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Abstract 

Recent development of power-management integrated circuits (ICs) provides 

revolutionary opportunities of energy usage for future Green and sustainable 

electronic devices. Advanced power converters including low-dropout regulator 

(LDO), switching-mode power converter and charge pump are the keys of power 

usage casting into the modem low-power IC systems. Among the afore-mentioned 

power converters, LDO is well-recognized to be the best candidate to provide power 

to the analogue and radio-frequency circuits in an IC system, as it can provide 

low-noise and ripple-free supply voltage to the supply- and noise-sensitive circuit 

blocks. In order to develop high-performance LDO for future IC applications, in this 

thesis, the power-supply rejection ratio (PSRR) and transient response are 

investigated. 

A detailed analysis of PSRR of LDO is studied. It includes circuit modeling of a 

generic LDO with signal injection at its supply. Based on the modeling, the transfer 

function of PSRR is derived. Thorough analysis of the locations of poles and zeros 

obtained from the transfer function is carried out, and then recommendations to 

improve PSRR are given. The proposed model and the achieved results are verified 

by circuit simulations using BSIM models of a commercial CMOS 0.35-nm 

technology. The results reveal good agreement between the modeling and the PSRR 

property o f a L D O . 

Then，an output-capacitorless LDO with a direct voltage-spike detection circuit is 

presented in this thesis. The proposed voltage-spike detection is based on capacitive 

coupling. The detection circuit makes use of the rapid transient voltage at the LDO 

output to increase the bias current momentarily. Hence, the transient response of the 



LDO is significantly enhanced due to the improvement of the slew rate at the gate of 

the power transistor. The proposed voltage-spike detection circuit is applied to an 

output-capacitorless LDO implemented in a standard 0.35-^im CMOS technology. 

Experimental results show that the LDO consumes 19 ^iA only. It regulates the output 

at 0.8 V from a 1-V supply, with dropout voltage of 200 mV at the maximum output 

current of 66.7 mA. The voltage spike and the recovery time of the LDO with the 

proposed voltage-spike detection circuit are reduced to about 70 mV and 3 ^is, 

respectively, whereas they are more than 420 mV and 30 îs for the LDO without the 

proposed detection circuit. 

Finally，a low-voltage fast-transient LDO compensated by an off-chip, low-ESR, 

nano-range output capacitor is reported. The proposed load-tracking impedance 

adjustment and the loop-gain boosting technique make the proposed LDO have fast 

response and small voltage spikes. The circuit is implemented by a commercial 

0.35-^im CMOS technology. The chip area is 0.032 m m l The supply voltage ranges 

from 1.5 to 3 V. The regulated voltage is 1.2 V to provide 0 to 100 mA. The quiescent 

current in the no-load condition is 26 ^iA. A 100-nF low-ESR capacitor is sufficient to 

stabilize the proposed LDO. The measured voltage spike is 44.9 mV only, and the 

response time is less than 0.2 ^s. 



槪要 

電源管理集成電路近來發展迅速，爲未來一些主張省電的環保電子產品提 

供了一個電源供應的平台。這些能省電的電源管理集成電路主要包括了低電壓 

降穩壓器、切換式整流器以及電荷栗，而其中能有效阻隔雜訊的低電壓降穩壓 

器更被公認爲模擬集成電路和無線射頻系統的電源之最佳選擇。 

在硏發一些新的高質素的低電壓降穩壓器之前，了解電源抑制比和瞬態響 

應這兩個重要單位是不可缺少的一環。有關瞬態響應的報告在學術界中有很 

多，反而有關電源抑制比的深入討輪卻蓼寥可數°因此，在這論文中，首先探 

討的題目是電源抑制比的專題硏究，根據模擬電路計算出其傳遞函數，再引申 

當中極點和零點之位置及其影響，最後針對這些影響提出相對的改善方法。 

之後，論文會提出兩個提高低電壓降穩壓器性能的方案。第一個方案是爲 

了沒有輸出電容器的低電壓降穩壓器而設的，設計提供一個簡單的電路設計， 

及時提供額外電流予儀器，從而提高其瞬態響應°而第二個方案則爲連接輸出 

電容器的低電壓降穩壓器而提出的，其設計可令所需的輸出電容及其等效串聯 

電阻大大減少。這兩塊晶片都由CMOS 350 nm (互補式金屬-氧化層-半導體350 

納米）技術製成，由實驗結果證明其良好的瞬態響應。 
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Chapter 1 

Background of LDO Research 

Introduction 

Low-dropout regulator (LDO) is a type of linear regulator which features a small 

input-output differential voltage [l]-[16]. Its stable, low-noise, fast-transient 

properties under different input-voltage and loading conditions, as well as 

temperatures, undoubtedly, provide outstanding supply to many analogue and RF 

circuits and systems. Thus, LDO is widely applied in many portable applications 

such as cellular phones, PDA handsets, especially the wireless multimedia devices. 

1.1 Structure of a LDO 

Fig. 1.1 shows the structure of a generic LDO. It basically consists of an error 

amplifier, a voltage buffer, a power transistor (Mp), a feedback resistor network (Rri 

and RF2) and a voltage reference ( ¾ ^ ) . The input and output voltage are denoted by 

VjN and Vo，respectively, whereas Ri is used to model the load circuit. It is noted that 

CouT and RssR are the off-chip capacitor and its equivalent series resistance. Their 

function is to ensure the stability of the LDO based on dominant-pole frequency 

compensation with pole-zero cancellation. Moreover, Com is used to provide 

transient current to the load when the LDO cannot respond to instantaneous change 

of the load current or the input voltage. The function of the voltage buffer is to drive 

the large gate capacitor of Mp so that slew rate at this node can be improved. In 

addition, the low output impedance can help to improve the stability ofthe LDO. 
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Fig. 1.1 Structure of a generic LDO. 

1.2 Principle of Operation ofLDO 

The LDO structure shown in Fig. 1.1 reveals a feedback path [17]. The voltage 

regulation of Vo is therefore achieved by the feedback formed by the feedback 

network, the error amplifier, the voltage buffer and then the power transistor. The 

operation can be simply explained by the following example. 

When the load current or the supply voltage changes, the LDO cannot respond the 

change instantaneously. As a result, Vo may increase or decrease. Assuming that Vo 

increases, the effect will be detected by the feedback network and appears at the 

non-inverting input of the error amplifier. By comparing with 7 鹏 the output ofthe 

error amplifier is then increased and the signal is propagated to the gate of the Mp 

through the voltage buffer. The reduction of Vso ofMp causes the drain current being 

reduced so that less current is generated to the load and to charge the output capacitor. 

The resultant effect is that V�drops accordingly. Similarly, when Vo drops below the 

preset voltage, the feedback takes control of the gate voltage of Mp by increasing its 

VsG to provide more drain current to the load and CouT. This will make Vo increase to 

counter the effect. This mechanism repeats continuously to regulate Vo to a constant 

voltage. 
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1.3 Steady-State Specification ofLDO 

There are two specifications to measure the regulation ability of a LDO under the 

change ofthe input voltage and the loading current. They are line regulation and load 

regulation. The definition ofline regulation is given by [1] 

Line Regulation =气厂。 (1.1) 
^N 

The unit ofline regulation is mVA^. For load regulation, it is given by [1] 

. AVo “ ， 、 

Load Regulation 二 ~~— �丄丄) 

^0 

where h is the loading current of the LDO circuit. The unit of load regulation is 

mV/mA. In fact, the relationship between the line and load regulations and circuit 

parameters has been extensively investigated in recent decade. It is found that higher 

loop gain achieved by a high-gain error amplifier improves both specifications [2]. 

1.4 High-Frequency Specification of LDO 

Power supply rejection ratio (PSRR) is another important index to measure the 

ability of the LDO to suppress the noise from the input. The definition of PSRR is 

given by [15] 

P S R R = 2 ^ X o g ^ - ^ (1.3) 
^in{f) 

Although many researchers have realized the importance of the PSRR o fa LDO used 

for the future communication systems and they have proposed many effective LDO 

structures to reject high-frequency signal noise from the supply line, the 

fundamentals of the PSRR of a generic LDO has not been studied in detail. Therefore, 

PSRR is being analyzed in this thesis. 
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1.5 Dynamic Specification ofLDO 

In addition to steady-state and high-frequency specifications, dynamic specification 

such as load transient response is vital in LDO. Research focused on improving load 

transient response of a LDO has been extensively carried out in the past decade 

[l]-[14]. The researchers have been working hard to improve it for some LDO 

structures without and with the output capacitor. The main goal is to reduce the 

voltage spikes and shorten the recovery speed of the LDO output voltage. 

1.6 An Advanced LDO Structure 

Although the structure shown in Fig. 1.1 has been widely used for many years, it was 

found recently that a simpler LDO structure [14] based on flipped voltage follower 

[18], [19] can provide better performance. This structure is shown in Fig. 1.2. 

^ �� 
^ ~ | 厂。 

m 

1 ^ 

©
A ~~r~CouT / ^ ^ 

, ] T Q > 
I ^ ^RESR 

4=- Control l ^ i ^ 1藥 
transistor M^ y^ 

— — 

Fig. 1.2 Structure ofthe single-transistor-control LDO [14]. 

This circuit is regarded as single-transistor-control LDO which is suitable for SoC 

applications, and it has been analyzed by Man et. al. [14]. The LDO structure 
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basically consists o f t w o basic transistors, with one being the power transistor (Mp) 

and the other being the control transistor (Mc). The power stage based on flipped 

voltage follower senses the change of the LDO output at the source ofMc，which the 

signal is compared with VREF at the gate o fMc . An error voltage is then generated at 

its drain to change the gate voltage ofMp. Current via Mp is thus adjusted according 

to its source-to-gate voltage and regulates the LDO output. It is noted that this simple 

LDO structure needs a Fm-compensated voltage reference to cancel the effect by Mc. 

This structure has many drawbacks such as slew-rate limited at the gate of M? and 

inferior regulation ability. As a matter of fact, it is necessary to improve its 

performance by including some advanced circuit techniques which will be proposed 

in this thesis. 

1.7 Contribution and Outline ofthe Thesis 

Based on the foregoing background of LDO, it is known that the PSRR of a generic 

LDO has not been completely analyzed. Moreover, the transient response of the LDO 

structure, based on flipped voltage follower, without and with the output capacitor 

should be further improved by advanced circuit methods. Therefore, in this thesis, 

the contribution is focused on the following three aspects: 

1. Chapter 2: PSRR analysis of generic LDO 

2. Chapter 3: Improvement of the transient response of the LDO structure based on 

flipped voltage follower without the output capacitor 

3. Chapter 4: Improvement of the transient response of the LDO structure based on 

flipped voltage follower with the output capacitor 

The contributions of the research work are expected to be useful for future 

development of SoC applications [20]. 

