406,794 research outputs found

    Evaluation of CO2 and Carbonated Water EOR for Chalk Fields

    Get PDF
    Imperial Users onl

    Dynamic Matrix-Fracture Transfer Behaviour in Dual-Porosity Models

    Get PDF
    Imperial Users onl

    Fine Scale Simulation of Fractured Reservoirs: Applications and Comparison

    Get PDF
    Imperial Users onl

    A multi-objective genetic algorithm for the design of pressure swing adsorption

    Get PDF
    Pressure Swing Adsorption (PSA) is a cyclic separation process, more advantageous over other separation options for middle scale processes. Automated tools for the design of PSA processes would be beneficial for the development of the technology, but their development is a difficult task due to the complexity of the simulation of PSA cycles and the computational effort needed to detect the performance at cyclic steady state. We present a preliminary investigation of the performance of a custom multi-objective genetic algorithm (MOGA) for the optimisation of a fast cycle PSA operation, the separation of air for N2 production. The simulation requires a detailed diffusion model, which involves coupled nonlinear partial differential and algebraic equations (PDAEs). The efficiency of MOGA to handle this complex problem has been assessed by comparison with direct search methods. An analysis of the effect of MOGA parameters on the performance is also presented

    A Deterministic Theory for Exact Non-Convex Phase Retrieval

    Full text link
    In this paper, we analyze the non-convex framework of Wirtinger Flow (WF) for phase retrieval and identify a novel sufficient condition for universal exact recovery through the lens of low rank matrix recovery theory. Via a perspective in the lifted domain, we show that the convergence of the WF iterates to a true solution is attained geometrically under a single condition on the lifted forward model. As a result, a deterministic relationship between the accuracy of spectral initialization and the validity of {the regularity condition} is derived. In particular, we determine that a certain concentration property on the spectral matrix must hold uniformly with a sufficiently tight constant. This culminates into a sufficient condition that is equivalent to a restricted isometry-type property over rank-1, positive semi-definite matrices, and amounts to a less stringent requirement on the lifted forward model than those of prominent low-rank-matrix-recovery methods in the literature. We characterize the performance limits of our framework in terms of the tightness of the concentration property via novel bounds on the convergence rate and on the signal-to-noise ratio such that the theoretical guarantees are valid using the spectral initialization at the proper sample complexity.Comment: In Revision for IEEE Transactions on Signal Processin

    Heterogeneous Batch Distillation Processes: Real System Optimisation

    Get PDF
    In this paper, optimisation of batch distillation processes is considered. It deals with real systems with rigorous simulation of the processes through the resolution full MESH differential algebraic equations. Specific software architecture is developed, based on the BatchColumn® simulator and on both SQP and GA numerical algorithms, and is able to optimise sequential batch columns as long as the column transitions are set. The efficiency of the proposed optimisation tool is illustrated by two case studies. The first one concerns heterogeneous batch solvent recovery in a single distillation column and shows that significant economical gains are obtained along with improved process conditions. Case two concerns the optimisation of two sequential homogeneous batch distillation columns and demonstrates the capacity to optimize several sequential dynamic different processes. For such multiobjective complex problems, GA is preferred to SQP that is able to improve specific GA solutions

    Non-convex Optimization for Machine Learning

    Full text link
    A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.Comment: The official publication is available from now publishers via http://dx.doi.org/10.1561/220000005
    • …
    corecore