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Abstract 

It is estimated that more than half the world’s remaining recoverable reserves of conventional oil are carbonate reservoirs 

(Ahlbrandt et al 2005), which are mainly naturally fractured reservoirs (NFRs). Natural fractures are macroscopic planer 

discontinuities that result from stresses exceeding fracture strength of the formation rock (Stearns and Friedman 1972). NFRs 

are profitably produced with poor efficiency in reservoir depletion due to the complexity and the extreme heterogeneities in 

the reservoir (Narr et al 2006). This poses a major challenge for reservoir management and characterization.  

Fracture intensity, orientation, size and aperture characterisation is required to simulate representative NFR model 

(Bahrami et al 2008). The purpose of this study is, to examine the use of small-scale simulations where fracture network and 

matrix blocks are explicitly represented. This will help understand the flow mechanisms in NFRs. The project focuses on two 

applications, which are fracture-matrix exchange analysis, and well test interpretation. To initiate the project, various test cases 

are devised to cover the two types of applications. We start with orthogonal single matrix block fracture network model 

simulated using a standard commercial simulator (Eclipse 100). Single matrix block model and multiple matrix blocks 

(uniform and non-uniform block sizing) model are generated to understand the impact of various reservoir parameters on flow 

mechanism. A further stage of the study includes the use of a prototype flow simulator (CSMP++).  The prototype simulator is 

compared with commercial software by analysing the matrix-fracture flow exchange in a 2D non-orthogonal fracture network. 

This will help discover the capability of finite volume method and finite element method to simulate flow. Finally, an example 

is constructed with a complex orthogonal fracture geometry using the two previous simulators and an additional one, for well 

test analysis to compare discrete fracture network (DFN) model and discrete fracture and matrix (DFM) model.  

The study illustrates the importance of the spontaneous imbibition mechanism where the gravity and capillary forces 

have a significant impact on the matrix-fracture flow exchange. These exchanges are governed by the static fracture or matrix 

property (fracture aperture, matrix size), and by the dynamic parameters, like the wettability. The overall recovery of the 

reservoir is a function of these flow exchanges, and small-scale simulations allow the calibration of transfer functions in so-

called dual-medium models used for full-field studies. Non-orthogonal case study proves the limitations of finite volume 

method to simulate irregular cell geometry thus producing spurious flow results compared to finite element method. Well Test 

analysis proves the numerical method and modelling technique has a significant impact on the time at which the well test 

signatures that represent reservoir behaviour are recognised. Results show that NFR complex recovery mechanisms can be 

better understood with small-scale simulation, but also that these simulations must be carefully performed, taking carefully in 

to account the specificities, advantages and limitations, of the numerical approaches used. 
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Abstract 
It is estimated that more than half the world’s remaining recoverable reserves of conventional oil are carbonate reservoirs 

which are mainly naturally fractured reservoirs (NFRs). Natural fractures are macroscopic planer discontinuities that result 

from stresses exceeding fracture strength of the formation rock. NFRs are profitably produced with poor efficiency in reservoir 

depletion due to the complexity and the extreme heterogeneities in the reservoir (Narr et al 2006). This poses a major 

challenge for reservoir management and characterization.  

Fracture intensity, orientation, size and aperture characterisation is required to simulate representative NFR model 

.The purpose of this study is, to examine the use of small-scale simulations where fracture network and matrix blocks are 

explicitly represented. This will help understand the flow mechanisms in NFRs. The project focuses on two applications, 

which are fracture-matrix exchange analysis, and well test interpretation. To initiate the project, various test cases are devised 

to cover the two types of applications. We start with orthogonal single matrix block fracture network model simulated using a 

standard commercial simulator (Eclipse). Single matrix block model and multiple matrix blocks (uniform and non-uniform 

block sizing) model are generated to understand the impact of various reservoir parameters on flow mechanism. A further 

stage of the study includes the use of a prototype flow simulator (CSMP++).  The prototype simulator is compared with 

commercial software by analysing the matrix-fracture flow exchange in a 2D non-orthogonal fracture network. This will help 

discover the capability of finite volume method and finite element method to simulate flow. Finally, an example is constructed 

with a complex orthogonal fracture geometry using the two previous simulators and an additional one, for well test analysis to 

compare discrete fracture network (DFN) model and discrete fracture and matrix (DFM) model.  

The study illustrates the importance of the spontaneous imbibition mechanism where the gravity and capillary forces 

have a significant impact on the matrix-fracture flow exchange. These exchanges are governed by the static fracture or matrix 

property (fracture aperture, matrix size), and by the dynamic parameters, like the wettability. The overall recovery of the 

reservoir is a function of these flow exchanges, and small-scale simulations allow the calibration of transfer functions in so-

called dual-medium models used for full-field studies. Non-orthogonal case study proves the limitations of finite volume 

method to simulate irregular cell geometry thus producing spurious flow results compared to finite element method. Well Test 

analysis proves the numerical method and modelling technique has a significant impact on the time at which the well test 

signatures that represent reservoir behaviour are recognised. Results show that NFR complex recovery mechanisms can be 

better understood with small-scale simulation, but also that these simulations must be carefully performed, taking carefully in 

to account the specificities, advantages and limitations, of the numerical approaches used. 

Introduction 
The understanding of fluid flow behaviour in fractured reservoirs is still at its growing stages in the oil industry; therefore 

effects of fractures are largely underestimated while making major decisions on reserves (Bratton et al., 2006). Most naturally 

fractured reservoirs are carbonate reservoirs (Ahlbrandt et al 2005). This would mean the production behaviour is not solely 

matrix dominated and the fracture-matrix exchange plays an important role when analysing flow behaviour of NFR using flow 

simulators.  

Natural fractures are macroscopic planer discontinuities resulted from stresses exceeding the fracture strength of the 

formation rock, which has a significant impact on the flow of fluid due to extreme heterogeneities in the dynamic properties of 

the reservoir (Stearns and Friedman 1972). These heterogeneities lead to complex recovery mechanisms in the reservoir and 

large contrast of material properties at fine fracture scale level. To get a better understanding on the impact of fractures on the 

flow behaviour, NFRs are classified based on the relative contribution of storativity and permeability in the reservoir (Nelson 

2001). 

Reservoir modelling plays a crucial role in reservoir management to produce efficiently from hydrocarbon reserves 

while remaining economically profitable. Full field reservoir models are represented by dual porosity modelling approach, 

which is a hybrid upscaling approach. However fine scale simulations where each single fracture and each matrix block are 

explicitly represented (and meshed) are also needed to study the complex flow mechanisms. Due to complex heterogeneities in 

NFRs, numerical modelling is a major challenge. This is caused by high contrast in permeability and porosity data as well as 

complex fracture distribution and orientation. These calculations involve both statistical analysis of fracture properties and 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=7hqrY5Zj6II6mM&tbnid=gsTQnZsyj61HxM:&ved=0CAUQjRw&url=http://multicore.doc.ic.ac.uk/&ei=MNbYU_7KMe2y7Aa4_4CABQ&bvm=bv.71778758,d.ZGU&psig=AFQjCNGCoZec8OXBQx9ElO3qsZlasZlG4A&ust=1406805903076380
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detailed knowledge of 3D distribution of fractures in the reservoir (Nelson 2001).  

All reservoir simulators are driven by a specific numerical method, which acts as the foundation for all flow 

calculations implemented within the tool. The commonly used numerical methods for flow simulations involve finite volume 

(finite difference in space when the grid is regular and orthogonal), and various types of finite element method. The 1D time 

discretisation uses finite difference method. Various commercial and research prototype simulators such as ECLIPSE 

(Schlumberger 2013), INTERSECT, CSMP++ (Matthäi et al 2004), IC-FERST, FracMan (Golder Associates. 2013), are 

currently being used for small-scale simulations to understand the flow mechanism in NFRs. 

The motivations for detailed small scale simulations are the following: (1) analysis of matrix-fracture exchanges 

under various recovery mechanisms, and with various static and dynamic parameters (for phenomenological study, and for 

validation/calibration of transfer function used in dual-medium models), (2) reservoir study for sector model and/or relatively 

larger features, (3) computation of effective fracture network permeability tensor (upscaling for dual-medium models, or 

single-medium homogenised), (4) well test interpretation (pressure transient analysis for reservoir characterisation). 

The purpose of the paper is to examine small-scale simulations of fractured reservoirs in which the matrix blocks and 

fractures are explicitly represented, by setting up a series of test cases for application types (1) and (4), by using various 

simulation approaches, and comparing them when possible (in this study Eclipse, CSMP++ and FracMan are used). After an 

introduction and review of the main production mechanisms, and the main numerical approaches, the paper is subdivided into 

three main sections. The first stage involves simulating an orthogonal fracture network system at fine scale to analyse the 

variation in flow behaviour by varying different fracture and matrix parameters in the reservoir model. This case is performed 

with a standard commercial simulator (Eclipse), which uses finite volume (FV) numerical method. The model is constructed 

using single porosity reservoir modelling technique. The purpose of the case is to give a good understanding on the impact of 

various fracture and matrix parameters on the flow behaviour as well as the overall recovery from the reservoir. Second stage 

of study involves the use of finite element finite volume (FEFV) method (CSMP++) and finite volume methods by simulating 

the same non-orthogonal fracture network. The matrix-fracture flow exchange transfer function is used to realize the 

capabilities of FV using irregular cell geometry in simulation. Last stage of the study involves generating and simulating a 

complex orthogonal fracture network system with the two previous tools, using a Discrete Fracture and Matrix (DFM) model 

approach, in addition to, and in comparison with a Discrete Fracture Network (DFN) model approach (FracMan). A well test 

analysis is performed on the models. This study will allow us to compare the impact of the type of numerical method and 

modelling technique on representing the flow behaviour in NFRs.  

Literature review 
This review presented in the following sections, through its references, clearly shows that the flow simulation of fractured 

reservoirs at the scale of fractures and matrix blocks got an increasing interest for applications, like the definition and 

calibration of transfer function for dual-porosity models, the computation of effective fracture network permeability tensors, 

and the interpretation of well tests. Small-scale flow simulation of fractured reservoirs also provides a challenging field of 

numerical experimentations for novel methods.  