Page 3 - 5 



References 

[1] G. A. Rincon-Mora and P. E. Allen, "A low-voltage, low quiescent current, low 
drop-out regulator," IEEEJ. Solid-State Circuits, vol. 33，no. 1，pp. 36-44，Jan. 
1998. 

[2] K. N. Leung and P. K. T. Mok, “A capacitor-free CMOS low-dropout regulator 
with damping-factor-control frequency compensation," IEEE J. Solid-State 
Circuits, vol. 38，no. 10，pp. 1691-1702，Oct. 2003. 

[3] C. K. Chava and J. Silva-Martinez, "A frequency compensation scheme for 
LDO voltage regulators," IEEE Trans. Circuits Syst. I，Reg. Papers, vol. 51，no. 
l , pp . 1041-1050,Jun. 2004. 

[4] P. Hazucha, T. Kamik, B. A. Bradley, C. Parsons, D. Finan and S. Borkar， 

"Area-efficient linear regulator with ultra-fast load regulation," IEEE J. 
Solid-State Circuits, vol. 40，no. 4，pp. 933-940, Apr. 2005. 

[5] S. K. Hoon, S. Chen, F. Maloberti, J. Chen and B. Aravind，"A low noise, high 
power supply rejection low dropout regulator for wireless system-on-chip 
applications," in Proc, Custom Integrated Circuits Conference, 2005, pp. 
759-762. 

[6] W.-J. Hung, S.-H. Lu and S.-L Liu, “CMOS low dropout linear regulator with 
single Miller capacitor," Electron. Lett., vol.42, no.4, pp. 216-217, Feb. 2006. 

[7] K. Wong and D. Evansm, "A 150mA low noise high PSRR low-dropout linear 
regulator in 0.13^im technology for RF SoC applications," in Proc. European 
Solid-State Circuits Conference, 2006, pp. 532-535. 

[8] L. G. Shen, Z. S. Yan, X. Zhang, Y. F. Zhao and T. J. Lu, "Designof 
low-voltage low-dropout regulator with wide-band high-PSR characteristic," in 
Proc. Int. Conf. Solid-State andIntegrated-Circuit Tech” 2006, pp. 1751-1753. 

[9] V. Gupta and G. A. Rinc6n-Mora, "A 5mA 0.6^im CMOS Miller-compensated 
LDO regulator with -27dB worst-case power-supply rejection using 60pF of 
on-chip capacitance," mIEEEInt. Solid-State Circuits Conf. Dig. Tech. Papers, 
2007, pp. 520-521. 

[10] S. K. Lau, P. K. T. Mok and K. N. Leung, "A low-dropout regulator for SoC 
with g-reduction," IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 658-664, 
Mar. 2007. 

‘[11] M. Al-Shyoukh, H. Lee and R. Perez, "A transient enhanced low-quiescent 
current low-dropout regulator with buffer impedance attenuation," IEEE J. 
Solid-State Circuits, vol. 42, no. 8, pp. 1732-1742，Aug. 2007. 

[12] T. Y. Man, P. K. T. Mok and M. Chan, “A high slew-rate push-pull output 
amplifier for low-quiescent current low-dropout regulators with 
transient-response improvement," IEEE Trans. Circuits Syst. II, Exp. Briefs, 
vol. 54，no. 9，pp. 755-759, Sep. 2007. 

[13] Y , H . Lam and W.-H. Ki, "A 0.9V 0.35um adaptively biased CMOS LDO 
regulator with fast transient response," in IEEE Int. Solid-State Circuits Conf. 
Dig. Tech. Papers, 2008，pp. 442-443 & 626. 

Page 3 - 6 



[14] T. Y. Man, K. N. Leung, C. Y. Leung, P. K. T. Mok and M. Chan, 
"Development of single-transistor-control LDO based on flipped voltage 
follower for SoC，，’ IEEE Trans. Circuits Syst. I，Reg. Papers, vol. 55, no. 5, pp. 
1392-1401,Jun. 2008. 

[15] H. Socheat and C. K. Pham, "Improvement of power supply rejection ratio of 
LDO deteriorated by reducing power consumption，，，in Proc. Int. Conf. IC 
Design & Tech., 2008，pp. 43-46. 

[16] M. El-Nozahi, A. Amer, J. Torres, K. Entesari and E. Sanchez-Sinencio, “A 
25mA 0.13^m CMOS LDO regulator with power-supply rejection better than 
-56dB up to lOMHz using a feedforward ripple-cancellation technique," in 
IEEEInt Solid-State Circuits Conf. Dig. Tech. Papers, 2009，pp. 300-301. 

[17] P. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of 
Analog Integrated Circuits, 4th ed., Wiley, 2001. 

[18] R. G. Carvajal, J. Ramirez-Angulo, A. J. L6pez-Martm, A. Torralba, J. A. G. 
Galan, A. Carlosena and F. M. Chavero, “The flipped voltage follower: A 
useful cell for low-voltage low-power circuit design," IEEE Trans. Circuits 
Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1276- 1291，Jul. 2005. 

[19] J. Ramirez-Angulo, R. G. Carvajal, J. A. Galan and A. L6pez-Martm, “A free 
but efficient low-voltage class-AB two-stage operational amplifier," IEEE 
Trans. Circuits Syst, II, Exp. Briefs, vol. 53, no. 7，pp. 568-571，Jul. 2006. 

[20] D. D. Buss, "Technology in the internet age," in IEEE Int. Solid-State Circuits 
Conf. Dig. Tech. Papers, 2002，pp. 18-21. 

Page 3 - 7 



Chapter 2 

PSRR Analysis 

Introduction 

Integrated power management is a promising approach to optimize function-rich SoC 

designs. The concept of integrated power management is to provide on-chip, locally 

optimized supply to power the system sub-blocks individually so that system 

performance can be enhanced and system power consumption can also be minimized 

simultaneously [1]. In the integrated power-management part, LDO is one of the 

power converters widely used for the analogue and RF parts o f a SoC design, since it 

can provide low-noise, high-precision and ripple-free supply voltage [2]-[8]. 

Meanwhile, LDO is a good post-regulator as it can suppress high-frequency noise 

propagating from the supply lines through the LDO. Power-supply rejection ratio 

(PSRR) is used to measure the ability of signal suppression ofaLDO，which is given 

by 

PSRR = 2 0 1 o g ^ 4 ^ (2.1) 
^iAf) 

where vtnif) and Vo(J) are the input signal and the output signal, respectively. The 

frequency range of interest was from DC to around 100 kHz in ten years ago due to 

the fact that the signal bandwidth of the former communication standard is not high. 

However, with rapid development of the communication standard, the signal 

bandwidth is being increased dramatically. One example is Worldwide 

Interoperability for Microwave Access (WiMAX). The signal bandwidth ofWiMAX 

is scalable under different transmission conditions, ranging from 1.25 MHz to 28 
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MHz [9]，[10]. As a result, when there is noise signal ranging from DC to 28 MHz 

appearing at the supply line，it must be suppressed by the supply-rejection property 

o f a L D O . Otherwise, the noise signal will propagate into the communication circuits 

and is being up-converted to the frequency band of the communication standard (e.g. 

2.3 GHz to 3.8 GHz for the WiMAX standard). The signal-to-noise ratio of the 

communication system will then be degraded seriously. For the above-mentioned 

application, it is known that the PSRR up to 28 MHz or even higher becomes very 

important for the future communication standards. 

Although many researchers have realized the importance of the PSRR of a LDO 

used for the future communication systems and they have proposed many effective 

LDO structures to reject the high-frequency signal noise from the supply line (e.g. in 

[8]，a LDO with PSRR of -56 dB at 10 MHz was reported), the fundamentals of the 

PSRR of a generic LDO has not been studied in detail. Typical understanding is to 

use cascode structure or NMOSFET power transistor to provide better isolation 

between the supply line and the output of the LDO. Some mentioned the importance 

o f the loop bandwidth but did not discuss how much loop bandwidth is required to 

improve the PSRR up to a particular frequency range. Certainly, the material and 

quality of the off-chip output capacitor would affect the value of the equivalent series 

resistance (ESR), which is another key factor affecting PSRR at high frequency. 

In fact, it is very important to understand the relationship between the circuit 

parameters and the PSRR o f L D O so that the key design concepts can be extracted, 

before stepping further to develop more sophisticated LDO structures. Therefore, this 

chapter presents the circuit modeling of a LDO to investigate the PSRR in Section 

2.1. Based on the modeling, the transfer function of PSRR is found and the poles and 

zeros are obtained for a detailed analysis. In Section 2.2, the circuit modeling is then 
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verified by a real LDO circuit operating in different conditions. By investigating the 

locations of the poles and zeros, some design recommendations to improve the PSRR 

are made and presented. Finally, the conclusion of this chapter summarizes the 

design recommendations to improve the PSRR of a generic LDO. 

2.1 Modeling ofthe PSRR ofLDO 

The LDO structure under PSRR test is shown in Fig. 2.1(a), and the corresponding 

small-signal circuit is illustrated in Fig. 2.1(b). 
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Fig. 2.1 LDO under PSRR test (a) structure (b) small-signal circuit. 
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1. AEA(s) = GmEARoEA/(l + sCoEARoEA) is the ttansfcr function of the error amplifier, 

where GmEA and RoEA are the transconductance and the equivalent output 

resistance of the error amplifier, respectively. Moreover, CoEA is the equivalent 

output capacitance ofthe error amplifier. 

2. gmb and rob are the transconductance and the output resistance of the voltage 

buffer, where Vob » X!gmb. 

3. Cgs, Cgb, Cgd and Q , refer to the parasitic capacitances of the power PMOS 

transistor. 

4. CouT is much larger than the parasitic capacitances in the LDO. 

5. The gain of the power transistor is negative and is equal to gmpTop, where gmp and 

rop are the transconductance and output resistance of the power transistor in 

saturation region. 

6. RESR is the ESR of the off-chip capacitor of the LDO. 

7. p = Rnl{RFX + Rn) is the feedback factor. 

8. The supply signal through the voltage reference, error amplifier and voltage 

buffer are neglected without losing accuracy as a simple i^C-filter formed by RLF 

and CiF can be added to suppress the signal injection successfully. The IR drop 

across the added i?C-filter can be ignored since the bias currents of the voltage 

reference, error amplifier and voltage buffer (i.e. Im hA and Ivs) are in 

micro-amperes. 

