1,790 research outputs found

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rápida evolución en el campo de los sensores inteligentes, junto con los avances en las tecnologías de la computación y la comunicación, está revolucionando la forma en que recopilamos y analizamos datos del mundo físico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusión en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorización y actuación ha sido posible gracias a los avances en micro (y nano) electrónica. Al mismo tiempo, la evolución de las tecnologías de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementación de matrices de sensores de alta densidad. Así, la combinación de un sistema de adquisición basado en sensores on-Chip, junto con un microprocesador como núcleo digital donde se puede ejecutar la digitalización de señales, el procesamiento y la comunicación de datos proporciona características adicionales como reducción del coste, compacidad, portabilidad, alimentación por batería, facilidad de uso e intercambio inteligente de datos, aumentando su potencial número de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portátil de medición de espectroscopía de impedancia de baja potencia operado por batería, basado en tecnologías microelectrónicas CMOS, que pueda integrarse con el sensor, proporcionando una implementación paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales características de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestión de la energía como de las diferentes celdas que conforman la interfaz, que habrán de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mínimo y bajo consumo requeridas en la monitorización portátil, características que son aún más críticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caída de voltaje como unidad de gestión de energía, que proporciona una alimentación de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentación con una aproximación completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulación dual, que está embebido en el amplificador para optimizar consumo y área; y filtros pasa baja totalmente integrados, que actúan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    A Silicon Carbide Linear Voltage Regulator for High Temperature Applications

    Get PDF
    Current market demands have pushed the capabilities of silicon to the edge. High temperature and high power applications require a semiconductor device to operate reliably in very harsh environments. This situation has awakened interests in other types of semiconductors, usually with a higher bandgap than silicon\u27s, as the next venue for the fabrication of integrated circuits (IC) and power devices. Silicon Carbide (SiC) has so far proven to be one of the best options in the power devices field. This dissertation presents the first attempt to fabricate a SiC linear voltage regulator. This circuit would provide a power management option for developing SiC processes due to its relatively simple implementation and yet, a performance acceptable to today\u27s systems applications. This document details the challenges faced and methods needed to design and fabricate the circuit as well as measured data corroborating design simulation results

    A Silicon Carbide Power Management Solution for High Temperature Applications

    Get PDF
    The increasing demand for discrete power devices capable of operating in high temperature and high voltage applications has spurred on the research of semiconductor materials with the potential of breaking through the limitations of traditional silicon. Gallium nitride (GaN) and silicon carbide (SiC), both of which are wide bandgap materials, have garnered the attention of researchers and gradually gained market share. Although these wide bandgap power devices enable more ambitious commercial applications compared to their silicon-based counterparts, reaching their potential is contingent upon developing integrated circuits (ICs) capable of operating in similar environments. The foundation of any electrical system is the ability to efficiently condition and supply power. The work presented in this thesis explores integrated SiC power management solutions in the form of linear regulators and switched capacitor converters. While switched-mode converters provide high efficiency, the requirement of an inductor hinders the development of a compact, integrated solution that can endure harsh operating environments. Although the primary research motivation for wide bandgap ICs has been to provide control and protection circuitry for power devices, the circuitry designed in this work can be incorporated in stand-alone applications as well. Battery or generator powered data acquisition systems targeted towards monitoring industrial machinery is one potential usage scenario

    A fast and accurate energy source emulator for wireless sensor networks

    Get PDF
    The capability to either minimize energy consumption in battery-operated devices, or to adequately exploit energy harvesting from various ambient sources, is central to the development and engineering of energy-neutral wireless sensor networks. However, the design of effective networked embedded systems targeting unlimited lifetime poses several challenges at different architectural levels. In particular, the heterogeneity, the variability, and the unpredictability of many energy sources, combined to changes in energy required by powered devices, make it difficult to obtain reproducible testing conditions, thus prompting the need of novel solutions addressing these issues. This paper introduces a novel embedded hardware-software solution aimed at emulating a wide spectrum of energy sources usually exploited to power sensor networks motes. The proposed system consists of a modular architecture featuring small factor form, low power requirements, and limited cost. An extensive experimental characterization confirms the validity of the embedded emulator in terms of flexibility, accuracy, and latency while a case study about the emulation of a lithium battery shows that the hardware-software platform does not introduce any measurable reduction of the accuracy of the model. The presented solution represents therefore a convenient solution for testing large-scale testbeds under realistic energy supply scenarios for wireless sensor networks