Recovery Mechanism 
Carbonate reservoirs are difficult to characterize due to the heterogeneities thus requires a detailed understanding of the fluid 

saturation, pore size distribution, permeability and natural fractures (Narr et al 2006). For all the simulators used for analysis 

the fracture and matrix properties. The main parameters considered for the study involve: 

Wettability and capillary forces: Production of oil from naturally fractured reservoirs is normally governed by 

spontaneous counter-current imbibition of water from the fracture network into the matrix (Ersland et al. 2010). The 

wettability of a reservoir has a significant impact on the recovery efficiency of the reservoir. The case study tests the behaviour 

of reservoir by using the imbibition Pc curve from residual water saturation to the crossover point of the imbibition curves zero 

capillary pressure line (water saturation axis). The water-wet system is expected to provide a higher recovery compared to 

mixed wet system because the capillary forces in the water wet case dominates recovery whereas in mixed wet systems the 

capillary pressure drive is dependent on saturation, where the early recovery capillary forces act along with gravity (capillary 

curve is positive), and after exceeding a certain water saturation the forces act against each other until they reach equilibrium 

at irreducible oil saturation (capillary curve is negative). 

Gravity forces: The oil and water undergo gravity segregation due to difference in density. In homogeneous medium, oil 

relative permeability is a key parameter in gravity drainage mechanism (Hagoort 1980). Gravity drainage in naturally 

fractured reservoirs contributes along with the fundamental forces (capillary forces) towards recovery and should be 

considered when dealing with significant difference in permeability between fracture and matrix systems (Luan 1994). For 

small density contrast the reservoir thickness is a dominant factor to achieve gravity segregation. 

 

This paper gives additional examples of the interest of such simulation for sensitivity study, and also initiates some 

comparison between different numerical approaches. As mentioned in the introduction section the review only focuses on the 

two following main areas of analysis: 

Matrix-Fracture exchange transfer function: The extreme heterogeneities in the model result in large variations in 

material balance equation within the reservoir model. The interaction between the matrix and fracture is represented by 

transfer functions (Kazemi et al. 1976, Gautam 2002). Transfer function and the concept of dual porosity concept were initially 
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formulated under the continuum method approach. This was further improved by assuming single-phase flow and pseudo 

steady state [equation 1] (Warren and Root 1963). 

T = σ 
𝐾.𝑘𝑟𝛼

𝜇𝛼
(𝑃𝛼

𝑚-𝑃𝛼
𝑓
) ………………………………………………………………………...…………………………………………………………….. [1] 

Fluid expansion, viscous forces, capillarity, gravity and diffusion are the main mechanism of recovery (Abushaikha and 

Gosselin 2008).  In water wet matrix blocks, water flooding mechanism are preferred recovery mechanism due to spontaneous 

imbibition from fractures into matrix blocks due to capillary pressure gradient (Gabitto 1998), whereas for mixed to oil wet 

matrix blocks water flooding technique provide lower recoveries as oil is only recovered from fractures and the ratio of the 

impact of gravity and capillary forces acting on the oil trapped in the matrix blocks. At fine (macroscopic) scale simulations, 

Quandalle and Sabathier Transfer Function approach is used to describe 3D, multiphase reservoir where the matrix blocks are 

represented as a three nodes to define viscous, capillary and gravity forces as a function of space [equation 2] (Quandalle and 

Sabathier 1989). 

𝜙𝑗𝑓𝑥+ −  𝜙𝑗𝑓𝜉𝑜
= 𝑝𝑓𝜉𝑜

− 𝑝𝑚𝛼𝜉𝑜
+ 𝐾𝑣 (𝑝𝑓𝑥 − 𝑝𝑓𝜉𝑜

+ 𝜌𝑔 (
𝑐𝑖

2
)) + 𝐾𝑔 (𝜌𝑗𝑚𝑎 − 𝜌𝑔 (

𝑐𝑖

2
)) + 𝐾𝑐(𝑃𝑐𝑗𝑜𝑓𝜉𝑜

− 𝑃𝑐𝑗𝑜𝑚𝛼𝜉𝑜
) ………….………..……… [2] 

Well Test Analysis: This analysis involves measuring bottom hole pressure and transient rate when well is flowing at 

variable rates. The production data acquired is used to determine reservoir behaviour (Horne 2000). Well test can be 

performed using analytical method where mathematical models are used to relate pressure response to flow rate history. Well 

test analysis assumes the fluid to obey Darcy’s law and fluid and rock properties such as permeability and viscosity is constant. 

In a reservoir with high permeability contrast the well response show two stabilization lines of the same magnitude, one 

indicating flow only in fracture region (1
st
 stabilization which is usually obscured due to wellbore storage and skin effects) and 

then following the minimum curve a 2
nd

 stabilization line indicating fracture and matrix region. This signature is observed at 

middle time. The length of the stabilization line depends on the production rate and the depth of the dip is a function of the 

permeability contrast (Gringarten 1987). 

Analytical solution: NFRs consists of two different medium, on is the fracture network with high permeability and 

allows fluid to flow into the well and the other is the low permeability matrix block in which oil is present and produces oil 

into the fractures due to spontaneous imbibition. 

Numerical approach/Geological Well Testing: This method is the preferred choice to analyse heterogeneous 

reservoirs (Robertson et al. 2002) as it is able to model complex reservoir boundaries accurately, reservoir heterogeneities, 

multi well test and multi phase effect along with standard boundary conditions represented by analytical methods. 

  

Numerical methods  
The complexity of fractured reservoirs in terms of geometry and sharp contrasts between flow properties over very short 

distances provide a challenging field of application for well established numerical methods, and for more novel ones. 
Finite Difference Method: Differential quotients replace derivatives to approximate differential operator. The 

domain of the problem is partitioned by space and time and the solutions are approximated using space and time coordinates. 

The finite section of the Taylor series represents the truncation error in the numerical method (Ciarlet and Lions 1997). The 

five-point implicit finite difference method is used by Eclipse 100 to mesh the models. It is unable to mesh unstructured 

models efficiently due to distorted grid orientation (Khatanair and Peters 1991). 

Finite Volume method: Finite volume method is a discretization technique for solving partial differential equations 

(Figure 1b)). This approach is used for discretising and approximating flow in porous media (Ciarlet and Lions 1997). In 

meshing of flow models the finite volume method, the conservation law is integrated into each individual cell of the mesh. 

One condition of validity of this method is a consistent approximation of fluxes through the interface by computing the normal 

pressure gradients, which required the orthogonality between the interface and the segment joining the cell centres of the two 

adjacent cells. This requires the construction of an ad-hoc grid, or additional points to compute the flux. When using a standard 

5-point scheme, with a Cartesian non-orthogonal mesh, the numerical error can be severe. For regular Cartesian orthogonal 

grid, FV and FD are equivalent. 

Finite Element Method: This is a popular method for mechanical models with complex geometry. It is also used in 

FracMan to simulate NFRs using DFN modelling technique. Finite element method is a node-centred process, which is useful 

to generate irregular element shapes to simulate flow. This method is computationally less efficient than finite difference 

method. This degree of inefficiency is dependent on the transmissibility matrices in the reservoir model (Khatanair and Peters 

1991). This is also a large class of numerical methods with many possible type of elements. 

Finite Volume-Finite Element Method: For meshing of models the FVFE approach uses dual mesh constructed by 

a primal mesh generated by finite element method (Ciarlet and Lions 1997). CSMP++ utilizes this approach to construct 

models where a triangular primary mesh median is used to constructs the duel mesh (Matthäi et al. 2007). This method uses 

finite element nodal basis function for pressure and control volume around the nodes for saturation computation (Figure 1a)). 

For unstructured 2D models, meshing triangular cells is recommended as it can tessellate any planer surface and allows 

approximation of time dependent variable, over the element by linear interpolation between the nodes (Voller 2009). The 

uncertainty of triangular meshing is dependent on the angle of the triangles, as it is likely to damage the quality of the mesh for 

flow calculation thus unable to accurately capture the behaviour in the model region (Voller 2009). There are many variants 
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amongst this class on methods: i.e. hybrid methods (Nick and Matthäi 2011; Bazr Afkan and Matthäi 2011), overlapping 

control volumes (Jackson et al. 2013), and face-centred control volumes (Abushaikha 2014). 

Reservoir Modelling Technique 
Single Porosity Modelling: This is used to represent NFRs at fine scale (macroscale) level where the permeability 

and porosity are defined at each point in the model (Figure 1c)). In order to represent the heterogeneities in NFRs, the 

permeability and porosity values are significantly larger than the matrix properties. These rapid variations and discontinuities 

in the reservoir properties heavily strain the workload of the simulator that reduces the processing speed of the software. For 

this reason this method is not implemented to analyse highly complex fractured reservoirs (Douglas and Arbogast 1990). This 

method is comparatively less suitable than dual porosity modelling due to larger data requirement and computational time and 

difficulty in characterising fracture system for field scale simulations (Ghani 2009). For orthogonal fracture network systems 

at fine scale, the single porosity method is used as the base case to capture the flow behaviour between fracture and matrix as 

well as analyse the results produced by other types of simulator modelling. 

Discrete Fracture Network (DFN) Modelling: DFN focus flow only in fracture network system and describes a class 

of dual continuum model in which matrix porous medium is not represented. The analysis and modelling explicitly 

incorporates the geometry and properties of discrete features as a central component controlling flow and transport (Figure 

1e)). This approach provides a 3D framework of discrete features that concentrate flow and transport, and also the flow 

barriers such as faults and argillaceous layers that provide partial or complete seals. DFN modelling combines deterministic 

and stochastic discrete fractures to make consistent use of a wide variety of disparate geological, geophysical and production 

data and provide a quantitative approach to description of the geometry and connectivity of solution features, fractures, and 

bedding, with their correlations making it a prefer choice over dual porosity method (Dershowitz et al. 2003). To generate a 

DFN model, information on the stratigraphy of the strata, fracture parameter (orientation, height, aperture, spacing) and cross 

cutting relationships are provided by analysing outcrops and cores (Jin et al 2014). 

Discrete Fracture and Matrix (DFM) Modelling: This method is based on mixed-dimensional unstructured hybrid-

element. The purpose of DFM models is to represent fractures as a 1D line in 2D model or surface of 3D models (Figure 1d)). 

This captures the complex behaviour in flow and transport on individual fractures without specifying properties such as 

effective permeability for sub-grid scale fractures. It is computationally efficient compared to 3D fracture models due to high-

aspect ratio fractures with very small apertures. On the downside, in order to capture all geometrical details of the fracture, a 

large number of element are required resulting in considerable computational overhead. This is because, DFM resolve the non-

linear and multi-scale physics of capillary, gravitational and viscous processes explicitly in each fracture that lead to severe 

time step limitations (Geiger et al 2009). DFM approach use unstructured finite element or finite volume method for spatial 

discretization (Journal of Petroleum Technology 2011). However, there is a large degree of uncertainty associated with the 

connectivity of fracture networks, the fracture density, and fracture aperture distribution because information on their statistics 

is generally sparse for real NFR (Berkowitz 2002). 