From Fig. 2.1(b), the transfer function ofPSRR is given by 

/ \ ( \ ( \ ( \ 

� , 1 + 4 + 丄 1 + 丄 1 +丄 
^.(^) V ZESjiX ZiA z^A z , J (2.2) 

^ [1 + 丄 1 1 + 丄 + 4、 
V PESR)�QPo Po) 
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where 乂 仏 = ~ ~ “ � � is the low-frequency PSRR. From the transfer 
^EA Smb ,ob /¾ mp ̂ op 

function, there are four zeros given by 

zi = ~ ~ i ~ (2.3a) 
^OEA^OEA 

Z = ^ + Srnpfpp (2.3b) 
2 [ C ^ + C ^ + C g / l + g . / op )h , 

Cgs + Cgb + Cĝ {y + gmp̂ op) (2.3c) 
�二 [Q(C,,+Cgb+C^.)+Cgd(Cgs+c,,)K, 

z _ = ~ - ~ (2.3d) 
b,oK ^ p 

^OUT^ESR 

and a pair of complex poles, as well as a pole given by 

_ m̂EASmbSmpP̂ ESR (2 4a) 
A = # ^ + C ^ + C - ) C ^ . 

^ 一 ^EASmbSrnpP^ESR^OEA^OEA (2 朴） 

i “ “ C , + C^ + C g , " “ “ • 

P _ = 7 ^ V (2.4c) 

^OUT^ESR 

It is found that the pole and zero created by Cour and RssR cancel each other. Since 

there is no Com term in the expressions of the poles and zeros other than pssR and 

ZESR, it can be concluded that Com is not a factor affecting the PSRR. This is based 

-on an assumption that Com is larger than all parasitic capacitances in the circuit, 
which is always valid. 

Based on equations, the typical PSRR plot is obtained and shown in Fig. 2.2. It is 

noted that the transfer function shown in (2.2) is accurate up to the frequency 0fz3. 

In fact, it is hard to perform accurate analysis in the frequency domain after z3 due to 

the complicated relationship interacted by the parasitic capacitances of the power 
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transistor and the control circuit. Therefore, the study of the PSRR of a LDO 

presented in this chapter is focused up to the frequency of z3 only (i.e. the shaded 

region in Fig. 2.2)，but it is sufficient for general wireless communication 

applications with signal bandwidth of about 10 MHz to 30 MHz. In the next section, 

detailed analysis of the PSRR of a LDO with different design parameters such as 

[ 
I RoEA, AEA, RESR and h will be given. !• ̂ 
f PSRR 

frequency 
OdB — - - ^ p ^ 

^ ^ 
Po / 

%^jJ 
/ 
广：， I � 

/ 
PESR J 
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Fig. 2.2 Typical plot of PSRR vs. frequency of a generic LDO. 

2.2 Analysis ofLDO Circuit Using Proposed Modeling 

In order to have a more realistic picture of the analysis, a circuit in the transistor level 

is used to verify and make conclusions of the analysis. The circuit implementation of 

. the LDO under the PSRR test is illustrated in Fig. 2.3. The error amplifier and the 

voltage buffer are formed by MAi-MA9 and Meo-MBi, respectively. The error 

amplifier is a current-mirror amplifier with a wide output swing. The voltage buffer 

is a source follower implemented by a PMOS transistor only with the bulk terminal 

connected to its source terminal to avoid signal injection from the supply via the bulk 

terminal. Moreover, the simulated signal injection is from an AC voltage source, v,>„ 
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so that the connection allows signal-injection-free voltage supplied to the error 

amplifier and the voltage buffer, and provides signal injection to the power transistor 

MpT simultaneously. The LDO circuit is simulated using the BSIM3v3 models of 

austriamicrosystems (AMS) CMOS 0.35-^m technology (with Vm = 3.3 V，Vo = 3 V， 

Io = 100 mA, CouT= 10 ^F and RssR = 0.1 ^ ) to investigate the effects on the PSRR 

ofthe LDO under several conditions such as different RoEA, AsA, Rs and Io-

V. 
^in 

r~i ：] r -rr<5H 
^5hr^ ^ M̂&o HP 

~~ L_H \^ , __/ MpT y 
——MjH~"^^ 1& ——p^ 

0 W K , ^ K 2 ^ 1 ' ' “ � R , M 〔 丄 

( | T J L .^ri. V 3 i 1 

“ ^ h ^ l ^ A 4 M A — h ^ ^ 知 , R , S ^ 

Fig. 2.3 A generic LDO used to investigate PSRR. 

A. Impact ofRoEA towards PSRR 

From (2.3a) and (2.4b), the value ofRoEA would affect the position ofzi as well as the 

g.factor of po. Certainly, the value of AiF also closely relates to it. Based on this 

observation, some simulations with different RoEA are carried out. The approach to 

. change RoEA is to have more parallel-connected transistors to MA7 and MA9 so that the 

bias current can be increased. According to the well-known relationship between the 
output resistance of a transistor (r^) and drain current {h) given by r̂  oc ( / J ^，it is 

found that RoEA can be altered by this approach. Certainly, the value of CoM will be 

changed as well, but it is less than the gate capacitance of Msi in general situations 

and so the change can be neglected. 
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According to (2.3a) and (2.4b)，when RoEA is small, zi will be increased and shifted 

to higher frequency. The location of p�will remain nearly unchanged, but with a 

smaller g-factor which means that the sharpness of the frequency peak is reduced. It 

is noted that the effects to the g-factor of p � b y RoEA are not strong due to the 

square-root relationship. 

The simulation result with two different RoEA is shown in Fig. 2.4. The change of 

RoEA is from 15.8 MQ to 6.3 MQ. A smaller RoEA results in degraded AiF. z\ locating 

at higher frequency, and the reduced sharpness of the frequency peak, while p�is 

located at about the same frequency. The results match with the said theory well. 

0| 1 1 1 1 ŷ̂  
: Laî erRoEA : ： / 

- i 。 一 - r — T 、 — 一 � Y � — -

| + _ + — _ _ 靜 十 . — 

•40 ： 1--- /K："--' ； 
I r - ^ Smaller Roe>v ： 
i r^^""^ I I I 
I I 1 f ‘ 

-50̂  ^ ^^ ^ ^ ^' 10" 
Frequency 

Fig. 2.4 PSRR with two different RoEA. 

From the study, as well as the simulation, it is found that a higher RoEA undoubtedly 

provides a better PSRR at low frequency. However, the PSRR in the moderate 

frequency range (i.e. at about 1 MHz) is seriously degraded. In fact, from the 

simulation result, RoEA does not cause a significant impact for gaining a better PSRR. 

Three critical parameters concerning PSRR will be discussed in the next sub-sections. 
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B. Relationship between PSRR and AsA 

After the study ofRoEA which is a parameter related to the error amplifier, the gain of 

the error amplifier is studied. To investigate the impact of the gain oferror amplifier 

to the PSRR, one of the methods is to change the output voltage level of the error 

amplifier. Since Vso of Mpi is fixed for a fixed output current, the change can be 

made by different Vso o fMsi . Therefore, different bias current applied to Msi can be 

used to study this phenomenon. 

When the output voltage ofthe error amplifier is in the middle ofthe supply voltage, 

AsA should be the highest since both MA7 and MA9 can have a large Vns 

simultaneously. However, when Vso ofMsi increases, MA7 will have smaller Vos and 

so its conductance is increased. As a result, AgA is decreased and this increases AiF-

The increased ALF means the output ofthe LDO is more sensible to the change ofthe 

input voltage (i.e. the worse PSRR). As a result, AsA is preferred to be large for 

getting a better PSRR from low to moderate frequency, which can be verified by the 

simulation results shown in Fig. 2.5. 
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Fig. 2.5 PSRR under two different^^^. 

Page 3 - 9 



C. Influence ofPSRR under different RssR 

In this sub-section, the effect ofthe off-chip capacitor is studied. It is stated in Section 

2.1 that both pssR and ZESR cancel each other. As a result, the Com term does not 

appear in (2.2). However, the RESR term seriously affect the PSRR, especially at high 

frequency. 

Refer to (2.4a) and (2.4b), a larger RssR would cause po to higher frequency with a 

larger Q. This can be ascertained from the simulation result shown in Fig. 2.6. The 

curve with RssR of 0.3 Q does have a sharper peak locating at higher frequency, when 

compared to that with a smaller RssR of O . i a Although a larger RssR benefits from 

pushing the complex poles to higher frequency, the larger 0-factor would cause a 

serious degradation in the PSRR ofthe LDO. Therefore, g-factor should have a high 

priority over the location of p�when choosing the RESR. In that case, a smaller RESR 

would be more favorable in obtaining a better PSRR. In addition to the smaller 

e-factor, smaller ResR also demonstrated a better PSRR in the moderate to high 

frequency region. 
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Fig. 2.6 PSRR under two different RESR. 
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D. Characteristic ofPSRR under different Io 

Finally, the effect due to the power transistor is investigated. At low frequency, the 

impedance of the power transistor is extensively improved by the feedback loop. 

Therefore, the output voltage of a LDO is well-regulated. However, at moderate 

frequency, the feedback loop is no longer effective due to the finite loop bandwidth. It 

is not hard to understand that the high-frequency conductance of the power transistor 

is a dominant factor to affect the PSRR in the moderate frequency range. Since the 

size of the power transistor is determined by the maximum output current and IC 

technology，the output current alters the high-frequency conductance of the power 

transistor. From (2.4a) and (2.4b), when h decreases and gmp is decreased, p�will be 

shifted to a lower frequency than zi, with a smaller Q to give a better PSRR. 

The PSRR of the LDO at h = 0 A, 1 mA, 10 mA and 100 mA are simulated with 

results shown in Fig. 2.7. The worst PSRR happens at the maximum loading current, 

whereas the best case is at minimum loading current. When investigating PSRR of a 

LDO, the maximum loading case should be considered for the worst-case analysis. 
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Fig. 2.7 PSRR under different h , 
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2.3 Conclusion of Chapter 

The PSRR o f a generic LDO has been analyzed in this chapter. The poles and zeros of 

the LDO have been investigated from the transfer function of the proposed modeling. 

In addition, several design parameters affecting the PSRR have been studied in detail. 

The conclusions made are 

1. A higher RoEA undoubtedly provides a better PSRR at low frequency. However, 

the PSRR in the moderate frequency range is degraded seriously. 

2. AsA and RESR take a significant role on improving the PSRR. A larger AsA could 

gain a better PSRR at low to moderate frequency, while a smaller RssR could 

achieve PSRR enhancement at moderate to high frequency. 

