assets and reduce vulnerability to foreign attacks. Nevertheless, information assurance does not simply mean building an impermeable membrane and safeguarding information, but also implies letting information be securely shared, if required, among a set of related groups or organizations that serve a common purpose. This chapter will revolve around the central pivot of Information Sharing. Further, to study the relative significance of various information dimensions in different disaster situations, content analyses are conducted. The results hence obtained can be used to develop a prioritization framework for different disaster response activities, thus to increase the mitigation efficiency. We will also explore roles played by few existing organizations and technologies across the globe that are actively involved in Information Sharing to mitigate the impact of disasters and extreme events

    Protocol for a Systematic Literature Review on Security-related Research in Ubiquitous Computing

    Get PDF
    Context: This protocol is as a supplementary document to our review paper that investigates security-related challenges and solutions that have occurred during the past decade (from January 2003 to December 2013). Objectives: The objective of this systematic review is to identify security-related challenges, security goals and defenses in ubiquitous computing by answering to three main research questions. First, demographic data and trends will be given by analyzing where, when and by whom the research has been carried out. Second, we will identify security goals that occur in ubiquitous computing, along with attacks, vulnerabilities and threats that have motivated the research. Finally, we will examine the differences in addressing security in ubiquitous computing with those in traditional distributed systems. Method: In order to provide an overview of security-related challenges, goals and solutions proposed in the literature, we will use a systematic literature review (SLR). This protocol describes the steps which are to be taken in order to identify papers relevant to the objective of our review. The first phase of the method includes planning, in which we define the scope of our review by identifying the main research questions, search procedure, as well as inclusion and exclusion criteria. Data extracted from the relevant papers are to be used in the second phase of the method, data synthesis, to answer our research questions. The review will end by reporting on the results. Results and conclusions: The expected results of the review should provide an overview of attacks, vulnerabilities and threats that occur in ubiquitous computing and that have motivated the research in the last decade. Moreover, the review will indicate which security goals are gaining on their significance in the era of ubiquitous computing and provide a categorization of the security-related countermeasures, mechanisms and techniques found in the literature. (authors' abstract)Series: Working Papers on Information Systems, Information Business and Operation

    INFOSeMM: Infosys IT Security Maturity Model: A Report

    Get PDF
    This report captures the work on information security maturity model in great depth. The contents will be written up as 2 to 4 different papers

    A Design Theory for Secure Semantic E-Business Processes (SSEBP)

    Get PDF
    This dissertation develops and evaluates a Design theory. We follow the design science approach (Hevener, et al., 2004) to answer the following research question: "How can we formulate a design theory to guide the analysis and design of Secure Semantic eBusiness processes (SSeBP)?" Goals of SSeBP design theory include (i) unambiguously represent information and knowledge resources involved in eBusiness processes to solve semantic conflicts and integrate heterogeneous information systems; (ii) analyze and model business processes that include access control mechanisms to prevent unauthorized access to resources; and (iii) facilitate the coordination of eBusiness process activities-resources by modeling their dependencies. Business processes modeling techniques such as Business Process Modeling Notation (BPMN) (BPMI, 2004) and UML Activity Diagrams (OMG, 2003) lack theoretical foundations and are difficult to verify for correctness and completeness (Soffer and Wand, 2007). Current literature on secure information systems design methods are theoretically underdeveloped and consider security as a non-functional requirement and as an afterthought (Siponen et al. 2006, Mouratidis et al., 2005). SSeBP design theory is one of the first attempts at providing theoretically grounded guidance to design richer secure eBusiness processes for secure and coordinated seamless knowledge exchange among business partners in a value chain. SSeBP design theory allows for the inclusion of non-repudiation mechanisms into the analysis and design of eBusiness processes which lays the foundations for auditing and compliance with regulations such as Sarbanes-Oxley. SSeBP design theory is evaluated through a rigorous multi-method evaluation approach including descriptive, observational, and experimental evaluation. First, SSeBP design theory is validated by modeling business processes of an industry standard named Collaborative Planning, Forecasting, and Replenishment (CPFR) approach. Our model enhances CPFR by incorporating security requirements in the process model, which is critically lacking in the current CPFR technical guidelines. Secondly, we model the demand forecasting and capacity planning business processes for two large organizations to evaluate the efficacy and utility of SSeBP design theory to capture the realistic requirements and complex nuances of real inter-organizational business processes. Finally, we empirically evaluate SSeBP, against enhanced Use Cases (Siponen et al., 2006) and UML activity diagrams, for informational equivalence (Larkin and Simon, 1987) and its utility in generating situational awareness (Endsley, 1995) of the security and coordination requirements of a business process. Specific contributions of this dissertation are to develop a design theory (SSeBP) that presents a novel and holistic approach that contributes to the IS knowledge base by filling an existing research gap in the area of design of information systems to support secure and coordinated business processes. The proposed design theory provides practitioners with the meta-design and the design process, including the system components and principles to guide the analysis and design of secure eBusiness processes that are secure and coordinated