 
Figure 1: a) Finite Volume Finite Element b) Finite Volume c) Single Porosity Method d) DFM e) DFN 

Methodology 

Input Modelling Parameters 

Static and dynamic parameters for the NFRs are determined by analysing open-hole wireline logs, cores (for routine and 

specialized core analysis procedures), well test interpretation and reference to analogue fields. Fracture sets for the reservoirs 

are characterized by integrating geological, geophysical and engineering data. Tools such as ultrasonic and resistivity borehole 

imaging logs and cores are used to classify fracture sets and determine the fluid and fracture properties in the reservoir such as 

fracture spacing, orientation, lengths and fracture aperture (Bratton et al. 2006). To perform small scale simulations 

representing carbonate fractured reservoirs, analogue data from various fields are used. The range of measurements used 

throughout the project for the analysis is given in Table 1. To generate the simple Eclipse models to analysis of matrix-

fracture exchanges, three wettability cases are used:  

1. Water-wet system with high capillary pressure (Figure 2; Figure 3a))  

2. Water-wet with no capillary pressure effect (Figure 2; Figure 3a)) 

3. Mixed wet system with large pore network system which produces the same relative permeability curve as 

the water wet system (Figure 2; Figure 3b)) 

a b c d e 
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Table 1: Matrix and Fracture Properties for the study 
Rock and Fluid Properties 

Initial Reservoir Pressure (Bars) 150 - 500 

Rock Compressibility (Bars
-1
) 6x10

-5
 – 5x10

-5
 

Oil Formation volume factor (rb/stb) 1 - 1.5 (Medium to Heavy Oil) 
Water Formation volume factor (rb/stb) 0.8 – 1.2 

Oil Compressibility (Bars
-1
) 4x10

-5
 (Incompressible Fluid) 

Water Compressibility (Bars
-1
) 5x10

-5
 

Viscosity (cP) 0.5 (Water); 0.04(Light oil); 1.4 (Heavy oil) 
Oil Density (kg/m

3
) 600 – 900 

Water Density (gm/cc) 1.0 – 1.01 
Gas Density (kg/m

3
) 1-1.5 

Matrix and Fracture Properties 

Matrix Permeability (mD) 0.1 – 50 
Matrix Porosity (%) 25 

Fracture Permeability (mD) 1000- 5000 
Fracture Porosity (%) 100 

Fracture aperture (mm) 2-5 
Fracture Orientation (degree) 20-90 

Fracture length (m) 20-50 
Matrix block size (cm) 5 – 10 (Gomez et al 2002) 

 
Figure 2: Capillary pressure vs. water saturation: for Wettability case (water-wet with capillarity effect (red dashed line); mixed wet 
system (blue dashed line) and water wet without capillarity effect (green dashed line)) 

 
Figure 3: Relative permeability vs. water saturation for water wet and mixed wet systems 

Fracture permeability and other dynamic parameters are difficult to obtain for a specific fracture aperture. Therefore, the cubic 

equation is used to calculate the relative fracture permeability value for a specified fracture aperture [equation 3] (Gomez et al 

2002). 

Fracture Porosity: 𝜙𝑓= 
(𝑎+ℎ𝑓)3- 𝑎3

(𝑎+ℎ𝑓)
3 ; 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘𝑓 ∝

𝑎2

12
  ………………………………………….…...………… [3] 

Model Geometry Construction and Meshing  

ECLIPSE 100:  

It is finite volume simulator. In time it is always implicit in pressure, and implicit or explicit in saturation. To generate the 

model at fine scale the matrix and fractures properties are both specified. In Eclipse 100, the resolution of the mesh depends on 

the matrix blocks and fracture network geometry in the reservoir model. To generate the grid of the reservoir model two 

approaches are used in this project: 
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 Block Centre Geometry: It is the conventional method used by simulators to construct reservoirs. The transmissibility 

calculations are performed by linear interpolation between the centre values of the cells (Schlumberger 2013). This approach is 

well suited for orthogonal fracture network as the accuracy of the solutions (approximated by constant grid block centre) and 

fluxes (approximated on block edges) are the same (Dawson and Dupont 1991). This approach uses regular cell geometry 

(Figure 4a)) 

 Centre Point Geometry: This tool is useful to construct irregular cell geometry (Figure 4b)). This makes it the 

preferred approach to represent fracture network systems in the fine scale for real fields. This approach generates distorted 

grids to fit fracture orientation and directions, where the non-neighbouring grid transmissibility is computed automatically by 

the simulator. This gridding method implements point-centred finite volume method where the accuracy between the fluxes 

and solutions varies depending on the complexity of the model (Dawson and Dupont 1991). To generate highly complex 

reservoir models it is time consuming and difficult to generate the model manually, therefore it is highly recommended to use 

some software tools, like Python code, to generate the visual geometry of the reservoir and later use a convertor to generate the 

coordinate file for Eclipse. For the 2D non-orthogonal model generated for this study, initially an excel spreadsheet is 

generated to specify the distance between the cornor points in each cell. This is then imported into the Eclipse 100 dataset 

using the COORD and ZCORN function.  

Cell Sizing: In order to capture the geological structure of fractures and matrix blocks, it is essential to use relative 

sizing factor of 100-1000 between matrix cell blocks and fracture cell blocks. This would mean Eclipse dataset follows a DFM 

approach as the matrix and fracture cells are being constructed. 

CSMP++ 

CSMP is an ANSI/ISO C++ based object-oriented application programmer interface (API) (Matthäi et al 2004). The simulator 

uses finite element-finite volume numerical method to simulate complex geological structures such as fractured reservoirs. To 

operate CSMP++ various tools such as ANSYS, CAD applications and modelling tools such as Rhino3D are required.  

Fracture network geometry construction: For CSMP++, the fracture sets are modelled as 1D lines on a 2D surface 

of the model (Figure 4d)). In order to capture the exact fracture geometry of the fracture system generate in Eclipse 100, one 

of the two choices need to be implemented: 

 For simple fracture models the accurate and clear visual document capturing all the fractures to be analysed is 

imported into a modelling tool such as Rhino3D to manually create the 1D fracture network using the drawing 

tool.  

 The above approach is not compatible for highly complex NFR models. A convertor is used to generate the 

geometry coordinates compatible to Rhino3D to generate an accurate fracture network model. In this project the 

geometry of the Eclipse model is imported to Rhino3D using an in-house college convertor. This convertor 

(Monty, which is aPython Code) is only capable of generating orthogonal geometries.  

Geometry Meshing: CSMP++ use finite volume finite element numerical approach and the geometry are meshed 

using triangular elements (Matthäi et al 2004) using ANSYS (mesher) (Figure 4e)) for this study, but other types of elements 

can be used as well to generate the mesh via ANSYS. 

FracMan  

It is commercially available software, used for analysis and modelling of heterogeneous and fractured reservoirs. This 

simulator allows users to visualize fracture systems as well as to test concepts and understand the flow mechanisms of the 

reservoir. This simulator generates the fracture network using the DFN approach where the fractures are represented as planer 

polygons. This allows more realistic description of fault patterns, fractures and stratigraphic contacts in fractured rocks 

(Golder Associates. 2013).  

 Model Meshing: The meshing tool is provided within the software. For the well test analysis, the complex geometry 

generated in Eclipse 100 is imported into FracMan using a convertor. To generate the mesh and run numerical well test, a 

pseudo well is inserted at the intersection of connected fractures and specify appropriate meshing element size to accurately 

capture the fractures. The process involves only generating elements at the fracture planes and the matrix blocks are left 

unmeshed, this is because the DFN method solely focuses on the geometry and properties of fractures as a central component 

controlling flow and transport (Figure 4c)).  

 
Figure 4: a) Block-Centre Gridding b) Corner Point Gridding c) FracMan Mesh d) ANSYS Mesh e) Rhino3D geometry 

(e) (d) (c) (b) (a) 
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Simulation Cases 

Matrix-Fracture Flow Exchange on Orthogonal Fracture Model 

Eclipse 100 is expected to show representative flow behaviour for orthogonal fracture networks due to the use of regular grids. 

This allows the numerical simulator to make reliable transmissibility and flow calculations representative of NFR. To get a 

thorough understanding of flow mechanism, the impact of various reservoir properties on flow, and capabilities of Eclipse 100 

relative to FracMan and CSMP++, the following cases are run: 

(1) Effect of Wettability on Flow Mechanism (Analyse single matrix block and multiple matrix block model): 

Wettability of the reservoir has a major impact on the overall recovery efficiency. To examine the influence of 

wettability on the recovery of oil, a single matrix block and a multiple matrix block datasets are generated. In the 

models, the fractures are modelled to behave as open fractures with a permeability of 5000mD and the matrix are 

given a lower permeability value of 20mD with porosity of 25%. The cases are modelled in 3D geometry to take 

gravity drainage into account. The flow exchange between the matrix and fracture for each model is analysed to 

observe seperately.  

(2) Effect of matrix block size on Flow Mechanism (Compare uniform matrix block and non-uniform matrix blocks): 

The size and the location of the matrix block in the reservoir affect the saturation and pressure distribution profile 

(Sani et al 2011). In a 3D model this factor is observed in the higher oil saturation profile for matrix blocks deeper in 

the reservoir relative to the matrix blocks positions closer to the surface. This case studies the difference in flow 

response between non-uniform matrix block model and uniform matrix block case. These models are constructed at 

lab scale with a fracture aperture of 4-6 mm long and the same dynamic property as (1). To test the impact of 

fracture properties on reservoir simulations, sensitivity tests are performed to analyse the impact of fracture aperture 

on flow mechanism. 

(3) Effect of gravity drainage on Flow Mechanism (Analyse Single block, Uniform and non-uniform Multiblock 

models): In this sensitivity case, two models with different reservoir thickness are used to observe the degree of 

impact caused by gravity drainage on the flow mechanism in NFRs. To visualize a clear impact, the models are 

generated without capillarity effect.  

Matrix-Fracture Flow Exchange on Non-Orthogonal Fracture Model 

Effect of fracture orientation (Comparison of CSMP++ and Eclipse 100 non orthogonal models): Eclipse 100 

model simulate flow using fully implicit finite volume method, which approximates partial differential equation. In CSMP, the 

fractures are represented as 1D line whereas ECLIPSE fractures are represented as thin zones of fracture. The simulators are 

compared using a 2D fracture model consisting of 10 non-orthogonal fractures with permeability of 5000mD and fracture 

orientation varying from 20-90
o
. The matrix-fracture flow exchange for both models are analysed to compare the difference 

between finite volume method and finite element numerical method. In ECLISPE 100 model, various sensitivity analysis cases 

are run to assess flow behaviour by varying the method of calculating transmissibility and grid resolution of fracture from 

5mm to 5µm only near the fracture region. This is to assess the degree of deviation calculated by numerical simulator in 

Eclipse 100. For verification purposes, a second sensitivity case study is run to compare the impact of fracture length on flow 

behaviour of the model for Eclipse 100.   