Finally, the worst PSRR happens at maximum Io. 
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Chapter 3̂  

An Output-Capacitorless LDO with 
Direct Voltage-Spike Detection 
Introduction 

Transient response is a critical dynamic specification in LDO design. Both the 

amplitude o f the voltage spike and the recovery time of the regulated output voltage 

affect its overall accuracy, which indirectly impacts the performance o f the circuits 

supplied by the LDO. In fact, the transient response of a LDO is related to different 

design parameters such as the closed-loop stability, the loop bandwidth (BWi) and 

the slew rate at the gate of the power transistor (SRo) [l]-[5]. The closed-loop 

stability and BWi are small-signal parameters related to the positions of the poles and 

the zeros in the feedback system, while SRo is a large-signal parameter that depends 

heavily on the magnitude o f t h e bias current [6]. Undoubtedly, typical measures to 

optimize the transient response o f a L D O are to increase the output capacitance, use a 

low ESR capacitor, and increase the bias current of the error amplifier/voltage buffer 

[1]. However, in the SoC design, it is expected to place an on-chip 

output-capacitorless LDO adjacent to individual circuit blocks, so that the power 

supply of each circuit block can be optimized independently (i.e. accuracy, 

magnitude, power-supply rejection and noise) to improve the overall performance of 

the system [7]. The regulated power supplies are generated inside the SoC chip. 

Under this circumstance, in the SoC design, the generic approach using external 

capacitors is no longer useful to effectively reduce the voltage spike due to the 

J The material presented in this chapter has been published in ffiEE Joumal of Solid-State Circuits: 
"An output-capacitorless low-dropout regulator with direct voltage-spike detection" in Feb. 2010. 
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non-zero bondwire inductance and the long power-line routings (i.e. RC delay). 

Therefore, more power is needed to increase both BWi and SRo of the LDO to 

suppress the voltage spike and reduce the recovery time. 

Fig. 3.1 shows one reported LDO structure used in [8]-[10] to enable output 

capacitorless LDO. The LDO structure is basically based on the flipped voltage 

follower [11], which is a modified structure o f the super source follower [6]. Vm is 

the unregulated input voltage of the LDO. Mp is the power transistor,while Mci and 

Mc2 form a folded error amplifier in the common-gate configuration [10]. The source 

ofMci detects the LDO output for comparing with a control voltage (VsET) defined at 

the gate o fMc i . An error signal is then generated at the gate of the power transistor 

to achieve closed-loop voltage regulation by the negative feedback. The output 

impedance o f the LDO is reduced drastically by the loop gain of the shunt feedback 

[6]. Since there is no large output capacitor in an output-capacitorless LDO, the shunt 

feedback can push the pole created at the LDO output away from BWi [10]. 

Generally, BWi is wide, as the dominant pole is a function of the gate capacitance of 

the power transistor (C-)，which is much smaller than the value of the output 

capacitance typically in the order of ^F [8]-[10]. Thus, the transient response of the 

LDO shown in Fig. 3.1 is dominated by the SRc limit. 
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Fig. 3• 1 An output-capacitorless LDO reported in [8]-[l0]. 
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There are several reported approaches to solve the problem, and the relationship 

between the output current and the quiescent current is shown in Fig. 3.2. 
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Fig 3 2 Relationship between the output current and the quiescent current of the 
LDO (a) constant biasing [8] (b) dynamic biasing [9] (c) current-efficient current 
buffer [1], [12]. 

Hazucha et al. proposed to use heavy bias current of 6 mA, where the bias current is 

• independent of the output current as shown in Fig. 3.2(a)，and connect a 600-pF 

on-chip output capacitor to their LDO, implemented in CMOS 90-nm technology, to 

deliver a maximum output current of 100 mA [8]. However, this approach is not 

always applicable to the power-saving, chip-area-limited SoC designs implemented 

in inexpensive technologies. In [9]，Man et al reported to use dynamic biasing, so 

more bias current is used only at the transient instant when the output current is 
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changed, as shown in Fig. 3.2(b). The error amplifier has a push-pull output stage to 

inject and withdraw more current for charging and discharging Cpar during the 

transient instant. The push-pull output stage is activated by a differential-input 

common-gate amplifier. This approach enables higher bias current to solve the 

SRo-limit problem. However, the differential common-gate amplifier has limited 

input common-mode range and, most importantly, limited bandwidth. The fast 

changing voltage spike cannot be detected effectively by the differential 

common-gate amplifier. As a result, more power applied to the amplifier is needed in 

order to achieve significant improvement of the transient response. In addition, this 

approach is not applicable when V � i s a small value. This situation happens when 

providing an adaptive supply for a power-saving SoC design. Another approach is to 

increase the bias current according to the magnitude of the output current [1], [12], as 

shown in Fig. 3.2(c). This method is not as good as the adaptive-biasing technique 

reported in [9], as the bias current remains high in the steady state when the output 

current does not reach the minimum. 

According to the brief review, it is obvious that the extra bias current is only 

needed during the transient instant to solve the SRo-limit problem. It is not necessary 

to keep the bias current high in the steady state. The adaptive biasing technique 

reported in [9] enables this important advantage, but it suffers from the slow 

response and the limited input range of the differential common-gate input stage. To 

solve this problem, a simple and effective voltage-spike detection circuit applied to 

the LDO structure shown in Fig. 3.1 is proposed in this chapter. The proposed 

voltage-spike detection is based on capacitive coupling. The detection circuit makes 

use of the rapid transient voltage at the LDO output to increase the bias current 

momentarily. Hence, the transient response of the LDO can be significantly 
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enhanced due to the improvement of SRo. Moreover, the small-signal response is 

also improved by the capacitive-coupling feature. 

In this chapter, Section 3.1 presents the small-signal and large-signal responses of 

the output-capacitorless LDO. Section 3.2 introduces the proposed voltage-spike 

detection circuit and its design details [13]. Experimental results are presented in 

Section 3.3. Finally, the conclusion of this chapter is given. 

3.1 Analysis of Output-Capacitorless LDO 

Referring to the output-capacitorless LDO shown in Fig. 3.1，when the output current 

of the LDO (Io) suddenly increases (or decreases), the LDO cannot respond to the 

change for decreasing (or increasing) the gate voltage ofMp to increase (or decrease) 

its drain current instantaneously due to the finite BWi o f the LDO [l]-[5]. When the 

LDO is able to respond, the decrease (or increase) of the gate voltage o fMp is then 

constrained by the limited S R � . Since an output-capacitorless LDO does not have a 

large off-chip output capacitor to provide charges to the load circuit (or accept the 

excess current from Mp) at the transient instant, Vo drops (or increases) dramatically 

and a large voltage spike is generated. 

In fact, the closed-loop small-signal response of the output-capacitorless LDO is 

mainly determined by Mci, since AFo changes its Vso to generate a small-signal 

• current for voltage regulation. As a result, the transconductance of Mci should be 

large in order to improve the small-signal response. This implies that more power is 

needed to apply to the LDO to achieve faster small-signal response. 

The output-capacitorless LDO undergoes large-signal response when there is rapid 

and large change o f / o . Fig. 3.3(a) and (b) shows the large-signal responses o f the 

LDO when 1 � s u d d e n l y increases and decreases, respectively. When h rapidly 
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increases, the LDO cannot change VsG ofMp instantaneously to provide current due 

to the large Cpar, and this situation causes V�to drop. The drop of Vo reduces Vso of 

Mci, and it causes Mci to cut offmomentarily. Thus, hiAs2 _ hiASi is the discharging 

current of Cpar. 

Similarly, when h suddenly decreases, the LDO cannot reduce Vso of Mp 

immediately and it makes V�rise. The increase of Vo causes the drain voltage ofMci 

to increase due to the property of the common-gate amplifier. Since the source 

terminal 0fMc2 has low resistance (~1/彻)，the increase o f the drain voltage ofMci 

is nearly the same as the increase of V � . This causes Mc2 to cut off momentarily. 

Therefore, the charging current of Cpar is hiASi. 

(^画 J~~^^-
Mp — 

J O n - c t t=>̂ o 
r f ^ 4 l ^ ^ J i ^ 
- ^ ¾ ^ " 

^^^BiAs2 

(a) 

(^W J ~ ~ ^ � -
l ^ z 7 r d Mp 1 
“ . . . . | ^ c OVo 

j—ii Mc. -^p^'- L_H|__ 

- t ^ r f | -
^^hiAs2 

(b) 

Fig. 3.3 Large-signal response of the output-capacitorless LDO (a) undershoot (b) 
overshoot. 
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From the above analysis, both hiASi and hiAs2 determine SRo. Higher bias current 

does enhance the transient response of the LDO, but this approach consumes 

unnecessary power since there is no charge/discharge mechanism of Cpar in the 

steady state. Moreover, the discharging current of Cpar is hiAs2 — husi. Therefore, the 

discharging capability of Cpar cannot be fully utilized by solely increasing hiAs2. 

Finally, the transistor size ofMp is very critical, since it determines the value ofCpar 

or, in another point of view, the required amount of the bias current to solve the 

SRo'limit problem. In 1-V or even sub-lV operation without low threshold-voltage 

devices, a larger transistor size is needed to compensate the low Vm (the maximum 

allowable Vso ofMp) for delivering a large h, Low and steady quiescent currentis 

not possible to achieve fast transient response of the sub-l-V LDO since Cpar is 

extremely large. 

3.2 LDO with Proposed Voltage-Spike Detection Circuit [13] 

The proposed voltage-spike detection circuit will be introduced in this section. The 

design and operation of the LDO with the proposed circuit will be discussed in detail. 

A. Structure and principle of operation of the proposed voltage-spike detection 

circuit 

Fig. 3.4 illustrates the concept of the proposed direct voltage-spike detection circuit. 

