217 research outputs found

    Smart load scheduling strategy utilising optimal charging of electric vehicles in power grids based on an optimisation algorithm

    Get PDF
    One of the main goals of any power grid is sustainability. The given study proposes a new method, which aims to reduce usersā€™ anxiety especially at slow charging stations and improve the smart charging model to increase the benefits for the electric vehiclesā€™ owners, which in turn will increase the grid stability. The issue under consideration is modelled as an optimisation problem to minimise the cost of charging. This approach levels the load effectively throughout the day by providing power to charge EVsā€™ batteries during the offā€peak hours and drawing it from the EVsā€™ batteries during peakā€demand hours of the day. In order to minimise the costs associated with EVsā€™ charging in the given optimisation problem, an improved version of an intelligent algorithm is developed. In order to evaluate the effectiveness of the proposed technique, it is implemented on several standard models with various loads, as well as compared with other optimisation methods. The superiority and efficiency of the proposed method are demonstrated, by analysing the obtained results and comparing them with the ones produced by the competitor techniques.Ā© 2020. This is an open access article published by the IET under the Creative Commons Attribution LIcense (http://creativecommons.org/licenses/by/3.0/)fi=vertaisarvioitu|en=peerReviewed

    Understanding the Impact of AI Decision speed and Historical Decision Quality on User adoption in AI-assisted Decision Making

    Get PDF
    Artificial intelligence (AI) has shown increasing potential in assisting users with decision-making. However, the impact of AI decision speed on users\u27 adoption intention has received limited attention compared to the focus on decision quality. Building on cue utilization theory, this study investigates the influence of AI decision speed on users\u27 intention to adopt AI. Three experiments were conducted, revealing that users exhibit a higher intention to adopt AI when AI\u27s decision speed is higher and historical decision quality is better. Furthermore, the perceived intelligence and perceived risk in decision-making act as mediating variables in these effects. Importantly, the study finds that historical decision quality moderates the relationship between AI decision speed and user adoption, weakening the impact in conditions of high quality. These findings contribute to the understanding of AI adoption and offer practical implications for AI service providers and developers

    An intelligent call admission control algorithm for load balancing in 5G-satellite networks

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Cellular networks are projected to deal with an immense rise in data traffic, as well as an enormous and diverse device, plus advanced use cases, in the nearest future; hence, future 5G networks are being developed to consist of not only 5G but also different RATs integrated. In addition to 5G, the userā€™s device (UD) will be able to connect to the network via LTE, WiMAX, Wi-Fi, Satellite, and other technologies. On the other hand, Satellite has been suggested as a preferred network to support 5G use cases. Satellite networks are among the most sophisticated communication technologies which offer specific benefits in geographically dispersed and dynamic networks. Utilising their inherent advantages in broadcasting capabilities, global coverage, decreased dependency on terrestrial infrastructure, and high security, they offer highly efficient, effective, and rapid network deployments. Satellites are more suited for large-scale communications than terrestrial communication networks. Due to their extensive service coverage and strong multilink transmission capabilities, satellites offer global high-speed connectivity and adaptable access systems. The convergence of 5G technology and satellite networks therefore marks a significant milestone in the evolution of global connectivity. However, this integration introduces a complex problem related to resource management, particularly in Satellite ā€“ Terrestrial Integrated Networks (STINs). The key issue at hand is the efficient allocation of resources in STINs to enhance Quality of Service (QoS) for users. The root cause of this issue originates from a vast quantity of users sharing these resources, the dynamic nature of generated traffic, the scarcity of wireless spectrum resources, and the random allocation of wireless channels. Hence, resource allocation is critical to ensure user satisfaction, fair traffic distribution, maximised throughput, and minimised congestion. Achieving load balancing is essential to guarantee an equal amount of traffic distributed between different RATs in a heterogeneous wireless network; this would enable optimal utilisation of the radio resources and lower the likelihood of call blocking/dropping. This research endeavours to address this challenge through the development and evaluation of an intelligent call admission control (CAC) algorithm based on Enhanced Particle Swarm Optimization (EPSO). The primary aim of this research is to design an EPSO-based CAC algorithm tailored specifically for 5G-satellite heterogeneous wireless networks. The algorithm's objectives include maximising the number of admitted calls while maintaining Quality of Service (QoS) for existing users, improving network resource utilization, reducing congestion, ensuring fairness, and enhancing user satisfaction. To achieve these objectives, a detailed research methodology is outlined, encompassing algorithm development, numerical simulations, and comparative analysis. The proposed EPSO algorithm is benchmarked against alternative artificial intelligence and machine learning algorithms, including the Artificial Bee Colony algorithm, Simulated Annealing algorithm, and Q-Learning algorithm. Performance metrics such as throughput, call blocking rates, and fairness are employed to evaluate the algorithms' efficacy in achieving load-balancing objectives. The experimental findings yield insights into the performance of the EPSO-based CAC algorithm and its comparative advantages over alternative techniques. Through rigorous analysis, this research elucidates the EPSO algorithm's strengths in dynamically adapting to changing network conditions, optimising resource allocation, and ensuring equitable distribution of traffic among different RATs. The result shows the EPSO algorithm outperforms the other 3 algorithms in all the scenarios. The contributions of this thesis extend beyond academic research, with potential societal implications including enhanced connectivity, efficiency, and user experiences in 5G-Satellite heterogeneous wireless networks. By advancing intelligent resource management techniques, this research paves the way for improved network performance and reliability in the evolving landscape of wireless communication