Well Test Analysis on Complex Orthogonal fracture Geometry 

Well Test Analysis (Compare transient pressure response for complex orthogonal fracture model): Well test 

analysis is one of the most useful tools used to validate flow simulators and benchmark simulators in terms of calculating 

reservoir parameters such as the effective permeability. The pressure responses from the Eclipse 100, CSMP++ and FracMan 

are recorded to perform well test interpretation. This gives the opportunity to compare DFM and DFN modelling methods. For 

this case a complex 2D orthogonal model (Single phase model) is to be modelled by the three software tools. Within Eclipse 

100 sensitivity cases on the change in permeability contrst between the north south and east-west fractures are analysed using 

the drawdown transient pressure curves. More sensitivity cases are also run to analyse well response in a 2 phase model with 

peripheral injection drive with varying injection rates and also analyse the change in pressure response due to change in 

production rate. All the results are viewed graphically on a log-log pressure derivative plot and compared based on well test 

responses produced for NFRs such as double porosity behaviour, stabilization lines and the calculating the effective 

permeability of the well behaviour.  
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Results and Discussion  

Matrix-Fracture Flow Exchange on Orthogonal Fracture Model 

Effect of wettability on Flow Mechanism (Compare single matrix block and multiple matrix block model) 

Table 2: Change in flow mechanism and recovery with change in wettability 

Comparison of models 

Parameter Single Block Model Uniform Multiblock Model Non-Uniform Multiblock Model 
Number of matrix blocks 1 36 25 

Height (cm) 160 155 162 
Recovery Efficiency (%) 

Water Wet System 78 78 78 
Mixed Wet System 30 30 30 

  

 
Figure 5: Matrix-Fracture flow exchange against time: Test Impact of Wettability (a) uniform multiblock; (b) non-uniform multiblock; 
(c) single block model (WW = Water-wet with Capillarity; WWnocap= Water-wet without capillarity; MW = Mixed wet) 

 
Figure 6: Oil recovery efficiency against time: Impact of Wettability (blue = water-wet with capillarity; red = water-wet without 
capillarity; green = mixed wet) 

The matrix fracture flow exchange and overall recovery efficiency of the reservoir has a significant impact due to wettability. 

Figure 3 shows that the hypothetical relative permeability chart constructed for the models are set to be the same. This 

assumption is made to focus on the effect of capillary pressure forces on the recovery efficiency in the reservoir. This is 

supported by a small capillary curve for mixed wet system than the water-wet system (Figure 2). Though the relative 

permeability data show the residual oil saturation to be 0.04; the capillarity and gravity drainage effects govern the oil 

recovery for this test. From Figure 5 it is observed that capillarity pressure in water-wet conditions has a significant impact on 

the fracture-matrix exchange. This can be explained by referring to Figure 1 where it is observed that the capillary pressure 

curve of a water system with capillary effect is the highest followed by mixed wet system and finally water wet without 

capillarity effect. This proves that in spontaneous imbibition dominated NFRs, high capillary pressure forces in water-wet 

system provide a steeper pressure gradient between the fracture and the matrix, thus aiding flow exchange and maintaining 

higher rate of recovery. The reason for high recoveries (Figure 6) in water wet system against mixed wet model can be 

explained by Figure 1, which shows that the water saturation before crossover point for capillary pressure (Pc = 0 bars) for 

water wet is at 0.75 whereas mixed wet system is at 0.30. The fracture-matrix flow for mixed reservoir is lower as Figure 2 

show that the capillary forces act against gravity after a certain time. This restricts flow, thus reducing the recovery of the oil 

to 25%. This behaviour is observed by the parabolic behaviour of the matrix-fracture flow in the mixed wet system (Figure 

5(a) and (b)). 
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Effect of matrix block size on Flow Mechanism (Compare uniform matrix block and non-uniform matrix blocks) 

Table 3: Effect of matrix block size on flow mechanism of NFR 

Comparison of Models 

Parameter Uniform Multiblock model Non-Uniform Multiblock model 

Number of matrix blocks 36 24 
Volume of exchange (cm

3
) 6969.60 14910.00 

Recovery 78 78 

Fracture Aperture (Homogeneous Sensitivity) (mm) 

Multi block model Original Case Sensitivity Case 1 Sensitivity Case 2 

6 3 0.006 

Fracture Aperture (Heterogeneous Variation) (mm) 

Aperture value X axis Y axis Z axis 

6 0.6 0.3 

 
Figure 7: Matrix-Fracture Flow exchange against time: Impact of matrix block size 

 
Figure 8: Recovery Efficiency v time:  a) Impact of matrix block on Mixed Wet System b) Impact of matrix block size 

on Water Wet system 
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Figure 9: Matrix-Fracture Flow exchange against time: Impact of fracture aperture size in uniform (left) and non-

uniform (right) model at water wet conditions. (Case 1 (homogeneous case 1)= dashed and dotted; case 2 (homogeneous 

case 2) = dashed; case 3 (heterogeneous case) = dotted line; Original model = solid line); (M-Ft = Matrix and top 

fracture layer interaction [black line]; M-Fb = Matrix and bottom fracture interaction [blue line]) 

The flow mechanism between the uniform fracture system and the non-uniform system vary due to difference in the surface 

and volume of exchange available between the fracture and matrix (Figure 8). This difference is caused either due to 

difference in matrix block sizes or difference in number of fractures in the system.  The base size of uniform matrix block 

model is at 20cm
3
 (black solid line), for this reason the uniform model shows consistent fracture-matrix flow behaviour in 

every layer. This response is observed, because the model is run at lab scale. Hence there is no significant difference in the 

pressure distribution in each block throughout the uniform model. In the non-uniform matrix model, due to variation in size of 

the block, the flow response varies block to block (Figure 8). This behaviour proves that the pressure distribution is a function 

of matrix block size hence affecting the flow mechanism between the matrix and fracture. The second observation made, is 

that matrix block size only has an impact on the rate of recovery for a water wet system, but the recovery efficiency of the 

matrix block in mixed wet systems depend on the size of the matrix block. This behaviour in mixed wet is caused because of 

the difference in gravity forces acting each matrix block. The observation made on the recovery curves show that the rate of 

recovery in time is a function of block size, as the recovery efficiency rate of small block sizes are faster than the large block 

(Figure 8). This is because the pressure is more confined in a small block, which maintains a larger pressure gradient with the 

fracture compared to a larger pressure distribution in larger matrix blocks. 

 The sensitivity analysis cases are run to understand the impact of aperture size on flow and the recovery of the 

reservoir. The results show that the aperture size plays a significant role in fracture-matrix exchange (Figure 9). This is 

because; the permeability of the fracture network is a function of fracture aperture (cubic law (Wooten 1989) – equation 3). 

Therefore, reducing the aperture of a fracture with high pore volume increases the pressure contrast between the fracture and 

matrix, resulting in an increase fracture-matrix flow. It is observed that the matrix-fracture behaviour in uniform block 

geometry shows a consistent in flow rate with decrease in aperture size. As an exception, in non-uniform block model the flow 

rate at original aperture is higher than the 0.6mm. This behaviour is caused due to difference in surface of exchange available 

in the non-uniform as the results are collected from a large matrix block with a small surface for exchange area with the 

fractures. 

Effect of gravity drainage on Flow Mechanism (Analyse Single block, Uniform and non-uniform Multiblock models) 

Table 4: Impact of Gravity Drainage on flow in NFR 

Single Phase Model 

Parameter Original Case Sensitivity Case 1 Sensitivity Case 2 
Height 160 1600 16 

Uniform Multiblock Model 

Height 155 34 

Non Uniform Mulitblock model 

Height 162 25 
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Figure 10: Matrix-fracture flow against time: Impact of Gravity Imbibition in a) uniform b) non uniform c) single 

block model  

The sensitivity run on single block model shows that the matrix-fracture flow exchange between the two cases initially is 

almost similar, but over time the gap between the two trends increase showing that the reservoir thickness has a direct impact 

on the gravity drainage effect hence the fracture-matrix flow exchange. The flow response in the multiblock and single block 

sensitivity cases overlaps until 0.1hrs and later the gravity effect causes a deviation in flow behaviour until stabilization is 

achieved. The test revealed that the change in stabilization flow exchange rate and the reservoir thickness are directly 

proportional (Figure 10). The rate of flow exchange in thicker reservoir is higher due to greater force acting on the matrix 

blocks, which is observed by a difference in gradient between the original case and the sensitivity cases (Figure 10). 

 

Matrix-Fracture Flow Exchange on Non-Orthogonal Fracture Model 

Effect of fracture orientation (Comparison of CSMP++ and Eclipse 100 non orthogonal models) 

Table 5: Non-Orthogonal Case Study 

Eclipse 100 

Parameter Original Case Sensitivity Case 1 Sensitivity Case 2 Sensitivity Case 3 
Number of 
Fractures 

10 10 16 16 

Aperture Size 5mm 5mm 5 μm 5 μm 
Fracture 

representation 
Thin high permeability zones using corner point gridding method 

Transmissibility 
calculation 

method 

Default case: cell 
centre (OLDTRAN) 

Corner point method 
(NEWTRAN) 

Default case: cell centre 
(OLDTRAN) 

Corner point method 
(NEWTRAN) 

Recovery 
Efficiency (%) 

78 78 78 78 

CSMP++ 
Number of 
Fractures 

10 

Aperture Size 5 μm 
Fracture 

representation 
1D lines on the 2D surface using Rhino3D and meshing the model using ANSYS  

  
Figure 11: Matrix-fracture flow exchange: Impact of fracture aperture and transmissibility calculator for non-

orthogonal fracture model in Eclipse 100 (OLDTRAN calculation = solid lines; NEWTRAN = dashed lines); [case 1 = 

aperture change with original model; case 2 = use of disconnected fracture network; case 3 = disconnected fracture 

network with change in aperture size] 

b) 
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Figure 12: Matrix-fracture flow exchange: Comparison of CSMP++ and Eclipse 100 (OLDTRAN and NEWTRAN)  

The non-orthogonal model generated in Eclipse 100 is also validated with the orthogonal case study by comparing the ultimate 

recovery achieved in the model. For the original model it is noticed that the recovery efficiency in non-orthogonal structures 

are the same. When introducing change in aperture size in the model. The model is unable to produce coherent results proving 

that the cell geometry has an impact on flow calculations in Eclipse100. The sensitivity results for the change in aperture size 

had a significant impact on the model behaviour (Figure 11). This is because the finite difference method is unable to cope 

with large variation in unstructured cell sizes, thus producing highly spurious result at default transmissibility calculator 

settings.To further understand the capability of Eclipse 100 with non-orthogonal fracture geometry, the transmissibility 

calculators are altered from default transmissibility calculator (OLDTRAN) (Schlumberger 2013) to new type o 

transmissibility calculator (NEWTRAN) (Schlumberger 2013). The OLDTRAN method determins the transmissibility by the 

product of the distances between the centre point of two adjacent cells and the permeability value assigned to them. Whereas, 

NEWTRAN calculates the transmissibility by including the distance between the cornor points of the cells, the permeability 

assigned to the cells and the distance between the centers of the cells. Figure 11 shows that for the original model, the two 

methods produced almost identical results, whereas changing aperture size by reducing the size of cells, it is observed that 

NEWTRAN produce underestimated result compared to OLDTRAN. This is because the OLDTRAN calculator calculates the 

transmissibility based on the distance between the block centres and NEWTRAN uses the corner points to evaluate the 

transmissibility indices, therefore there is a higher chance of producing more spurious results due to large variation between 

fracture cell and matrix cell. 