The main idea of the circuit is to momentarily increase the bias current of the control 

circuit of the LDO when voltage spikes appear at the LDO output in order to 

overcome the problem of the SRo limit due to the large Cpar of Mp. The circuit, in 

fact, is a simple current mirror formed by Mi and M2，where h and h are the input 

current and the output current of the current mirror, respectively. The major 
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modification to this current mirror is the addition of two passive components, Ri and 

Ci [14]. The voltage source VpuisE is used to demonstrate the voltage spike for 

investigating the effect to the change of I2. 

~~~" 鬥 VpULSE 1 , 2~ 
p i C J f ^ 

^PULSEji J \~~~fAV 

冲 空 = L c . 卜 H ： ‘ 

：71 I J ' b ^ 
Mi�b^~NAAA~V^M2 / y — p + r ^ 

一 VQS1 1 ： 1 ^GS2- 一 time 

Fig. 3.4 Current mirror with high-pass i^C-network to momentarily increase the bias 
current. 

In the steady state, Vp_ remains constant, and so Vos2 is defined by Vosi to give 

/2 二 h. However, as shown by the timing diagrams in Fig. 3.3, when the amplitude of 

VpuLSE changes from low to high (AF) instantaneously, the rapid voltage change of 

VpuLSE is coupled to the gate of M2 directly due to the high-pass property of C；. In 

addition, Ri is chosen to be large for better isolation between Mi and M2 during the 

change of VpuLSE. As a result, when Ci is chosen to be larger than Cgsi + Cgs2, the 

gate voltage 0fM2 is dominated by the coupled signal from Ci in this instant, instead 

of the DC voltage provided by Ri. Thus, Vos2 is increased momentarily to increase h. 

The extra current (A/2) can be found from 

/2+A/2=^^.ff] '{V,s2^^V-V,J 
2 V ^ JMi (3.1) 

= t ^ . p l . [{V,S2 - V,Hy + AV' + 2AV{V,S2 - VrH) 
2 V L )M2 

From (3.1)，the magnitude of A/2 is extracted and is given by 
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From (3.2), it is found that a larger W/L aspect ratio o f t h e current mirror helps to 

increase M2 for injecting more transient current. When VpuLSE stays at a constant 

voltage level (i.e. the steady state), Q is open-circuited and Ri dominates. Thus, Vcs2 

is defined by Vosi in the steady state to make h = h once again. Similarly, when 

VpVLSE changes from high to low, the rapid AV is coupled through Cj to the gate of 

M2 and the coupled voltage signal decreases Vos2 to generate a smaller h . From the 

above analysis, the proposed direct voltage-spike detection circuit can provide auto 
shutdown of the bias-current boosting. 

Finally, the coupling effect is independent of the DC value (but is limited by the 

breakdown voltage o f the transistors) of VpuiSE (Curves 1 and 2 in Fig. 3.4) due to 

the high-pass characteristic of the capacitor. Therefore, the proposed detection 

method is suitable for detecting any output voltage level of the LDO. 

B. LDO with the proposed voltage-spike detection circuit 

The LDO presented in this chapter is formed by the proposed voltage-spike 

detection circuit, a bias-current generator and a control-voltage generator [10]. Their 

circuit implementations are shown in Fig. 3.5. Fig. 3.5(a) shows the modified LDO 

structure based on the LDO shown in Fig. 3.1. MuPi, MuP2 and Mups provide husi to 

• the LDO shown in Fig. 3.1, while MoNi, MoN2 and MoN3 give hiAs2. The coupling 

capacitors, Cup and Cm, as well as two resistors, Rup and RDN, are included to the 

LDO to form the proposed voltage-spike detection circuit illustrated in Fig. 3.4. One 

of the two terminals of both Cup and Cm are connected to V � t o achieve direct 

detection of the voltage spikes created at the transient instant. Moreover, the voltage 

source VsET is generated by the control-voltage generation circuit in Fig. 3.5(c). 
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M̂ H—1̂ 1 ~~~̂  ^ � � 
n F ^ r V ~ Mp 二 Vo 
^UP _ ~~ pi( 

VBIAS,UP 0~7W~rH MuPl jH|i^^' , t ~"^ 
c w = ^ ^ ~ � - 4 n ? 3 L 

T 甚 (^VsET 
Czw = ̂ """"；^；^>__ 

^DN |<J 
^BIAS. DN 0~^7W^~~|[^DN1 2/應 

I 1 + 

MoN2 M — D̂N3 
1̂  ^ 
^ (a) ‘ 

VlN 

L_̂ j 
MoNO — ^“^ ^BIAS,DN 

,>""J OVo 

^B^ ^BIAS 
1 r 

L_| MB^ii 
Mupo Ly VBMs,up 

p<H f<H 
丁 < ^ 

— 二 . ~ 

(b) 

M^\~Hr^A2 M̂3 h /<K T, 
�VREP ^M H M { ^ Vjj, 

x , _ ^ _ : r X 

VsET 0 ^ | ^ c 3 H & 4 M ^ r 
(connect “ “ ^<J>^ _ 
toMci) ~ " ^ w ~ x r 

w ® _ i ^ - Q ) 2 W 

(C) 

Fig. 3.5 Full circuit diagram of the LDO with the proposed voltage-spike detection 
circuit (a) LDO core (b) bias-current generator (c) control-voltage generator. 

Page 3 - 10 



The bias-current generator shown in Fig. 3.5(b) provides two bias voltages, VBiAS,up 

and VBiAS,DN. To make the bias-current generator independent of the supply voltage, 

the regulated output voltage o f the LDO is used for the bias-current generation. As 

shown in Fig. 3.5(b)，hiAS is formed by RB, Me and V � , so that hiAS = (Vo — VsG,B)/RB 

where Vso,B is the source-to-gate voltage of Me- Since Vo is regulated, IsMS is 

supply-independent as VsG.B is a constant when hus is once defined. A decoupling 

capacitor ( Q ) is used to stabilize hiAS. The accuracy of C^ is not important. It is 2 pF 

only in this design, as the value ofhiAS is small and is about 1 ^iA in the LDO design. 

The control-voltage generator shown in Fig. 3.5(c) is basically an amplifier with 

negative feedback. It occupies nearly the same chip area as the error amplifier inside 

a generic LDO. A temperature- and supply-independent reference voltage (VREF) is 

provided by a voltage-reference circuit. The source-to-gate voltage ofMci (Vsaci) is 

connected at the output of the LDO, so that Vo 二 VsET + VsG,ci. Since VsET=厂縦一 

VsG,cs where VsG,cs is the source-to-gate voltage 0fMc3, VsG,ci 二 Vsac3 is needed to 

achieve Vo ==厂夢 As a result, the transistor sizes o fMci and Mc3 are the same and 

the current flowing through Mci and Mc3 are designed to be hiAS. 

C. Principle ofoperation ofthe LDO with proposed voltage-spike detection circuit 

This section includes the small-signal and large-signal analysis, as well as the 

design details of the LDO with the proposed voltage-spike detection circuit. 

C.1. Small-signal response 

For the output-capacitorless LDO with the proposed voltage-spike detection circuit 

shown in Fig. 3.5，the insertion of Cup and CoN (high-pass components) provides two 

quick paths and skip Mci (a low-pass and bandwidth-limited component) to detect 

^Vo. The drop (or increase) of Vo is detected by Cup to decrease (or increase) the 
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gate voltage ofMupi and subsequently decrease (or increase) the gate voltage ofMp 

through the signal path formed by MuP2 and MuP3. Similarly，Cm also senses the 

drop (or increase) of Vo to decrease (or increase) the gate voltage ofMoNi and finally 

decreases (or increase) the gate voltage o fMp via the signal path formed by McN2, 

MDN3 and Mci-

The selection of the values of CuP and Czw，as well as Rup and RnN can be done by 

investigating their comer frequencies and BWi o f the LDO. Fig. 3.6 shows a simple 

figure to illustrate the relationship. Since 5 ^ o f t h e LDO is low-pass and limited 

while CuP & Rw and Q w & RDN are high-pass with the comer frequencies equal to 

HCupRup and \ICmRDN, it is designed to make the comer frequencies lower than 

BWi. This approach does virtually extend the loop-bandwidth of the LDO, and it 

makes sure that either the LDO itselfor the proposed voltage-spike detection circuit 

responds to the small-signal changes of V � . The typical BWi of a LDO with 100-mA 

output capability is about 200 kHz to 1 MHz [l]-[5]. Assuming the comer frequency 

is set to be 100 kHz, the required Cup (Cm) and Rup {RnN) are 3 pF and 530 kQ, 

respectively. The accuracy and the matching o f the values are not important, and so 

Cup and CDN are implemented by poly-poly capacitor. They can be implemented by 

MOS capacitors to reduce chip area in triple-well technologies. Rup and RnN can be 

implemented by MOSFET or NWELL-resistor to reduce the chip area. 

^ LDO loop bandwidth ^ 

‘ overlapping 
+ • 

p»i£ ;̂.,v.' ‘序乂二？ -̂  ')�“‘ ‘？ “‘ ‘ : i | Frequency^ 
FiEffiGS^， ‘ jfe>:;k^w^L>^:i::^i ^ i ^ 

“ . “ voltage-spike detection ‘ - ^ • " • " • " " " • • " " " " " “ ^ 
VRupCuP, yRmfDN infinity 

Fig. 3.6 Frequency range of operation of the LDO and the proposed voltage-spike 
detection circuit. 
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C.2. Large-signal response 

The large-signal response is illustrated in Fig. 3.7, and the corresponding transient 

responses of the drain current 0fMup3 and Mm3 are shown in Fig. 3.8. 

I i ^^ 
:…•̂： ：丨（。 {十） V m 

MuP2j: t i[MuP3 1 ^ ^ IN 
* - ~ p Mp ~ 

Rup ~ ~ ^ \—~~ 

VBIAS,UP 0~WV^"^I Mupi JCHiii^^^X^^" t pP^^ 

。 - ^ “ 力 ！ ^ 魯 ^ 了 

c-=̂ "̂"""̂ r̂̂ "̂->- — 
^DN 1^ 

^BIAS, DN 0~暑^~ ~~|p^DNl Ijj^. 
1 r 

I 
M̂ N2 M _̂ DN3 1̂  ^ 

二 (a) -

Mb| dups l '"j"““^ � 

R P^ 3 ¾ Mp ^ J \ _ 
^UP __ [ ^ "•“ r^ 

VBIAS,UP 0 ~ M ~ H Mupi ^H|Mc2^C^,, t ~LJ Vo 
。 " 1 " 受 1 ^ 凌 , , ， 
C D J v Z r ^ " ^ ^ ^ ： 

^DN ：；<-： 

^BIAS, DN 0~WV^~I;,..MDN1 
• 

MoN2" H D̂N3 
, ^ . _ J * t""W^. 

. - (b) 一 

Fig. 3.7 Principle of operation of the proposed voltage-spike detection circuit (a) 
undershoot (b) overshoot. 

In Fig. 3.7(a)，when Io increases suddenly, Vo drops rapidly. The change is then 

sensed by Cup and Cm，and is coupled to the gates of MuPi and MoNi. Due to 

coupling effect of Cup, Vos of MuPi decreases, and thus the current of Mup3 is 
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reduced. At the same time，CuN passes the change to the gate of Mmi . It leads to a 

drastically and momentarily increase of Vso ofMoNi to make hN increase. Therefore, 

a push-pull output stage is formed by MuPS and MoN3 to discharge Cpar^ When Vo is 

regulated back to the nominal value, the bias condition of the circuit retums to the 

normal. This shows the auto-shutdown feature of the proposed bias-current boosting. 

Similarly, as shown in Fig. 3.7(b), when h suddenly decreases, Vo increases. This 

change is coupled through CuP and C m again to increase Vos ofMuPi and reduce Vso 