    Cybersecurity applications of Blockchain technologies

    Get PDF
    With the increase in connectivity, the popularization of cloud services, and the rise of the Internet of Things (IoT), decentralized approaches for trust management are gaining momentum. Since blockchain technologies provide a distributed ledger, they are receiving massive attention from the research community in different application fields. However, this technology does not provide cybersecurity by itself. Thus, this thesis first aims to provide a comprehensive review of techniques and elements that have been proposed to achieve cybersecurity in blockchain-based systems. The analysis is intended to target area researchers, cybersecurity specialists and blockchain developers. We present a series of lessons learned as well. One of them is the rise of Ethereum as one of the most used technologies. Furthermore, some intrinsic characteristics of the blockchain, like permanent availability and immutability made it interesting for other ends, namely as covert channels and malicious purposes. On the one hand, the use of blockchains by malwares has not been characterized yet. Therefore, this thesis also analyzes the current state of the art in this area. One of the lessons learned is that covert communications have received little attention. On the other hand, although previous works have analyzed the feasibility of covert channels in a particular blockchain technology called Bitcoin, no previous work has explored the use of Ethereum to establish a covert channel considering all transaction fields and smart contracts. To foster further defence-oriented research, two novel mechanisms are presented on this thesis. First, Zephyrus takes advantage of all Ethereum fields and smartcontract bytecode. Second, Smart-Zephyrus is built to complement Zephyrus by leveraging smart contracts written in Solidity. We also assess the mechanisms feasibility and cost. Our experiments show that Zephyrus, in the best case, can embed 40 Kbits in 0.57 s. for US1.64,andretrievethemin2.8s.SmartZephyrus,however,isabletohidea4Kbsecretin41s.Whilebeingexpensive(aroundUS 1.64, and retrieve them in 2.8 s. Smart-Zephyrus, however, is able to hide a 4 Kb secret in 41 s. While being expensive (around US 1.82 per bit), the provided stealthiness might be worth the price for attackers. Furthermore, these two mechanisms can be combined to increase capacity and reduce costs.Debido al aumento de la conectividad, la popularización de los servicios en la nube y el auge del Internet de las cosas (IoT), los enfoques descentralizados para la gestión de la confianza están cobrando impulso. Dado que las tecnologías de cadena de bloques (blockchain) proporcionan un archivo distribuido, están recibiendo una atención masiva por parte de la comunidad investigadora en diferentes campos de aplicación. Sin embargo, esta tecnología no proporciona ciberseguridad por sí misma. Por lo tanto, esta tesis tiene como primer objetivo proporcionar una revisión exhaustiva de las técnicas y elementos que se han propuesto para lograr la ciberseguridad en los sistemas basados en blockchain. Este análisis está dirigido a investigadores del área, especialistas en ciberseguridad y desarrolladores de blockchain. A su vez, se presentan una serie de lecciones aprendidas, siendo una de ellas el auge de Ethereum como una de las tecnologías más utilizadas. Asimismo, algunas características intrínsecas de la blockchain, como la disponibilidad permanente y la inmutabilidad, la hacen interesante para otros fines, concretamente como canal encubierto y con fines maliciosos. Por una parte, aún no se ha caracterizado el uso de la blockchain por parte de malwares. Por ello, esta tesis también analiza el actual estado del arte en este ámbito. Una de las lecciones aprendidas al analizar los datos es que las comunicaciones encubiertas han recibido poca atención. Por otro lado, aunque trabajos anteriores han analizado la viabilidad de los canales encubiertos en una tecnología blockchain concreta llamada Bitcoin, ningún trabajo anterior ha explorado el uso de Ethereum para establecer un canal encubierto considerando todos los campos de transacción y contratos inteligentes. Con el objetivo de fomentar una mayor investigación orientada a la defensa, en esta tesis se presentan dos mecanismos novedosos. En primer lugar, Zephyrus aprovecha todos los campos de Ethereum y el bytecode de los contratos inteligentes. En segundo lugar, Smart-Zephyrus complementa Zephyrus aprovechando los contratos inteligentes escritos en Solidity. Se evalúa, también, la viabilidad y el coste de ambos mecanismos. Los resultados muestran que Zephyrus, en el mejor de los casos, puede ocultar 40 Kbits en 0,57 s. por 1,64 US$, y recuperarlos en 2,8 s. Smart-Zephyrus, por su parte, es capaz de ocultar un secreto de 4 Kb en 41 s. Si bien es cierto que es caro (alrededor de 1,82 dólares por bit), el sigilo proporcionado podría valer la pena para los atacantes. Además, estos dos mecanismos pueden combinarse para aumentar la capacidad y reducir los costesPrograma de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José Manuel Estévez Tapiador.- Secretario: Jorge Blasco Alís.- Vocal: Luis Hernández Encina
    corecore