Figure 12 shows that the flow response for the non-orthogonal structure is higher compared CSMP++ when using 6mm 

aperture size, but Eclipse100 produces underestimated results if aperture size is reduced to 6μm. This is caused because the 

Eclipse 100 model is simulating the non-orthogonal model using finite difference method. Therefore, CSMP++ is more 

suitable for irregular cell geometry simulations. This observation supports the theory on literature for benefits of finite element 

numerical simulation on unstructured grid cells compared to finite difference method (Matthäi et al 2004; Voller. 2009).  

Well Test Analysis on Complex Orthogonal fracture Geometry 

Well Test Analysis (Compare transient pressure response for complex orthogonal reservoir model) 

 
Figure 13: Well Test Analysis: Comparison of 1 phase 1 layer (1P1L = blue line); 2 phase 1 layer (2P1L = black dotted 

line)  

In ECLISPE 100, various sensitivity cases are run to understand the impact of fracture permeability on reservoir behaviour. In 

this sensitivity case a single producer is used with a production rate at 50m
3
/day. For this analysis the base case is set to a 

fracture permeability of 200,000mD and fracture aperture of 0.1mm. In Figure 13, well test analysis is performed on 2 phase 

and 1phase single block models. The results show that the behaviour of the 2 phase model is overestimated compared to 1 

phase model. This is caused due to a change in density of fluid (oil and water) during analysis. For this reason, well test 
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analysis is not suitable for 2 phase systems. Figure 13 show that the permeability contrasts between the fracture and the matrix 

produces a dual porosity response on the transient pressure curve. This is observed by the decrease in the depth of the dual 

porosity stabilization line as the permeability contrast is reduced from 200,000mD to 5,000mD. The contrast in fracture 

permeability also impacts the storativity ratio and the interporosity flow, this is observed by the decrease in the depth of the 

minimum curve as well as the delay in time for the signature (Figure 13).  

Table 6: Well Test Analysis and understanding reservoir behaviour  

ECLIPSE 100: Homogeneous Permeability Variation (Single Producer) for Single and Double Layer model 

Parameter Original Case Sensitivity Case 1 Sensitivity Case 2 Sensitivity Case 3 
Horizontal 

Permeability (mD) 
200000 5000 20000 500000 

Vertical 
Permeability (mD) 

200000 5000 20000 500000 

ECLIPSE 100: Non Uniform Permeability Variation (Single Producer and Single Layer model) 
Parameter Original Case Case1  Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 
Horizontal 

Permeability (mD) 
200000 500&20000 500 5000 20000 500000 200000 200000 200000 200000 

Vertical 
Permeability (mD) 

200000 200000 200000 200000 200000 200000 500 5000 20000 500000 

ECLIPSE 100: Peripheral Drive Mechanism (Single Layer model) 
Parameter Original Case Case1 Case2 Case3 

Horizontal Permeability 200000 200000 200000 200000 
Vertical Permeability 200000 200000 200000 200000 

Injection Rate 100 10 50 1000 
ECLIPSE 100: Single Producer and 2 Layer model 

Parameter Original Case Case1 Case 2 
Horizontal Permeability 200000 200000 200000 

Vertical Permeability 200000 200000 200000 
Production Rate 100 50 1 

Comparison of Simulators 

Parameter ECLIPSE 100 FracMan CSMP++ 
Fracture Aperture (mm) 0.1 0.1 0.1 

Fracture Orientation 90 90 90 
Fracture Permeability (mD) 500000 500000 500000 

 

  
Figure 14: Well Test Analysis: Impact of Fracture Permeability on reservoir behaviour in Eclipse 100 (left) and CSMP 

(right); [Case 1 – case 9 refer to Non Uniform Permeability variation table; Uniform Case 2 = Homogeneous 

permeability variation case 2] 

 

Figure 15: Well Test Analysis: Impact of Injection rate in peripheral drive in a Single phase and single layer model 

(case 1- case 3 refer to sensitivity cases in Eclipse 100: Peripheral Drive Mechanism (Single Layer model)) 
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Case 6 

Case 5 

Case 4 

Case 3 

Case 2 

Case 1 

0.001 

0.01 

0.1 

1 

10 

100 

1000 

0.0001 0.001 0.01 0.1 1 10 100 1000 

M
at

ri
x-

F
ra

ct
u

re
 F

lo
w

 E
xc

h
n

ag
e,

 s
cc

 

Log(Time, hrs) 

ECLIPSE 100: Peripheral Drive (rate Control) 

Base Case 

Case 1 

Case 2 

Case 3 



14  Fine Scale Simulation of Fractured Reservoirs: Applications and Comparison  

 

  
Figure 16: Well Test Analysis: Impact of Producer rate in Single producer, single phase and single layer model 

 
Figure 17: Well Test Analysis: Comparison of Eclipse 100 (solid black line), FracMan (black dotted) and CSMP++  

(Red dotted line) for fracture permeability of 500,000 mD and fracture aperture of 0.1 mm. (Legend repeated twice; 

first one indicate Pressure change curve and second one indicate derivative pressure change curve)  

 

 Following the analysis of fracture permeability the injection rate for a peripheral drive system is analysed to 

understand the well response for a peripheral system under 2 phase system. Figure 15 indicates shows that increasing the 

injection rate in the peripheral drive system, will produce a constant pressure response in the derivative time at an earlier time. 

The next parameter to analyse involved the production flow rate. Figure 16 showed that 50m
3
/day flow rate provided the best 

results as it provides sufficient time to capture the various reservoir behaviours in middle and late time with disturbances 

caused due to very short time steps in Eclipse100. 

 The final stage of the case study involves comparing Eclipse, CSMP++ and FracMan. This case uses a single layer, 

single phase, with permeability of 500,000mD. For this case Eclipse results is assumed to be the base case model. Figure 17 

shows that FracMan provides a good relation with Eclipse 100, but the results are over-estimated. This behaviour is caused due 

to the difference in modelling technique, in Eclipse 100 the model follows the DFM technique where the flow interaction 

between the matrix and fracture is considered as the properties are provided for both mediums. On the other hand, FracMan 

follows DFN technique, where only the fracture properties are meshed. For this reason during well testing the interaction 

between the matrix and fracture are not captured, thus producing a higher estimate. The graph also showed CSMP++ provided 

an underestimated respose relative to Eclipse. This is caused due to the presence of a large wellbore region used to simulate 

Eclipse and FracMan, whereas in CSMP++ a single 1D line is used to represent the producer well. The other reason for the 

difference is caused due to the inconsistency of the aperture which due to limited time require further research in future 

studies. 

Conclusion and Recommendation 
The flow mechanism in a fractured reservoir is highly complex. Results from the tests confirm that matrix-fracture flow 

exchanges are highly sensitive to the fracture and matrix properties at fine scale. The first stage of the study also confirmed 

that the wettability and capillary pressure in the porous medium are the dominant factors controlling the overall recovery 

efficiency of the reservoir, helping or reducing the gravity driving forces. Changes to fracture and matrix properties such as 

fracture aperture, matrix size impact the matrix-fracture exchange. It is observed that small fractures apertures and small 

matrix will have higher flow exchange rate, but these properties do not have any effect on the total recovery efficiency. 

However the recoverable reserve also depends on the thickness of the matrix blocks, and the fluid density differences, in case 

of mixed wettability systems. This means that a highly saturated fracture system will have a higher recovery rate due to 

increased surface for exchange and greater pressure gradient between the matrix and fracture. 

Analysis of second stage of the study showed that finite volume method is not efficient to simulate flow for non-orthogonal 

fracture-set represented by irregular cell geometry. Finite element methods are more suited to this task as they can are able to 

perform numerical calculations with irregular cell geometry. In terms of the workflow to generate the model, the tools 

associated to CSMP++ interface are manageable to create the mesh than Eclipse 100. CSMP++ on the other hand require a 
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drawing tool (Rhino3D for drawing the geometry and ANSYS for meshing the model) where the fractures are represented a 

1D lines on the 2D plane making it a convenient process to generate models, even for more complex structures. 

Well test analysis of the complex orthogonal fracture geometry provided a detailed analysis on change in reservoir 

behaviour caused due to changes in mobility ratio and well properties in NFRs. The study proved that for a 2D model, the 

permeability contrast between the matrix and fracture affects the dual porosity signature as for significantly high contrast the 

stabilization is low showing a clear change in mobility whereas for lower contrast this difference in reduced and starts to 

produce a normal radial flow effect in the derivative plot. It is also observed for reservoir behaviour in two-phase and single 

phase on Eclipse 100 have significant difference, thus proving that well test analysis is unable to cope with 2 phase models. 

Assuming the well response for Eclipse 100 to be a reference case, FracMan produces overestimates the reponse, this is 

because in Eclipse, the matrix-fracture properties are explicitly stated (DFM), thus considering the matrix-fracture interaction. 

Whereas, in FracMan, only the fracture properties are represented in the model (DFN), therefore the well response does not 

capture the behaviour of matix. On the other hand, the CSMP++ runs performed in this study produce an underestimated 

response due to difficulty in well region representation comparison between the three models, and inconsistency incurred in 

specifying the fracture aperture for the limited time frame.  

Results produced from the study calls for more research in this field to get a better understanding the fine scale simulation 

in fractured reservoirs. Further studies on well testing should be performed after resolving the inconsistency issue to get a 

better understanding of the flow simulation between CSMP++ and Eclipse. Further studies can be performed on 3D non-

orthogonal fracture models to compare the capability of FracMan relative to CSMP++ as well as get a deeper understanding on 

the naturally fractured reservoirs. Furthermore, upscaling case studies could be run in complex orthogonal model to validate 

the simulators further. Finally, it is also recommended to test other available numerical simulators such as IC-FERST and 

INTERSECT to extend this study to other available methods to simulateflows in NFRs. 

