2,832 research outputs found

    Development of a synthetic aperture radar design approach for wide-swath implementation

    Get PDF
    The first phase of a study program to develop an advanced synthetic aperture radar design concept is presented. Attributes of particular importance for the system design include wide swath coverage, reduced power requirements, and versatility in the selection of frequency, polarization and incident angle. The multiple beam configuration provides imaging at a nearly constant angle of incidence and offers the potential of realizing a wide range of the attributes desired for an orbital imaging radar for Earth resources applications

    Highly Resolved Synthetic Aperture Radar with Beam Steering

    Get PDF
    The present work deals with a highly resolved radar with a synthetic aperture (synthetic aperture radar - SAR), which uses a beam steering to improve performance. The first part of this work deals with the influence of various effects occurring in the hardware of the High-Resolution Wide-Swath SAR (HRWS SAR) system. A special focus was set to single bit quantization in multi-channel receiver. The second part of this work describes SAR processors for Sliding Spotlight mode

    Highly Resolved Synthetic Aperture Radar with Beam Steering

    Get PDF
    Diese Arbeit beschäftigt sich mit einem hochauflösenden Radar mit synthetischer Apertur. Der erste Teil dieser Arbeit beschreibt mögliche Auswirkungen verschiedener Effekte in dem Empfänger des High-Resolution Wide-Swath SAR (HRWS SAR) Systems. Darüber hinaus wird ein Konzept zu Reduktion von Quantisierungsbits in Systemen mit mehreren Empfangskanälen untersucht. Der zweite Teil der Arbeit betrifft die Datenverarbeitung eines hochauflösenden SAR-Systems in Sliding Spotlight Mode

    New Approach for Unambiguous High-Resolution Wide-Swath SAR Imaging

    Get PDF
    The high-resolution wide-swath (HRWS) SAR system uses a small antenna for transmitting waveform and multiple antennas both in elevation and azimuth for receiving echoes. It has the potential to achieve wide spatial coverage and fine azimuth resolution, while it suffers from elevation pattern loss caused by the presence of topographic height and impaired azimuth resolution caused by nonuniform sampling. A new approach for HRWS SAR imaging based on compressed sensing (CS) is introduced. The data after range compression of multiple elevation apertures are used to estimate direction of arrival (DOA) of targets via CS, and the adaptive digital beamforming in elevation is achieved accordingly, which avoids the pattern loss of scan-on-receive (SCORE) algorithm when topographic height exists. The effective phase centers of the system are nonuniformly distributed when displaced phase center antenna (DPCA) technology is adopted, which causes Doppler ambiguities under traditional SAR imaging algorithms. Azimuth reconstruction based on CS can resolve this problem via precisely modeling the nonuniform sampling. Validation with simulations and experiment in an anechoic chamber are presented

    High resolution radargrammetry with COSMO-SkyMed, TerraSAR-X and RADARSAT-2 imagery: development and implementation of an image orientation model for Digital Surface Model generation

    Get PDF
    Digital Surface and Terrain Models (DSM/DTM) have large relevance in several territorial applications, such as topographic mapping, monitoring engineering, geology, security, land planning and management of Earth's resources. The satellite remote sensing data offer the opportunity to have continuous observation of Earth's surface for territorial application, with short acquisition and revisit times. Meeting these requirements, the SAR (Synthetic Aperture Radar) high resolution satellite imagery could offer night-and-day and all-weather functionality (clouds, haze and rain penetration). Two different methods may be used in order to generate DSMs from SAR data: the interferometric and the radargrammetric approaches. The radargrammetry uses only the intensity information of the SAR images and reconstructs the 3D information starting from a couple of images similarly to photogrammetry. Radargrammetric DSM extraction procedure consists of two basic steps: the stereo pair orientation and the image matching for the automatic detection of homologous points. The goal of this work is the definition and the implementation of a geometric model in order to orientate SAR imagery in zero Doppler geometry. The radargrammetric model implemented in SISAR (Software per Immagini Satellitari ad Alta Risoluzione - developed at the Geodesy and Geomatic Division - University of Rome "La Sapienza") is based on the equation of radar target acquisition and zero Doppler focalization Moreover a tool for the SAR Rational Polynomial Coefficients (RPCs) generation has been implemented in SISAR software, similarly to the one already developed for the optical sensors. The possibility to generate SAR RPCs starting from a radargrammetric model sounds of particular interest since, at present, the most part of SAR imagery is not supplied with RPCs, although the RPFs model is available in several commercial software. Only RADARSAT-2 data are supplied with vendors RPCs. To test the effectiveness of the implemented RPCs generation tool and the SISAR radargrammetric orientation model the reference results were computed: the stereo pairs were orientated with the two model. The tests were carried out on several test site using COSMO-SkyMed, TerraSAR-X and RADARSAT-2 data. Moreover, to evaluate the advantages and the different accuracy between the orientation models computed without GCPs and the orientation model with GCPs a Monte Carlo test was computed. At last, to define the real effectiveness of radargrammetric technique for DSM extraction and to compare the radrgrammetric tool implemented in a commercial software PCI-Geomatica v. 2012 and SISAR software, the images acquired on Beauport test site were used for DSM extraction. It is important underline that several test were computed. Part of this tests were carried out under the supervision of Prof. Thierry Toutin at CCRS (Canada Centre of Remote Sensing) where the PCI-Geomatica orientation model was developed, in order to check the better parameters solution to extract radargrammetric DSMs. In conclusion, the results obtained are representative of the geometric potentialities of SAR stereo pairs as regards 3D surface reconstruction

    Bistatic synthetic aperture radar imaging using Fournier methods

    Get PDF
    corecore