ofMDNi simultaneously. Therefore, a push-pull output stage is formed momentarily, 

since MuP3 provides more drain current while Mms gives less drain current. Cpar is 

charged up to reduce the current provided by Mp to the load. The operation is 

automatically shut down again when Vo retums to the steady state. 

M_J~~L_ 
0 t z z L ； • time 

�:……I j……•"•�� 

^——h~ 

0 H H • time 

J 牛 

i 

-' ：； 

o' H • time 

iup�‘ ii y 

r i ； 

Qi LI •time 

Fig. 3.8 Drain-current change of MuP3 and MoN3 during the load transient response. 
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Finally, as mentioned previously, C^ in Fig. 3.5(c) is used to maintain the bias 

current during large-signal response. In Fig. 3.9，a simulation shows the change of Vo 

not affecting hiAS much. 

i.4| ^ 1 — r I 
VoOn \ \ ; l_J 

1 . 3 n 丨 ] I ； 

1.2 - | l ^ ； 1 ‘~~""； 

1.1 n ！ ] 丨丨 

, " '| 1 L 1 J time 
0̂ t s 1 ^ 2 2.5 

x10' 
x10̂  

4| n I 丨 
I I I 

3.9- W ( A ) _ ] ！ ] | r - | 
3.8 ] - - - - ^ _ ; ^ ^ J _ ^ : - - - - ; ĵ <_ :̂_:L:L_::_::̂  
3 . 7 p : : : : ^ ^ ^ : ^ : : T t : : ^ T 7 : ^ : : ^ - ] 
3 . 6 1 ‘丨 ‘ 「 

‘ I 1 1 time 
3.5o 5!r 1 ^^ 2 2.5 

x10' 

Fig. 3.9 Simulated change ofIsLis under the change of Vo. 

3.3 Experimental Results 

The proposed voltage-spike detection circuit has been applied to a LDO design in Fig. 

3.5 fabricated by austriamicrosystems (AMS) 0.35-^im CMOS process. The 

applications of the proposed LDO are for the analogue and RF parts in a SoC system. 

In order to make a fair comparison -on the transient performance, a LDO without the 

proposed voltage-spike detection circuit is also implemented. The only difference is 

that both Cup and Cm are removed to disable the detection circuit, while the circuit 

structure, all transistor sizes and the bias current of both LDO designs remain the 

same. Fig. 3.10 shows the micrograph ofthe LDO with the proposed detection circuit. 

Table 3.1 summarizes the key information. The threshold voltages of the NMOSFET 

and PMOSFET are about 0.5 V and -0.65 V, respectively. Since the threshold 
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voltage of the PMOSFET is -0.65 V，the overdrive voltage is not high when the 

supply voltage is low (e.g. 1 V). Therefore, the required transistor size of Mp is 

30000 [im / 0.35 ^im to provide high /o. The chip area is 597 ^im x 260 ^im, 

excluding the test pads. The chip area occupied by the control-voltage generator is 

less than 2% of the overall chip area. The transient responses of both LDOs are 

measured. Both LDOs do not need an off-chip capacitor to achieve stability. It is also 

found that the LDOs are stable when the output parasitic capacitance due to the 

power line，which is located at the output of the LDO, is non-zero (two cases are 

tested: 100 pF and 1 nF). 

_[^:,_明 
^ESSl iW 费 
QEZiZEMi3 

Fig. 3.10 Micrograph of the LDO with the proposed voltage-spike detection circuit. 

Table 3.1 Summary of the design parameters. 

Technology AMS CMOS 0.35-^im 2P4M 

VTHN 一 -0.5V 

VTHP 一 — _ V 
~~Power-transistor~~ 30000 îm / 0.35 îm 

size 

Chip area 597 fxm x 260 ^im (excluding the test pads) 

Output capacitor Not required 
Stable even connected with a 100-pF or 1-nF 

capacitor 
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Fig. 3.11 shows the experimental setup to measure the load-transient response of 

both LDOs. The minimum output current (Io_)) is defined by Ru connected 

between the LDO output and the ground, and so I o _ ) = VotRih To define the 

maximum output current 彻―)，Ru and an integrated NMOSFET (MN) are used. 

The purpose to integrate Mn on the chip for the measurement is to minimize the 

associated parasitic capacitance and resistance for obtaining more accurate transient 

results in the range of micro- or nano-second. The gate of Mn is driven by a signal 

generator with a periodic square wave, so that MN is tumed on and off alternatively. 

By applying a large gate voltage to U ^ (3.3 V is used in the measurement), the 

on-resistance o f M n is 55 mQ, which is much smaller than Rn ( l 2A2Ql and thus 

the effect from Mn can be ignored. Thus, the value of the current flowing through 

Ru is I o _ r h ( _ = VolRL2. From Fig. 3.11, Vo is directly extracted and monitored 

by the scope, while 1 � i s obtained indirectly from the node voltage Vx. Since Vx = 

Fo - IoRL2, Vx oc -Io. Therefore, the extracted Vx is scaled and inverted by the scope 

to illustrate the transient change ofIo-

/ > Vo (to scope) 

LDO p * ] 
R > 0̂(max) “ 0̂(min) 

Ruk 12.12¾? 
厂/Ar (^ CiN 1.2k« l'o(nAn) || ^F^^(tO SCOpc) 

1¾! ~ ~~ 
- H � u L 

I pulse train from signal generator 

Fig. 3.11 Measurement setup to investigate the load-transient response. 

Different combinations of the input voltage, the output voltage and the output 

current are tested. The measurement results are shown in Figs. 3.12，3.13 and 3.14. 

The test cases are 

1. Vm= 1.4 V, Vo = 1.2 V and Io{max) = 100 mA (Fig. 3.12) 
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2. Vm 二 1 N, Vo = 0.8 V and Io(max) = 66.7 m A (Fig. 3.13) 

3. ViN= 0.95 V, Vo = 0.7 V and h— = 58.3 m A (Fig. 3.14) 

The quiescent current and the current efficiency ofeach case are shown in Table 3.2. 

The reason for the difference oflo(— at different Vm and Vo is that the values oiRu 

and Ru are fixed in the measurement (as shown in Fig. 3.11). In fact, when the size 

ofMp is fixed, Ioimca) is limited by Vm (due to the maximum allowable VsG ofMp) 

and it is also constrained by the dropout voltage (Vm - Vo). Therefore, at Vm = 0.95 

V, the value of Io(max) is the lowest and the required dropout voltage is 0.25 V. 

Moreover, Fig. 3.5(c) shows that the quiescent current of the LDOs is a function of 

Vo. Therefore, the quiescent current at Vo = 0.7 V is the lowest among the three test 

cases. There is only 14 ^A to drive the large Cpar ofMp with size of30000 ^m / 0.35 

^m. This implies the SRo limit becomes more serious when Vo is lower. The above 

results demonstrate the impact of the lower quiescent current to the transient 

response ofthe LDOs with and without the proposed voltage-spike detection circuit 

1 1 Vg (with proposed circuit) 
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Fig. 3.12 Comparison of two LDOs with and without the proposed voltage-spike 
detection circuit，where Vm 二 1.4 V，Vo = 1.2 V，dIo/dt = 99 mA/1 îs. 
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In Figs. 3.12，3.13 and 3.14，the measurement results of the LDO with and without 

the proposed direct voltage-spike detection circuit at different Vm, Vo and Io— are 

shown. There are three waveforms in each figure: 
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1. Vo of the LDO with the proposed voltage-spike detection circuit (top) 

2. Vo of the LDO without the proposed voltage-spike detection circuit (middle) 

3. Io ofboth LDOs (bottom) 

In all cases, Io switches between the maximum and the minimum in 1 ^is. 

In Fig. 3.12, the measurement condition is Vm= 1.4 V, Vo = 1.2 V and I o — = 100 

mA. The quiescent current is 43 ^iA. The undershoot, the overshoot and the recovery 

time o f the LDO without the proposed detection circuit are about 420 mV, 200 mV 

and 10 |as, respectively, while those of the LDO with the proposed circuit are about 

70 mV, 70 mV and 3 îs only, respectively. 

Similarly，in Fig. 3.13 ( ¾ = 1 V，V�= 0.8 V and / o ( _ ) 二 66.7 mA) and Fig. 3.14 

(VjN = 0.95 V，Vo = 0.7 V and Io(mm) = 58.3 mA), the quiescent current in both cases 

is reduced to 19 ^iA and 14 ^iA, respectively. The 57fe-limit problem o f t h e LDO 

without the proposed detection circuit becomes more obvious. The undershoot of Vo 

is about 420 mV, and the recovery time is more than 30 îs (Fig. 3.13) and about 100 

^s (Fig. 3.14). However, the LDO with the proposed detection circuit at different 

conditions has no significant difference in the transient response. 

Table 3.2 Summary ofthe measurement conditions of the LDO 
with the proposed voltage-spike detection circuit. 

~~Output Max. output Quiescent Current 
Input voltage voltage current current efficiency 

ViN Vo I_0^ h Iglifo^k) 

] J y L ^ ~ ~ 100 mA 43^iA 99.957% 

F v 0 ^ ~ 66.7 mA 19^iA 99,912% 

0.95V 0 ^ ~ ~ 58.3 mA 14 ^iA | 99.976% 
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3.4 Conclusion of Chapter 

This chapter presented a direct voltage-spike detection circuit to improve the 

transient response of the output-capacitorless LDO. The proposed detection circuit 

consists of two high-pass coupling capacitors, which are able to detect the 

fast-changing voltage spikes at the LDO output and adjust the bias current of the 

control circuit momentarily to improve both the small-signal and large-signal 

responses. The proposed circuit does not increase the quiescent current in the steady 

state, and it solves the narrow loop bandwidth and the slew-rate limit problems ofthe 

conventional LDO by applying a simple and effective modification to the LDO 

circuit. Moreover, the accuracy of the values of the added components is not 

important. 

The measurement results have proven that the overshoot, the undershoot and the 

recovery time of the LDO have been improved significantly by the proposed 

voltage-spike detection circuit. Even though the threshold voltage of the power 

transistor is high, the input voltage o f the LDO is lower than 1 V and the quiescent 

current is low. 
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Chapter 4̂  

A LDO with Impedance Adjustment 
and Loop-Gain Boosting Technique 

Introduction 

Recently emerging low-voltage IC systems are driven heavily by rapid development 

of the semiconductor technology. However, power consumption of modem IC 

systems is not necessary to be low under a low supply voltage, since high chip 

density provides opportunities to include more and faster functionality into a chip. 

Hence, the power consumption, in contrast, is kept increasing. The growing trend of 

high power consumption of the modem IC systems working under low supply 