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Power conversion techniques in nanometer CMOS for low-power applications

    Get PDF
    As System-on-Chip (SoCs) in nanometer CMOS technologies grow larger, the power management process within these SoCs becomes very challenging. In the heart of this process lies the challenge of implementing energy-efficient and cost-effective DC-DC power converters. To address this challenge, this thesis studies in details three different aspects of DC-DC power converters and proposes potential solutions. First, to maximize power conversion efficiency, loss mechanisms must be studied and quantified. For that purpose, we provide comprehensive analysis and modeling of the various switching and conduction losses in low-power synchronous DC-DC buck converters in both Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM) operation, including the case with non-rail gate control of the power switches. Second, a DC-DC buck converter design with only on-chip passives is proposed and implemented in 65-nm CMOS technology. The converter switches at 588 MHz and uses a 20-nH and 300-pF on-chip inductor and capacitor respectively, and provides up to 30-mA of load at an output voltage in the range of 0.8-1.2 V. The proposed design features over 10% improvement in power conversion efficiency over a corresponding linear regulator while preserving low-cost implementation. Finally, a 40-mA buck converter design operating in the inherently-stable DCM mode for the entire load range is presented. It employs a Pulse Frequency Modulation (PFM) scheme using a Hysteretic-Assisted Adaptive Minimum On-Time (HA-AMOT) controller to automatically adapt to a wide range of operating scenarios while minimizing inductor peak current. As a result, compact silicon area, low quiescent current, high efficiency, and robust performance across all conditions can be achieved without any calibration

    Development of high-performance low-dropout regulators for SoC applications.

    Get PDF
    Or, Pui Ying."July 2010."Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references.Abstracts in English and Chinese.AcknowledgmentsTable of ContentList of FiguresList of TablesList of PublicationsChapter Chapter 1 - --- Background of LDO ResearchChapter 1.1 --- Structure of a LDO --- p.1-1Chapter 1.2 --- Principle of Operation of LDO --- p.1-2Chapter 1.3 --- Steady-State Specification of LDO --- p.1-3Chapter 1.4 --- High-Frequency Specification of LDO --- p.1-3Chapter 1.5 --- Dynamic Specification of LDO --- p.1-4Chapter 1.6 --- An Advanced LDO Structure --- p.1-4Chapter 1.7 --- Contribution and Outline of the Thesis --- p.1-5References --- p.1-6Chapter Chapter 2 - --- PSRR AnalysisChapter 2.1 --- Modeling of the PSRR of LDO --- p.2-3Chapter 2.2 --- Analysis of LDO Circuit Using Proposed Modeling --- p.2-6Chapter 2.3 --- Conclusion of Chapter --- p.2-12References --- p.2-13Chapter Chapter 3- --- An Output-Capacitorless LDO with Direct Voltage-Spike DetectionChapter 3.1 --- Analysis of Output-Capacitorless LDO --- p.3-5Chapter 3.2 --- LDO with Proposed Voltage-Spike Detection Circuit --- p.3-7Chapter 3.3 --- Experimental Results --- p.3-15Chapter 3.4 --- Conclusion of Chapter --- p.3-21References --- p.3-22Chapter Chapter 4 - --- A LDO with Impedance Adjustment and Loop-Gain Boosting TechniqueChapter 4.1 --- Proposed LDO --- p.4-3Chapter 4.2 --- Experimental Results --- p.4-7Chapter 4.3 --- Comparison --- p.4-11Chapter 4.4 --- Conclusion of Chapter --- p.4-12Reference --- p.4-13Chapter Chapter 5 - --- Conclusion and Future Wor

    Custom Integrated Circuit Design for Portable Ultrasound Scanners

    Get PDF
    corecore