    Secure Authentication Mechanism for Cluster based Vehicular Adhoc Network (VANET): A Survey

    Full text link
    Vehicular Ad Hoc Networks (VANETs) play a crucial role in Intelligent Transportation Systems (ITS) by facilitating communication between vehicles and infrastructure. This communication aims to enhance road safety, improve traffic efficiency, and enhance passenger comfort. The secure and reliable exchange of information is paramount to ensure the integrity and confidentiality of data, while the authentication of vehicles and messages is essential to prevent unauthorized access and malicious activities. This survey paper presents a comprehensive analysis of existing authentication mechanisms proposed for cluster-based VANETs. The strengths, weaknesses, and suitability of these mechanisms for various scenarios are carefully examined. Additionally, the integration of secure key management techniques is discussed to enhance the overall authentication process. Cluster-based VANETs are formed by dividing the network into smaller groups or clusters, with designated cluster heads comprising one or more vehicles. Furthermore, this paper identifies gaps in the existing literature through an exploration of previous surveys. Several schemes based on different methods are critically evaluated, considering factors such as throughput, detection rate, security, packet delivery ratio, and end-to-end delay. To provide optimal solutions for authentication in cluster-based VANETs, this paper highlights AI- and ML-based routing-based schemes. These approaches leverage artificial intelligence and machine learning techniques to enhance authentication within the cluster-based VANET network. Finally, this paper explores the open research challenges that exist in the realm of authentication for cluster-based Vehicular Adhoc Networks, shedding light on areas that require further investigation and development

    Text Classification: A Review, Empirical, and Experimental Evaluation

    Full text link
    The explosive and widespread growth of data necessitates the use of text classification to extract crucial information from vast amounts of data. Consequently, there has been a surge of research in both classical and deep learning text classification methods. Despite the numerous methods proposed in the literature, there is still a pressing need for a comprehensive and up-to-date survey. Existing survey papers categorize algorithms for text classification into broad classes, which can lead to the misclassification of unrelated algorithms and incorrect assessments of their qualities and behaviors using the same metrics. To address these limitations, our paper introduces a novel methodological taxonomy that classifies algorithms hierarchically into fine-grained classes and specific techniques. The taxonomy includes methodology categories, methodology techniques, and methodology sub-techniques. Our study is the first survey to utilize this methodological taxonomy for classifying algorithms for text classification. Furthermore, our study also conducts empirical evaluation and experimental comparisons and rankings of different algorithms that employ the same specific sub-technique, different sub-techniques within the same technique, different techniques within the same category, and categorie