Nomenclature 
Symbols Subscripts Anonyms 

a,b, c Block size in x,y,z direction f Fracture 1D One Dimensional geometry 
C Concentration i Cell Index 2D Two Dimensional geometry 
g Gravitational constant (9.8 

m/s
2
) 

j Phase Index 3D Three Dimensional Geometry 

hf Fracture width (ft) ma Matrix API Application Programmer Interface 
k Permeability (mD) o Hydrocarbon liquid 

phase 
CSMP++ Complex Systems Modelling Platform 

kr Relative Permeability x,y,z Corresponding 
Direction 

DFM Discrete Fracture and Matrix method 

Kc Capillary matrix-fracture flow 
coefficient 

ξo Centre of centre block 
(node locaton) 

DFN Dicrete Fracture Network method 

Kg Gravity matrix-fracture flwo 
coefficient 

  FD Finite Difference Method 

Kv Viscous matrix-fracture flow 
coefficient 

  FV Finite Volume Method 

p Pressure   FEFV Finite Element and Finite Volume 
Method 

Pc Capillary Pressure (bar)   NFR Naturally fractured reservoirs 
t Time     
T Transfer Function (s

-1
)     

α Block Size     
σ Shape factor (cm

-2
)     

ρ Fluid Density (kg/m
3
)      

Φ Porosity     
μ Viscosity (cP)     
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Appendix 





 

 

Cases Eclipse CSMP++ FracMan 
Understand Flow Mechanism of NFRs 

Impact of Wettability and Capillary Pressure X   

Impact of Matrix Block Size X   

Impact of Gravity Imibition X   

Understand Capability of Eclispe 

Impact of Transmisibility calculator X   

Comparison of 2D models X X  

Well Test Analysis 

Analysis of 2 Phase system X   

Impact of Permeability contrast X   

Impact of peripheral drive in 2 Phase system X   

Impact of production rate X   

Comparion of DFM and DFN X X X 

 

 

Eclipse Cases 
Single 
Block 

Uniform 
Mulitiblock 

Non-
Uniform 

Multiblock 

Non-
Orthogonal 
2D model 

Orthogonal 
2D model 

Understand Flow Mechanism of NFRs 

Impact of Wettability and Capillary Pressure X X X   

Impact of Matrix Block Size X X X   

Impact of Gravity Imibition X X X   

Understand Capability of Eclispe 

Impact of Transmisibility calculator    X  

Comparison of 2D models    X  

Well Test Analysis 

Analysis of 2 Phase system     X 

Impact of Permeability contrast     X 

Impact of peripheral drive in 2 Phase system     X 

Impact of production rate     X 

Comparion of DFM and DFN     X 

 Note: Detailed information of each model is provided in Appendix A2



 

 

A1: Literature Review 

A1.1: Literature Milestone 

Title of 
Periodical 

Year Title Authors Contribution 

Advances in 
Water 
Resources 
51 

2012 Pore-scale imaging and modelling Blunt M.J.; Bijeljic B.; Dong H.; Gharbi O.; Iglauer S.; 
Mostaghimi P.; Poluzny A and Pentland C 

Describes the underlying technology, namely imaging of the 
pore space of rocks from the nanometre scale upwards, 
coupled with a suite of different numerical techniques for 
simulating single and multiphase flow and transport through 
these images.  

SPE 24916 1992 Fine Grid Simulation of Two Phase Flow in 
Fractured Porous Media 

 Guzman R.E and Aziz K. Improve simulation for oil recovery by gaining a better 
understanding on the importance of matrix/fracture fluid 
transfer, matrix and fracture two phase flow, and interactions 

Advances in 
Water 
Resources. 
Vol(26) 

2002 Characterizing flow and transport in fractured 
geological media: A review 

Berkowitz B. Analyze measurements, conceptual pictures, and mathematical 
models of flow and transport phenomena in fractured rock 
systems. 

SPE 51347 2000 Numerical Study of Natural Convection and 
Diffusion in Fractured Porous 
Media 

Kassem Ghorayeb, SPE, and Abbas Firoozabadi, SPE, 
Reservoir Engineering Research Inst. 

Examines the effect of the fracture parameters: fracture 
aperture (or fracture permeability), fracture intensity, and 
fracture connectivity on the fluid compositional variation 

Golder 
Associates  

2003 Advances in Discrete Fracture network modelling  Dershowitz W.S.; La Pointe P.R and Doe T.W. Describes recent advances in discrete fracture network (DFN) 
modeling and analysis. 

SPE 93144 2007 Multirate-transfer dual-porosity Modeling of 
gravity drainage and imbibition.  

Di Donato G, Lu H, Tavassoli Z, Blunt M.J. Describe an approach to model displacement processes in 
fractured reservoirs 

Geological 
Society 
London  

2007 Numerical simulation of multi- phase fluid flow in 
structurally complex reservoirs 

Matthäi S. K.; Geiger S.; Roberts S. G.; Paluszny A.; 
Belayneh M.; Burri A.; Mezentsev A.; Lu H.; Coumou D.; 
Driesner T. and Heinrich C. A. 

Describe the use of CSMP++ and has compared the simulator 
with ECLIPSE 100 in single fracture flow system 

SPE 118924 2009 Massively Parallel Sector Scale Discrete Fracture 
And Matrix Simulation 

Geiger S. Huangfu Q.; Reid F.; Matthäi S.K.; Coumou D.; 
Belayneh M.; Fricke C. and Schmid K.S 

Flow simulation of FRACS2000 and reservoir model with the 
DFM model of CSMP++ 



 

 

A1.2: Critical Literature review 

 

SPE 51347 

 

Numerical Study of Natural Convection and Diffusion in Fractured Porous Media 

 

Author/Organization 

Kassem Ghorayeb, SPE, and Abbas Firoozabadi, SPE, Reservoir Engineering Research Inst. 

 

Contribution to Industry/Project 

Examines the effect of the fracture parameters: fracture aperture (or fracture permeability), fracture intensity, and fracture 

connectivity on the fluid compositional variation. 

Study the effect of connected and discrete fractures on compositional variation 

 

Objective 

Numerical study of natural convection and diffusion in fractured porous media. 

 

Methodology 

 Two-dimensional fractured porous media with width b and height is saturated by a binary mixture of C1 (methane)/ n 

C4 (normal butane). 

 Eight different configurations of fractured porous media are used to study the effect of fracture parameters on the 

variation of composition. 

 Numerical runs were performed with different mesh grids either in the matrix blocks or in the fractures. 

 

Conclusion 

 Fracture aperture affects compositional variation only when fracture aperture is greater 0.1mm, whereas the fracture 

convective velocity increases with an increase in fracture aperture. 

 The main effect on compositional variation is due to the surrounding fractures. The interior fractures affect the shape 

of the mole fraction contour lines, but the horizontal compositional variation is not significantly affected by those 

fractures. 

 The fluid flow consists mainly of a loop within the surrounding fracture. Smaller loops occur in the interior connected 

fractures. The flow velocity within the rock matrix is negligible in comparison to fracture velocity, as expected. 

 

Comment 

Examines the effect of the fracture parameters: fracture aperture (or fracture permeability), fracture intensity, and fracture 

connectivity on the fluid compositional variation. This helped as a validation document to assess what is to be expected from 

numerical simulation results 
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SPE 24916 

 

Fine Grid Simulation of Two phase flow in Fractured Porous Media 

 

Author/Organization 

R.E Guzman and Khalid Aziz, Stanford U. 

 

Contribution to Industry/Project 

 Considers the interaction between capillary and viscous forces  

 Considers the influence of capillary imbibition in fractured flow. 

 Investigates the validity of assuming injection/production is confined to fractures 

 

Objective 

•Consider the effect of FRP (fracture relative permeability) and the conditions in which they become important for flow in 

fractured porous media 

•FRP is important only at low capillary numbers when viscous forces are significant and two-phase flow exists in the fracture. 

High capillary numbers flow occurs inside the matrix due to strong water imbibition, and the effect of FRP is reduced. 

•At high capillary number the water flow is faster in matrix than in fracture. The capillary forces are dominant and water 

imbibes in the matrix. At low capillary numbers imbibition is weak and most of the water flows faster in the high permeability 

fracture than in the matrix. Viscous forces are more important in these cases and the high permeability fracture has a large 

influence 

•The improvement of oil recovery due to high imbibition for strongly water-wet matrix is more noticeable at low capillary 

numbers. The reduction of oil recovery due to water channeling through the fracture is important only at low capillary 

numbers when imbibition is not very strong.  

 

Methodology 

•The fractures are represented as blocks with high permeability and unit porosity. The matrix block size was increased 

logarithmically from the fracture towards the outer blocks. 

•Inlet/outlet boundary conditions: Constant total injection rate and constant production pressure. No capillary end effects were 

included and their influence is not known for this particular case.  

•Effect of Fracture relative permeability on oil displacement are analysed 

•Effect of matrix capillary pressure under different wettability conditions 

•Effects of matrix/fracture capillary pressure by analysing water cut and oil recovery correlations, followed by comparing 

different cores 

 

Comment 

Improve simulation for oil recovery by gaining a better understanding on the importance of matrix/fracture fluid transfer, 

matrix and fracture two phase flow, and interactions. 
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Advances in Water Resources 51 

 

Pore-scale imaging and modelling 

 

Author/Organization 

Blunt M.J.; Bijeljic B.; Dong H.; Gharbi O.; Iglauer S.; Mostaghimi P.; Poluzny A and Pentland C. 

 

Contribution to Industry/Project 

 Describes the underlying technology, namely imaging of the pore space of rocks from the nanometre scale upwards, 

coupled with a suite of different numerical techniques for simulating single and multiphase flow and transport 

through these images.  

 

Objective 

Discuss limitations and challenges of pore scale modelling 

 

Methodology 

 Discuss Imaging techniques such as X-ray (absorb X-ray to produce 3D representation of rock and fluid. This is doen 

using a micro-CT scanner); focused ion beams (to produce fine scale image of the rock sample) 

 Statistical Reconstruction: based on an analysis of a high-resolution two-dimensional image, three-dimensional 

representations of the pore space are constructed. 

 Modelling method: Direct modelling (lattice Boltzmann method: the motion and collision of particles on a grid are 

captured by this method); Network modelling  

 Analysis of the result 

 

Comment 

Provide detailed information relating the capillary pressure forces acting in the system as well as prove experimentally that in 

small scale fractures the capillary forces are active. 
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Advances in Water Resources. Vol(26) 

 

Characterizing flow and transport in fractured geological media: A review 

 

Author/Organization 

Berkowitz B. 