voltage implies that the current consumption is going to be large. When a LDO 

provides a regulated supply voltage to the low-voltage IC system, the high 

supply-current requirement makes the LDO design become extremely challenging 

since it is not easy to suppress the output voltage spikes (AVo) of the LDO under 

rapid and large load transient changes (A/r) during the switching between different 

operational modes of the IC system. General practice is to make use of a large 

off-chip capacitor at the LDO output (Cour) with low ESR (ife^)，since a LDO has 

non-zero response time (7；) which relates closely to the unity-gain frequency (UGF) 

ofthe LDO loop-gain response. A larger Com is helpful to supply transient current to 

the load circuit when the LDO cannot respond to the rapid load changes. Moreover, a 

smaller RESR can reduce the transient voltage spikes significantly. In fact, the 

t The material presented in this chapter has been accepted for publication in IEEE Transactions on 
Circuits and Systems-II: “A Fast-Transient Low-Dropout Regulator with Load-Tracking Impedance 
Adjustment and Loop-Gain Boosting Technique" in Jun. 2010. 
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magnitude of the output voltage spike is approximately given by 

A F , - f ^ | r , + A / , i ? , , , (4.1) 
V CouT y 

Fig. 4.1 shows the typical load transient response of a LDO with a fixed Com. The 

smallest voltage spikes among the three cases can be achieved by a faster LDO 

response and a smaller RESR. Moreover, the typical compensation strategy, as shown 

in Fig. 4.2，is dominant-pole compensation with single pole-zero cancellation. The 

zero {ZESR) is generated by the ESR of Com to cancel the non-dominant pole p2 [1]. 

The dominant pole {piK) is inversely proportional to Com [1]. When a larger Com is 

used, the UGF is reduced and so the response time is degraded, since the dominant 

pole is shifted to a lower frequency (i.e. piB). As a result, including the concern ofthe 

cost and the physical size o f the off-chip capacitor, Com is suggested to be small to 

improve the response time, but it should be large enough to be able to achieve the 

stable closed-loop LDO operation simultaneously. In fact, when Com is reduced, 

RESR has to be increased to generate the ESR zero at the same frequency to achieve 

an effective pole-zero cancellation (i.e. ZESR = l/(Cot/rfei?)) [1]. It causes larger 

transient voltage spikes. Therefore, there is a contradiction between the stability and 

the transient-response improvement in the LDO design. 

With regard to the above concerns, in this chapter, a 100-mA LDO compensated by 

an off-chip, low-ESR, nano-range output capacitor will be presented in Section 4.1. 

The goal of the design is to achieve a fast transient response with small voltage 

spikes. Section 4.2 will report the measurement results. Finally，a comparison with 

some recently reported LDO designs using a low-ESR capacitor will be given in 

Section4.3. 
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Fig. 4.1 Typical load transient responses o fLDO (for a fixed Com) with (a) a faster 
response and a lower-ESR capacitor (b) a slower response and a lower-ESR 
capacitor (c) a slower response and a larger-ESR capacitor. 
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Fig. 4.2 Typical loop-gain responses with different output capacitances (the used 
ESR values in both cases are different to maintain the same ZESR position). 

4.1 Proposed LDO 

The proposed LDO is shown in Fig. 4.3. It is formed by a LDO structure based on 

the flipped voltage follower，which has been analyzed in [5] in detail. In Fig. 4.3, 

MpT is the power transistor, whereas Mci is the common-gate error amplifier with a 

folded structure formed by Moi, M02 and M04 to have the output at node Y. This 

structure includes a load-tracking impedance adjustment circuit formed by the 
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diode-connected M07 to change the impedance at node Z for the use of low-ESR 

low-capacitance capacitor, and a loop-gain boosting circuit formed by M05 and Mo6. 

Details o f the proposed techniques will be analyzed later in this section. Similar to 

the design reported in [5], a control-voltage generator (i.e. to generate Vxto define 

the gate voltage of Mci) is formed by MAi-MA7 and Mc2. The simple setup 

composed o f t h e reference voltage (7縦)，Rs and a diode-connected Mei provides 

the bias current to the whole circuit. It is noted that Cs is a filtering capacitor to keep 

the bias current away from the effects of the coupling signals and noise. 

Vm 

H[M,5 Mh tJ^A7 M^| | r |Ro5 H & , | H 
_ ^ p~l -~~ Mo4 H^ Vo 

^丨 — m 
JT Mh| T̂ ® 一 一 

^ 4 ¾ ^ ® 4 全 I � 
t 7 l " M j ^ J L f n ? ^ " " 

M . h | ~ ~ 3 ~ ~ E ~ ~ I L V ' H ^ o . 
r Me . r Tc„ n MBh r • 

Fig. 4.3 Proposed LDO structure. 

Based on the analysis reported in [5], there are totally three left-half-plane (LHP) 

poles and one LHP zero (the ESR zero). When referring to the ultimate goal to use a 

low-ESR capacitor for improving the transient response, one of the non-dominant 

poles and the ESR zero are located after the UGF due to the low ESR value, and so 

they can be neglected in the analysis. Finally, the dominant pole ofthe proposed LDO 

is given by [5] 

A - � r 1 1 ) | (4.¾ 
^OUT ^oPT 丨丨 

_V gmCl J_ 

where r^pr is the drain resistance of Mpi and gmci is the transconductance of Mci-
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There is only one non-dominant pole left in the proposed design. It is given by [5] 

” i ：^ (4.3) 

一 f � f I w\ ( 1 ^ 
< C - + C - r l + ^ . . r r^PT “ ^ ^os / " � 6 “ ^ 

L V ^ w a y j j v 5讲7乂 

where CgsPT and CgdPT are the gate-to-source and gate-to-drain parasitic capacitances 

of MpT, respectively. Since Mpi is not small, both CgsPT and CgdPT cannot be 

neglected in the analysis. From (4.3)，it is found that pi relates to the 

transconducatance ofM07 (i.e. gnfi). When referring the connection o f M 0 7 in Fig. 4.3, 

it detects the source-to-gate voltage o fMpi directly. As a result, the drain current of 

Mo7 is proportional to h, and this makes p! located at a higher frequency when Io 

increases. 

Fig. 4 . 4 ( a ) shows the conceptual diagram of the loop-gain response without M 0 7 . 

When Io increases, the output resistance of the LDO decreases and so the loop gain is 

reduced for higher Io. Moreover, according to (4.2), pi is shifted to a higher 

frequency, while p ! remains unchanged if M07 is not included in the design. As a 

result, both px and pi are located before the loop-gain UGF，and the LDO is not 

absolutely stable within the full range of h . 

However, as shown in Fig. 4.4(b)，the overall loop gain is dramatically reduced due 

to the impedance reduction by the diode-connected M07. Thus, M05 and Mo6 are added 

to compensate the loop-gain loss. As a result, the loop gain is given by 

- g r n p M “ � r r M l r o � � “ � 5 " � " “ � , — ^ 0 thc UGF iS givCtl by 

U G F =容,工。容,"6 ̂ 2 丨丨 0̂4 t^s "厂6 丨丨 g :7) (4.4) 

CoUT 

As shown in Fig. 4.4(c), both the loop gain and the UGF are improved. The condition 

to select the value of Com is to ensure p! always locating after the UGF in the 

maximum h condition. The design of the gate size of Mo6 is important so that the 
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parasitic effect at node Y will not generate apole locating before the loop-gain UGF. 

From a circuit simulation, it is found that r � ! = 2.19 MQ, r̂ 4 = 1.86 MQ and Qe = 

38.84 fF. The pole at Y is located at 4.07 MHz which is higher than the UGF ofabout 

1 MHz. This result shows that the pole created at node Y does not affect the phase 

margin ofthe loop gain. 

/o = 0 Loop. Loop,Y� 
LooPt!„ g»in S»™ ipl.... 
gam .•…iJi..-. /o = 0 ….…•.： •部 

\ 1 p, ^Pi loopgain-̂  -••••.. V !ooPBW ^ ~ V ; X i …“-K\ improved f \\̂ nproved \ N̂* \ Jo = max. \ \^ 
Io=max. \ \ loop gain ~~~• V̂*v̂  ^ .:>_, \1 • 

OdB——^:X^^^__^. drops « ^ B = F = % 7 ™ ^ 鎮 ^ ^ 5 ^ 
\\ "=账 X \ V 
\ 1 V 

\\ ZESR •.. 
1 \ ” ^ :ESR 

\ ：斗..... 

(a) (b) � 

Fig. 4.4 Conceptual diagrams of the loop-gain responses when (a) without M07 (b) 
with Mo7 and without M05 & Mo6 (c) with M05, Moe and M07. 

Moreover, the large-signal response ofthe proposed LDO is not a limiting factor to 

the response speed in this design, since the slew rate at node Z (due to the large gate 

capacitance of Mpi) is not limited in this structure. When V � i s deviated from the 

preset value, the gate voltage of M n will be adjusted by the feedback. M05 and Mo6 

are responsible to drive the gate capacitance ofMpi to achieve the adjustment. Since 

the pole created at node Y should be at a high frequency to ensure the closed-loop 

stability, the size ofMo6 is not large. However, the dynamic discharging current by 

Mo6 is not small, as it is now mainly determined by its gate-to-source voltage which 

has a dynamic range between Vm -厂腳 4 _ and 厂膽2_). Thus, the discharging of 

node Z is not a problem towards the response time of the proposed LDO. On the 
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charging side, the extra current from M07 does help the transient response at node Z. 

Due to the above considerations, the design o f the steady-state bias current for M05 

and Mo6 does not need to be high. 

4.2 Experimental Results 

The proposed LDO is implemented in austriamicrosystems (AMS) 0.35-^im 2-poly 

4-metal CMOS Technology. The micrograph is shown in Fig. 4.5，and the chip area 

is 250 ^m X 128 ^im (0.032 mm^), excluding the test pads. 

•

l — : ~ " i : j p ^ ^ j 

; f f l 
_ ! 

••--11 i r ^ ™ ： ^ ^ ^ — 、 
Fig. 4.5 Chip micrograph ofthe proposed LDO. 

A summary of the LDO specifications is listed in Table 4.1. The threshold voltages 

of the NMOSFET and the PMOSFET in the used technology are about 0.5 V and 

_0.65 V，respectively. The LDO regulates the output voltage at 1.2 V from a supply 

ranging from 1.5 to 3 V, whereas the load current is from 0 to 100 mA. As will be 

proven by the measured load transient responses shown in Figs. 4.7 to 4.12, the 