    Algorithm Selection in Multimodal Medical Image Registration

    Get PDF
    Medical image acquisition technology has improved significantly throughout the last several decades, and clinicians now rely on medical images to diagnose illnesses, and to determine treatment protocols, and surgical planning. Medical images have been divided by researchers into two types of structures: functional and anatomical. Anatomical imaging, such as magnetic resonance imaging (MRI), computed tomography imaging (C.T.), ultrasound, and other systems, enables medical personnel to examine a body internally with great accuracy, thereby avoiding the risks associated with exploratory surgery. Functional (or physiological) imaging systems contain single-photon emission computed tomography (SPECT), positron emission tomography (PET), and other methods, which refer to a medical imaging system for discovering or evaluating variations in absorption, blood flow, metabolism, and regional chemical composition. Notably, one of these medical imaging models alone cannot usually supply doctors with adequate information. Additionally, data obtained from several images of the same subject generally provide complementary information via a process called medical image registration. Image registration may be defined as the process of geometrically mapping one -imageā€™s coordinate system to the coordinate system of another image acquired from a different perspective and with a different sensor. Registration performs a crucial role in medical image assessment because it helps clinicians observe the developing trend of the disease and make proper measures accordingly. Medical image registration (MIR) has several applications: radiation therapy, tumour diagnosis and recognition, template atlas application, and surgical guidance system. There are two types of registration: manual registration and registration-based computer system. Manual registration is when the radiologist /physician completes all registration tasks interactively with visual feedback provided by the computer system, which can result in serious problems. For instance, investigations conducted by two experts are not identical, and registration correctness is determined by the user's assessment of the relationship between anatomical features. Furthermore, it may take a long time for the user to achieve proper alignment, and the outcomes vary according to the user. As a result, the outcomes of manual alignment are doubtful and unreliable. The second registration approach is computer-based multimodal medical image registration that targets various medical images, and an arraof application types. . Additionally, automatic registration in medical pictures matches the standard recognized characteristics or voxels in pre- and intra-operative imaging without user input. Registration of multimodal pictures is the initial step in integrating data from several images. Automatic image processing has emerged to mitigate (Husein, do you mean ā€œmitigateā€ or ā€œimproveā€?) the manual image registration reliability, robustness, accuracy, and processing time. While such registration algorithms offer advantages when applied to some medical images, their use with others is accompanied by disadvantages. No registration technique can outperform all input datasets due to the changeability of medical imaging and the diverse demands of applications. However, no algorithm is preferable under all possible conditions; given many available algorithms, choosing the one that adapts the best to the task is vital. The essential factor is to choose which method is most appropriate for the situation. The Algorithm Selection Problem has emerged in numerous research disciplines, including medical diagnosis, machine learning, optimization, and computations. The choice of the most powerful strategy for a particular issue seeks to minimize these issues. This study delivers a universal and practical framework for multimodal registration algorithm choice. The primary goal of this study is to introduce a generic structure for constructing a medical image registration system capable of selecting the best registration process from a range of registration algorithms for various used datasets. Three strategies were constructed to examine the framework that was created. The first strategy is based on transforming the problem of algorithm selection into a classification problem. The second strategy investigates the effect of various parameters, such as optimization control points, on the optimal selection. The third strategy establishes a framework for choosing the optimal registration algorithm for a delivered dataset based on two primary criteria: registration algorithm applicability, and performance measures. The approach mentioned in this section has relied on machine learning methods and artificial neural networks to determine which candidate is most promising. Several experiments and scenarios have been conducted, and the results reveal that the novel Framework strategy leads to achieving the best performance, such as high accuracy, reliability, robustness, efficiency, and low processing time
    • ā€¦
    corecore