 

Contribution to Industry/Project 

 Consider (i) geometrical characterization of fractures and fracture networks, (ii) water flow, (iii) transport of 

conservative and reactive solutes, and (iv) two-phase flow and transport 

 Examine the physical factors controlling flow and transport behaviour 

 

Objective 

Analyze measurements, conceptual pictures, and mathematical models of flow and transport phenomena in fractured rock 

systems. 

 

Methodology 

 Consider (i) geometrical characterization of fractures and fracture networks, (ii) water flow, (iii) transport of 

conservative and reactive solutes, and (iv) two-phase flow and transport 

 

Comment 

Provide information relating the transfer functions and the flow behaviour in NFRs 
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Golder Associates 

 

Advances in Discrete Fracture network modelling 

 

Author/Organization 

Dershowitz W.S.; La Pointe P.R and Doe T.W 

 

Contribution to Industry/Project 

 Describes recent advances in discrete fracture network (DFN) modeling and analysis. Investigates the validity of 

assuming injection/production is confined to fractures 

 

 

Objective 

Highlight trends in DFN modelling such as 1) convergence of DFN and Continuum Methods 2) Increasing Geologic Realism 

3) Multiple Immobile zone transport. 

 

Methodology 

 Convergence of DFN and Continuum Methods: Analyse development of DFN and EPM models by analysing the 

three types of integration which include: Layered DFN/EPM model; EPM Implementation of DFN Hydrstructural 

Models; Nested DFN/EPM model  

 Increasing Geologic Realism  

 Multiple Immobile zone transport. Analyse diffusive exchange; multirate diffusion and other properties for the study 

 

Comment 

Major advances have been made in the development and implementation of hydrostructural models for fracture geometry, and 

microstructural models, for the immobile zones influencing solute transport. For the project it has given detailed information 

about discrete fracture nework method and equations used for permeability calculation used in FracMan.  
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SPE 93144-PA 

 

Multirate-transfer dual-porosity Modeling of gravity drainage and imbibition 

 

Author/Organization 

Di Donato G, Lu H, Tavassoli Z, Blunt M.J. 

 

Contribution to Industry/Project 

 Describe an approach to model displacement processes in fractured reservoirs 

 Discover a matrix/fracture function in dual porosity model that use analytical expressions for average recovery asa 

function of time for gas gravity drainage and countercurrent imbibiton.  

 

Objective 

Highlight the need of core-scale measurement of recovery and use streamline based formulation to accommodate 1D transport 

equation along streamlines that capture flow. 

Methodology 

 Discuss streamline formulation in dual porosity simulator 

 Investigate Capillary controlled imbibition in single rate transfer functions which is based on semianalytical solutions 

 Discuss impact of gravity drainage in fractured reservoir 

 Mention the numerical approach for the transfer function 

Comment 

Gave a good insight on the various transfer functions involved in a fractured reservoir. It also proves that shape factor method 

are inaccurate to accurate capture the average behaviour 
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Geological Society London 

 

Numerical simulation of multi- phase fluid flow in structurally complex reservoirs 

 

Author/Organization 

Matthäi S. K.; Geiger S.; Roberts S. G.; Paluszny A.; Belayneh M.; Burri A.; Mezentsev A.; Lu H.; Coumou D.; Driesner T. 

and Heinrich C. A. 

 

Contribution to Industry/Project 

 Provide detailed analysis of CSMP++ and SAMG solver 

 

Objective 

Generate a workflow to use CSMP++ 

 

Methodology 

 Feature representation and geological interpretation of the model geometry on CAD 

 Hybrid finite elementdiscretization of model geometry 

 Discretization of the governing equations using operator spitting in a combined finite element and finite volume 

framework 

 A posteriori mesh adaptation of pressure equation is based on an estimate of discretization error. 

 Simulation and then visualise and analyse results 

 Upscaling 

 

Comment 

Provide detailed analysis of CSMP++ and SAMG solver. It has run cases on single fractures to compare with ECLIPSE 100  
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SPE 118924 

 

Massively Parallel Sector Scale Discrete Fracture And Matrix Simulation 

 

Author/Organization 

Geiger S. Huangfu Q.; Reid F.; Matthäi S.K.; Coumou D.; Belayneh M.; Fricke C. and Schmid K.S 

 

Contribution to Industry/Project 

 Simulate multiphase displacement, including viscous, capillary and gravitational forces for highly resolved and 

geologically realistic models. 

 Investigates Discrete fracture and matrix modelling method at high resolution and provide information on dual 

porosity modelling method 

 

Objective 

Analyse DFM and finite element method for field scale simulation of highly complex and geologically realistic models 

 

Methodology 

 Discuss the governing equations in the model and understand the concept of finite element method, discussing on the 

process involved in solving the problem 

 Compare finite volume and finite element method 

 Discuss the computational power required to simulate such complex models: Inter-processor communication; 

hardware etc.  

 Simulation method is tested on applications: single phase singl component models and multiphase multicomponent 

model. The results are compared and discussed using conventional well test analysis 

 

Comment 

Provide information on DFM and further details on finite element method. This will be used in literature to understand the 

mathematics involved in solving flow equations 
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A1.3. Software Workflow 
ECLIPSE 100 

 
RUNSPEC 

-- Start Data File-- 

 TITLE 
 --Name of the Case Study --- 

 Uniform MultiBlock Wettability case_Water Wet With Capillarity 

 DIMENS 
 --Number of Blocks used for the model---  

 DX DY DZ 

 50 50 21 
 --Specify the Fluids present in the model--- 

 OIL 

 WATER 
 GAS 

 --Model Scale Units--- 

 LAB 
 --cm3 Scale--- 

 START 

 --Specify start date--- 
 01 Jan 2014 

 WELLDIMS (Used for only complex orthogonal geometry) 

 -- Well number and specification--- 
GRID 

--Generate Model Geometry--- 

 --Cornor Point Gridding Method (To generate non-orthogonal model only)--- 
 COORD 

 --Define Cornor points of the reservoir model--- 

 ZCORN 
 --Define Point depth of the grid--- 

  

--Block Center Gridding Method (To generate orthogonal fracture model)--- 
 DXV 

 --Grid block sizing in x direction--- 

 DYV 
 --Grid block sizing in y direction--- 

 DZ 
 --Grid block sizing in z direction--- 

 TOPS 

 --Specify the depth of the reservoir surface--- 
 

 --Property Spefication---- 

 PERMX 
 --Permeabiltiy in x direction--- 

 PORO 

 --Porosity of cells--- 
 COPY 

 ‘PERMX’ ‘PERMY” / 

 ‘PERMX’ ‘PERMZ’ /  
 / 

 MINPV 

EDIT 
 MULTIPLY 

 ‘PORV’ X1 X2 Y1 Y2 Z1 Z2 ‘multiplying factor’ / 

 / 
PROPS 

 --SaturationFunction--- 

SWFN, SOF3 
--PVT data--- 

-- Matrix static properties: Compressibilty--- 

ROCK 

 -- Fluid Density: Gas, Oil and Water--- 

DENSITY 

-- PVT data of oil--- 
PVDO 

-- PVT data of water--- 

PV 
 

REGIONS 

SOLUTION 
SUMMARY 

SCHEDULE 





 

 

A2: ECLIPSE Model Simulation 
A2.1: Uniform Multi-Matrix block Simulation    

Model Specification: 

TableA2.1 1: Uniform Multiblock Base Case Reservoir Parameter 

Model Parameters  

Model Grid Size (Cell Count) 50x50x21 

Model Grid Size (cm) 10x10x162 

Model gridding methodology Centre – Block Gridding 

Reservoir Datum Depth (cm) 15000 

Reservoir Pressure (BARS) 400 

Number of Matrix Blocks 36 

Total surface for exchange (cm
3
) 6969.6 

Fracture Aperture Size (mm) 8 

Matrix Porosity (%) 25 

Matrix Permeability (mD) 20 

Oil Water Contact for Matrix (cm) 30000 

Fracture Porosity (%) 100 

Fracture Permeability (mD) 5000 

Oil Water Contact for Fracture (cm) 14000 

Gas Oil Contact for matrix and Fracture (cm) 13000 

PVT Table 

TableA2.1 2: Base Case Fluid Properties 

Fluid Properties  

Datum Pressure (BARS) 400 

Water Formation Volume Factor 1 

Water Compressibilty (BAR-1) 4x10-5 

Water Viscosity (cP) 1.4 

Viscositivity 0 

Water Density (kg/m3) 1000 

Oil Formation Volume Factor 1 

Oil Compresibility (BAR-1) 4x10-5 

Oil Viscosity (cP) 0.5 

Oil Density (kg/m3) 897 

Gas Density (kg/m3) 1.5 

 

  A2.1.1: Water Wet Reservoir Model 

 
Figure A2.1.1. 1: 3D visual of the flow behaviour in Water Wet Reservoir model with Capillarity Effect and Gravity 

forces 
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Matrix – Exchange Flow Exchange 

 

 
Figure A2.1.1. 2: Matrix-Fracture Exchange behaviour in each layer of the reservoir (1 = Top Layer; each layer has 9 

matrix blocks) 

A2.1.2: Water Wet Reservoir Model without Capillarity Effect 
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Figure A2.1.2. 1: 3D visual of the flow behaviour in Water Wet Reservoir model with Gravity drainage only  

Matrix – Exchange Flow Exchange 

 

 
Figure A2.1.2. 2: Matrix-Fracture Exchange behaviour in each layer of the reservoir (1 = Top Layer; each layer has 9 

matrix blocks) 
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Figure A2.1.3. 1: 3D visual of the flow behaviour in Water Wet Reservoir model with Gravity drainage only 

Matrix – Exchange Flow Exchange 

 
Figure A2.1.3. 2: Matrix-Fracture Exchange behaviour in each layer of the reservoir (1 = Top Layer; each layer has 9 

matrix blocks) 

A2.1.4: Sensitivity Study in Water Wet Model: Homogeneous Aperture Decrease x2 

Matrix – Exchange Flow Exchange 

   

     

Figure A2.1.4. 1: Matrix-Fracture Exchange behaviour in each layer of the reservoir (1 = Top Layer; each layer has 9 
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matrix blocks) 

 

A2.1.5: Sensitivity Study in Water Wet Model: Heterogeneous Aperture Sizing (x = x1; y = x0.1; z = x0.05) 

Matrix – Exchange Flow Exchange 

   

    

Figure A2.1.5. 1: Matrix-Fracture Exchange behaviour in each layer of the reservoir (1 = Top Layer; each layer has 9 

matrix blocks) 

A2.1.6: Sensitivity Study in Water Wet Model: Aperture Sizing (x0.001) 

Matrix – Exchange Flow Exchange 

 