proposed LDO is stable when Com = 100 nF, and it is also stable in a wide range of 

CouT ranging from 100 nF to 10 ^iF. The ESR of the used capacitors are tabulated in 

Table 4.2 and are in the order oftens or several mQ. This shows the stability of the 

proposed LDO does not need the help from the ESR zero. 
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Table 4.1 A brief summary of the proposed LDO specifications. 

~ Technology AMS CMOS 0.35-^im 2P4M 

VmN, Vmp about 0.5 V, -0.65 V 
Power-transistor size 9000 Kiin/035 ^m 

Chip area 250 îm x 128 îm 

Com lOOnF- lO^iF 

Table 4.2 Measured stable range of CouT and ESR. 

CouT Intrinsic ESR Added ESR 

100nF 23 mQ 

150nF 15 mQ 

歸 l l " m Q 0.1 一 0.5 Q 
22[iV 5.1 mQ 

4.7^iF 2.5 mQ 

lQ^iF 2.4 mQ 

Fig. 4.6 presents the quiescent current (½) against the output current. In no-load 

condition, the LDO consumes 26 îA only. At the maximum output current (i.e. h = 

100 mA), although a higher bias current is used for impedance reduction by M�7，/g 

remains below 70 ^A. 

� _ ) ^ _ _ _ _ ^ _ 

. p r ^ - - ^ ^ ^ ^ ^ ^ ： ^ 

5。 j^^ 
4。 > - ^ ^ ^ 

' ' h ^ ^ - - " ] 

2 0 \ '| 

1 0 - ； ； 

, j I L_ 
0 ^ ‘ 

0 20 40 60 80 100 
/o(mA) 

Fig. 4.6 Relationship between /g and Io, 
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Some measured load transient responses o f the proposed LDO are shown in Figs. 

4.7 and 4.12. They are 

1. Fig. 4.7: CouT=lOOv)F, /^ = O - l O O m A 
2. Fig. 4.8: CouT = 200n7, /o = 0 - 1 0 0 m A 
3. Fig. 4.9: CoL/r = 4.7^iF, /o = 0 - 1 0 0 m A 
4. Fig. 4.10: Coc/r=lOOnF, / o = l m A - l O O m A 
4. Fig.4.11:Cot/r=200nF, / o = l m A - l O O m A 
5. Fig.4.12: Coc/r=4.7^iF, / o = l m A - l O O m A 

Both cases of h = 0 一 100 mA and h = 1 mA - 100 mA are included, as load 

regulation cannot be accurately observed in the cases o f / o = 0 - 100 mA. The reason 

is that the overshoot of V�causes Com overcharged, but Com is not able to be 

discharged by the LDO internally due to the low bias current. The cases of 1 mA 一 

100 mA are included to observe the load regulation o f t h e design. Moreover, in all 

measurements, h is switched between 0 (or 1 mA) and 100 mA within 100 ns. 

In Fig. 4.10, when the LDO is connected with a 100-nF output capacitor, it shows 

stable operation with response time faster than 0.2 ^is. The undershoot and the 

overshoot of Vo are 30.3 mV and 44.9 mV, respectively. The load regulation is 8 

mV/99 mV, The fast response time of0.2 [is implies the loop-gain UGF is high, but it 

is the boundary condition of stability (since slight ringing is observed). When a 

200-nF is used (Fig. 4.11)，the response time is slightly more than 0.2 ps，but it shows 

better stability (no ringing). The voltage spikes are similar to the case using a 100-nF 

capacitor. This proves the design consideration for Com stated in Section 4.1. 

Fig. 4.9 and Fig. 4.12 are the transient responses when using a 4.7-^iF capacitor. 

The voltage spikes are reduced to about 20 mV, as the larger capacitor provides more 

transient current to the load. However, a larger capacitor degrades the response time, 

as the loop-gain UGF is reduced significantly. The proposed design makes a 100-nF 

capacitor sufficient to achieve fast response and small voltage spikes simultaneously. 
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Finally，the stability ofthe proposed LDO is tested with an added ESR ranging from 

0.1 to 0.5 Q. It is verified that the LDO is perfectly stable in all cases. When Com is 

small (i.e. 100 nF, 200 nF, etc.), the ESR zero locates after the loop-gain UGF. 

However, it still has slight effect to cancel pi, and so, for the case ofusing a 100-nF 

capacitor, the slight ringing vanishes when the added ESR is ranging from 0.1 to 0.5 

Q. Moreover, when Com is in the order of ^iF, the UGF is reduced so that the ESR 

zero does not affect stability since it is located far behind the UGF. 
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Fig 4 7 Measured load transient response for Vm = 1.5 V ， V � = 1.2 V，Io = 0 to lOO 
mA, CouT = 100 iiF, added RESR = 0 � full view (b) zoom-in view ofthe undershoot 
(c) zoom-in view ofthe overshoot. 
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Fig 4 8 Measured load transient response for Vm 二 1.5 V, Vo = 1.2 V，Io = 0 to lOO 
mA, CouT = 200 nF, added RssR = 0 (a) full view (b) zoom-in view of the undershoot 
(c) zoom-in view ofthe overshoot. 
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(a) (b) (c) 
Fig 4 9 Measured load transient response for Vm 二 1.5 V，Vo = 1.2 V, 1 � = 0 to 100 
mA, CouT = 4.7 ^iF, added RESR = 0 � full view (b) zoom-in view of the undershoot 
(c) zoom-in view of the overshoot. 
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Fig 4.10 Measured load transient response for Vm = 1.5 V，Vo = 1.2 V，h = 1 "iAto 
100 mA, Com = 100 nF, added RssR = 0 (a) full view (b) zoom-in view of the 
undershoot (c) zoom-in view ofthe overshoot. 
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(；) (b) (c) 

Fig 4 11 Measured load transient response for Vm 二 1.5 V，Vo 二 1 2 V，Io 二 1 mA to 
100 mA, Com = 200 nF，added RESR = 0 (a) full view (b) zoom-in view of the 
undershoot (c) zoom-in view of the overshoot. 

•~^^"I~~^~~~~~"T"1 f"' ~ | """̂ î D̂iv̂  , , I I' • 
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Fig 4 12 Measured load transient response for Vm 二 1.5 V, Vo 二 1.2 V，h 二 1 mA to 
100 mA, CouT = 4.7 ^iF, added RESR = 0 (a) full view (b) zoom-in view of the 
undershoot (c) zoom-in view ofthe overshoot. 

4.3 Comparison 

Some reported LDO designs utilizing low-ESR capacitor is summarized in Table 4.3. 

For the designs reported in [2]-[5], the minimum value ofthe off-chip capacitor is 1 

^iF, but the proposed LDO can be stabilized by a 100-nF capacitor. The quiescent 

current and the voltage spikes of the proposed design are not large when comparing 

to the others. Finally, the proposed LDO has the fastest response time of0.2 \is. 
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Table 4.3 Comparison of some selected LDO designs using a low-ESR capacitor. 

~ [2� [3� [4] [5广 Thiswork 
0 ^ CMOS CMOS CMOS CMOS 

Technology o . 3 5 - _ 0.35-^im 0.35-Kim 0.35-^im 035-^m 

^ ~ ~ 2 - 5 V 2 - 5 . 5 V 2 V 1 .2_1 .5V 1 . 5 - 3 V 

- lQ 一 53 îA 20 uA 27 îA 95 îA 26 îA 

CouT — l j i ^ _ _ l ^ ^ _ i i i L _ I _ J j ^ L _ _ _ g : L i g _ 
^ ^00mO low* low* 16mQ 23 mQ 

^ ISOmA 200 mA 150 mA 50 mA 99 mA 

^ ~ ~ A ^ ~ ~ 130mV _ j 4 ^ T ^ ^ O m V 37mV 44.9mV 
Measured � i . 2 j a s NA*** -0.4 îs -0.8 îs -0.2 îs 

Tr I —̂  
* The actual value is not available. 
** Among the reported results in [5], Com = 1 ^F is the minimum capacitor value 

with low ESR to stabilize the LDO circuit. 
* * * Measured response time is not available. 

4.4 Conclusion of Chapter 

A low-voltage fast-response small-voltage-spike LDO with load-tracking impedance 

adjustment and loop-gain boosting technique has been presented in this chapter. It 

has been proven that it can be stabilized by an off-chip, low-ESR, nano-range 

capacitor. The design is suitable for low-voltage high-current applications. 
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Chapter 5 

Conclusion and Future Work 

In this thesis, the PSRR of a conventional LDO and two proposed fast-transient LDOs 

for SoC applications has been introduced, analyzed and developed. 

For the PSRR analysis, the poles and zeros of the LDO have been investigated 

from the transfer function of the proposed modeling. Several design parameters 

affecting the PSRR have been studied in detail. It is concluded that higher output 

resistance of the error amplifier provides a better PSRR at low frequency, but it 

would degrade the PSRR in the moderate frequency range seriously. In addition, a 

higher gain o f the error amplifier and a smaller ESR can help improving the PSRR. 

To be more specific, a larger amplifier gain could obtain a better PSRR at low to 

moderate frequency, while a smaller equivalent series resistance could achieve PSRR 

enhancement at moderate to high frequency. It is also found from the analysis that 

the worst PSRR happens at maximum h . 

After the PSRR discussion, the proposed LDO without an output capacitor has 

been discussed. The direct voltage-spike detection circuit has been introduced to 

improve the transient response of the output-capacitorless LDO. The simple 

detection circuit only consists of two high-pass coupling capacitors to detect the 

fast-changing voltage spikes at the LDO output and adjust the bias current of the 

control circuit momentarily to improve both the small-signal and large-signal 

responses. The proposed circuit does not increase the quiescent current in the steady 

state, and it solves the narrow loop bandwidth and the slew-rate limit problems of the 

conventional LDO by applying a simple and effective modification to the LDO 
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circuit. Moreover, the accuracy of the values of the added components is not 

important. The measurement results have proven that the overshoot, the undershoot 

and the recovery time of the LDO have been improved significantly by the proposed 

voltage-spike detection circuit. Even though the threshold voltage of the power 

transistor is high, the input voltage of the LDO is lower than 1 V and the quiescent 

current is low. 

Finally, the proposed LDO with a low-ESR output capacitor is discussed. With the 

proposed load-tracking impedance adjustment, the gate of the power transistor 

decreases greatly which enables the use of small output capacitor with small ESR. 

Moreover, the loop-gain boosting technique has been added to raise the overall loop 

gain of the circuit and enhance the transient response. From the experimental results, 

it has been proven that the proposed LDO can be stabilized by an off-chip, low-ESR, 

nano-range capacitor. 

The future work is to further investigate the gain-boosting technique on improving 

the stability ofthe LDO against process variations. 
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