     
Figure A2.1.6. 1: Matrix-Fracture Exchange behaviour in each layer of the reservoir (1 = Top Layer; each layer has 9 

matrix blocks) 
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A2.1.7: Water Wet Reservoir Model without Capillarity Effect: Sensitivity Study for Gravity Effect 

Matrix – Exchange Flow Exchange 

 
Figure A2.1.7. 1: Matrix-Fracture Exchange behaviour in each layer of the reservoir (1 = Top Layer; each layer has 9 

matrix blocks)  
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A2.2: Non-Uniform Multi-Matrix blocks Simulation    

Model Specification: 

Table A2.2. 1: Non Uniform Multiblock Base Case Reservoir Parameter 

Model Parameters  

Model Grid Size (Cell Count) 50x50x21 

Model Grid Size (cm) 10x10x155 

Model gridding methodology Centre – Block Gridding 

Reservoir Datum Depth (cm) 15600 

Reservoir Pressure (BARS) 400 

Number of Matrix Blocks 25 

Total Surface for exchange (cm
3
) 14910 

Fracture Aperture Size (mm) 8 

Matrix Porosity (%) 25 

Matrix Permeability (mD) 20 

Oil Water Contact for Matrix (cm) 30000 

Fracture Porosity (%) 100 

Fracture Permeability (mD) 5000 

Oil Water Contact for Fracture (cm) 12000 

Gas Oil Contact for matrix (cm) 13000 

Gas Oil Contact for Fracture (cm) 10000 

PVT Table 

Table A2.2. 2: Fluid Properties 

Fluid Properties  

Datum Pressure (BARS) 400 

Water Formation Volume Factor 1 

Water Compressibilty (BAR-1) 4x10-5 

Water Viscosity (cP) 1.4 

Viscositivity 0 

Water Density (kg/m3) 1000 

Oil Formation Volume Factor 1 

Oil Compresibility (BAR-1) 4x10-5 

Oil Viscosity (cP) 0.5 

Oil Density (kg/m3) 897 

Gas Density (kg/m3) 1.5 

  A2.2.1: Water Wet Reservoir Model 

 
Figure A2.2.1. 1: 3D visual of the flow behaviour in Water Wet Reservoir model with Capillarity Effect and Gravity 
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drainage 

Matrix – Exchange Flow Exchange 

 
 

Figure A2.2.1. 2: Matrix-Fracture Exchange behaviour in each layer of the reservoir  
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A2.2.2: Water Wet Reservoir Model without Capillarity Effect 

 
Figure A2.2.2. 1: 3D visual of the flow behaviour in Water Wet Reservoir model with Gravity drainage only 

Matrix – Exchange Flow E

 
Figure A2.2.2. 2: Matrix-Fracture Exchange behaviour in each layer of the reservoir  
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A2.2.3: Mixed Wet Reservoir Model  

 
Figure A2.2.3. 1: 3D visual of the flow behaviour in Water Wet Reservoir model with Gravity drainage only  

Matrix – Exchange Flow Exchange 

    

Figure A2.2.3. 2: Matrix-Fracture Exchange behaviour in each layer of the reservoir  



Fine Scale Simulation of Fractured Reservoirs: Applications and Comparisons 11 

 

A2.2.4: Sensitivity Study in Water Wet Model: Homogeneous Aperture Increase x2 

Matrix – Exchange Flow Exchange 

        

Figure A2.2.4. 1: Matrix-Fracture Exchange behaviour in each layer of the reservoir   
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A2.2.5: Sensitivity Study in Water Wet Model: Heterogeneous Aperture Sizing(x = x1; y = x0.1; z = x0.05) 

Matrix – Exchange Flow Exchange 

    

Figure A2.2.5. 1: Matrix-Fracture Exchange behaviour in each layer of the reservoir  
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A2.2.6: Sensitivity Study in Water Wet Model: Aperture Sizing (x0.001) 

Matrix – Exchange Flow Exchange 

 

     
Figure A2.2.6.1: Matrix-Fracture Exchange behaviour in each layer of the reservoir  

A2.2.7: Water Wet Reservoir Model without Capillarity Effect: Sensitivity Study for Gravity Effect 

Matrix – Exchange Flow Exchange 

 
 

     

Figure A2.2.7. 1: Matrix-Fracture Exchange behaviour in each layer of the reservoir  
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A2.3: Single Matrix Block Simulation    

Model Specification: 

TableA2.1 3: Single block Base Case Reservoir Parameter 

Model Parameters  

Model Grid Size (Cell Count) 12x12x32 

Model Grid Size (cm) 25.5x25.5x160 

Model gridding methodology Centre – Block Gridding 

Reservoir Datum Depth (cm) 15000 

Reservoir Pressure (BARS) 400 

Number of Matrix Blocks 1 

Total Surface for exchange (cm
3
) 87500 

Fracture Aperture Size (mm) 5 

Matrix Porosity (%) 30 

Matrix Permeability (mD) 1 

Oil Water Contact for Matrix (cm) 25000 

Fracture Porosity (%) 100 

Fracture Permeability (mD) 1000 

Oil Water Contact for Fracture (cm) 14000 

Gas Oil Contact for matrix and Fracture (cm) 13000 

PVT Table 

TableA2.1 4: Base Case Fluid Properties 

Fluid Properties  

Datum Pressure (BARS) 400 

Water Formation Volume Factor 1 

Water Compressibilty (BAR-1) 4x10-5 

Water Viscosity (cP) 1.4 

Viscositivity 0 

Water Density (kg/m3) 1000 

Oil Formation Volume Factor 1 

Oil Compresibility (BAR-1) 4x10-5 

Oil Viscosity (cP) 0.5 

Oil Density (kg/m3) 897 

Gas Density (kg/m3) 1.5 

 

  A2.3.1: Water Wet Reservoir Model 
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Figure A2.3.1.1: 3D visual of the flow behaviour in Water Wet Reservoir model with Capillarity Effect and Gravity 

drainage 

 

Matrix – Exchange Flow Exchange 

 
Figure A2.3.1.2: Matrix-Fracture Exchange behaviour in each layer of the reservoir  

A2.3.2: Water Wet Reservoir Model without Capillarity Effect 

 
Figure A2.3.2.1: 3D visual of the flow behaviour in Water Wet Reservoir model with Gravity drainage only  

Matrix – Exchange Flow Exchange 
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Figure A2.3.2.2: Matrix-Fracture Exchange behaviour in each layer of the reservoir  

A2.3.3: Mixed Wet Reservoir Model  

 
Figure A2.3.3.1: 3D visual of the flow behaviour in Water Wet Reservoir model with Gravity drainage only  
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Figure A2.3.3.2: Matrix-Fracture Exchange behaviour in each layer of the reservoir  

A2.3.6: Sensitivity Study in Gravity Drainage Effect: Case 1 (Increase reservoir thickness x10) 

Matrix – Exchange Flow Exchange 

 
Figure A2.3.6.1: Matrix-Fracture Exchange behaviour in each layer of the reservoir  

A2.3.7: Water Wet Reservoir Model without Capillarity Effect: Sensitivity Study for Gravity Effect (Decrease x10) 

Matrix – Exchange Flow Exchange 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

0.001 0.01 0.1 1 10 100 1000 10000 

M
a

tr
ix

-F
ra

c
tu

re
 F

lo
w

 E
x

c
h

n
a

g
e

, 
s

c
c

 

Log(Time, hrs) 

Mixed Wet Reservoir Model 

1_2MW 

1_3MW 

1_4MW 

1_5MW 

-2 

0 

2 

4 

6 

8 

10 

0.001 0.01 0.1 1 10 100 1000 10000 M
at

ri
x-

Fr
ac

tu
re

 F
lo

w
 E

xc
hn

ag
e,

 s
cc

 

Log(Time, hrs) 

Water Wet with no Capillarity Effect Reservoir Model_ Gravity Test 1 

1_2G1_noCap 

1_3G1_noCap 

1_4G1_noCap 

1_5G1_noCap 



18  Fine Scale Simulation of Fractured Reservoirs: Applications and Comparison  

 

 
Figure A2.3.7.1: Matrix-Fracture Exchange behaviour in each layer of the reservoir  
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A2.4: Non-Orthogonal Flow Simulation     

Model Specification: 

TableA2.1 5: Eclipse Reservoir Parameter 

Model Parameters  

Model Grid Size (Cell Count) 50x50x1 

Model Grid Size (cm) 10x10x1 

Model gridding methodology Centre-Point Gridding 

Reservoir Datum Depth (cm) 15100 

Reservoir Pressure (BARS) 400 

Number of Matrix Blocks 19 

Fracture Aperture Size (mm) 6 

Matrix Porosity (%) 25 

Matrix Permeability (mD) 20 

Oil Water Contact for Matrix (cm) 30000 

Fracture Porosity (%) 100 

Fracture Permeability (mD) 1000 

Oil Water Contact for Fracture (cm) 12000 

Gas Oil Contact for matrix (cm) 13000 

Gas Oil Contact for Fracture (cm) 10000 

PVT Table 

TableA2.1 6: Base Case Fluid Properties 

Fluid Properties  

Datum Pressure (BARS) 400 

Water Formation Volume Factor 1 

Water Compressibilty (BAR-1) 4x10-5 

Water Viscosity (cP) 1.4 

Viscositivity 0 

Water Density (kg/m3) 1000 

Oil Formation Volume Factor 1 

Oil Compresibility (BAR-1) 4x10-5 

Oil Viscosity (cP) 0.5 

Oil Density (kg/m3) 897 

Gas Density (kg/m3) 1.5 

 

  A2.4.1: Water Wet Reservoir Model 

Matrix – Exchange Flow Exchange 

  
Figure A2.4.1.1: Matrix-Fracture Exchange behaviour in each layer of the reservoir  
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A2.4.2: Mixed Wet Reservoir Model  

Matrix – Exchange Flow Exchange 

     
Figure A2.4.2.1: Matrix-Fracture Exchange behaviour in each layer of the reservoir  

A2.4.3: Water Wet Reservoir Model: Apperture Size Decrease x0.01 to Original case  

Matrix – Exchange Flow Exchange 

     
Figure A2.4.3.1: Matrix-Fracture Exchange behaviour in each layer of the reservoir  

 

Figure A2.4.3.2: flow simulation of non-orthonal, model and behaviour of simulation by reducing size of fracture 
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A2.4.4: Sensitivity Study In Water Wet Model: Different fracture length 

Matrix – Exchange Flow Exchange 

     
Figure A2.4.4.1: Matrix-Fracture Exchange behaviour in each layer of the reservoir  

A2.4.5: Sensitivity Study in Water Wet Model: Aperture Size decrease x0.01 with different fracture length 

Matrix – Exchange Flow Exchange 

    
Figure A2.4.5.1: Matrix-Fracture Exchange behaviour in each layer of the reservoir  
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