545 research outputs found

    IGAA: An Efficient Optimization Technique for RFID Network Topology Design in Internet of Things

    Get PDF
    [[abstract]]Most RFID applications in the Internet of Things (IoTs) use multiple readers to read the IDs of multiple tags and form the RFID network. In such a network, unguarded reader deployment may generate over-crowded readers, cause interferences and, as a result, increases the deployment cost while degrading tag detection. Seeing that desirable reader deployment is crucial for RFID system performance, this paper introduces an optimization-based IGAA approach which outperforms existing RFID topology designs by turning up more favorable reader deployment and system performance. The new approach employs an advanced multi-objective fitness function and improved genetic annealing algorithms (GAA) to pursue a better RFID topology design. By involving an improved gene-stirring operation to help preserve good genes and locate optimal solutions for reader deployment, it is simple in operation but effective in practice. Experimental evaluation shows that when compared with related approaches, IGAA can yield better solution quality with less search time.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子

    Advances in analytical models and applications for RFID, WSN and AmI systems

    Get PDF
    Experimentos llevados a cabo con el equipo de división de honor UCAM Volleyball Murcia.[SPA] Internet de las cosas (IoT) integra distintos elementos que actúan tanto como fuentes, como sumideros de información, a diferencia de la percepción que se ha tenido hasta ahora de Internet, centrado en las personas. Los avances en IoT engloban un amplio número de áreas y tecnologías, desde la adquisición de información hasta el desarrollo de nuevos protocolos y aplicaciones. Un concepto clave que subyace en el concepto de IoT, es el procesamiento de forma inteligente y autónoma de los flujos de información que se dispone. En este trabajo, estudiamos tres aspectos diferentes de IoT. En primer lugar, nos centraremos en la infraestructura de obtención de datos. Entre las diferentes tecnologías de obtención de datos disponibles en los sistemas IoT, la Identificación por Radio Frecuencia (RFID) es considerada como una de las tecnologías predominantes. RFID es la tecnología detrás de aplicaciones tales como control de acceso, seguimiento y rastreo de contenedores, gestión de archivos, clasificación de equipaje o localización de equipos. Con el auge de la tecnología RFID, muchas instalaciones empiezan a requerir la presencia de múltiples lectores RFID que operan próximos entre sí y conjuntamente. A estos escenarios se les conoce como dense reader environments (DREs). La coexistencia de varios lectores operando simultáneamente puede causar graves problemas de interferencias en el proceso de identificación. Uno de los aspectos claves a resolver en los RFID DREs consiste en lograr la coordinación entre los lectores. Estos problemas de coordinación son tratados en detalle en esta tesis doctoral. Además, dentro del área de obtención de datos relativa a IoT, las Redes de Sensores Inalámbricas (WSNs) desempeñan un papel fundamental. Durante la última década, las WSNs han sido estudiadas ampliamente de forma teórica, y la mayoría de problemas relacionados con la comunicación en este tipo de redes se han conseguido resolver de forma favorable. Sin embargo, con la implementación de WSNs en proyectos reales, han surgido nuevos problemas, siendo uno de ellos el desarrollo de estrategias realistas para desplegar las WSN. En este trabajo se estudian diferentes métodos que resuelven este problema, centrándonos en distintos criterios de optimización, y analizando las diferentes ventajas e inconvenientes que se producen al buscar una solución equilibrada. Por último, la Inteligencia Ambiental (AmI) forma parte del desarrollo de aplicaciones inteligentes en IoT. Hasta ahora, han sido las personas quienes han tenido que adaptarse al entorno, en cambio, AmI persigue crear entornos de obtención de datos capaces de anticipar y apoyar las acciones de las personas. AmI se está introduciendo progresivamente en diversos entornos reales tales como el sector de la educación y la salud, en viviendas, etc. En esta tesis se introduce un sistema AmI orientado al deporte que busca mejorar el entrenamiento de los atletas, siendo el objetivo prioritario el desarrollo de un asistente capaz de proporcionar órdenes de entrenamiento, basadas tanto en el entorno como en el rendimiento de los atletas. [ENG] Internet of Things (IoT) is being built upon many different elements acting as sources and sinks of information, rather than the previous human-centric Internet conception. Developments in IoT include a vast set of fields ranging from data sensing, to development of new protocols and applications. Indeed, a key concept underlying in the conception of IoT is the smart and autonomous processing of the new huge data flows available. In this work, we aim to study three different aspects within IoT. First, we will focus on the sensing infrastructure. Among the different kind of sensing technologies available to IoT systems, Radio Frequency Identification (RFID) is widely considered one of the leading technologies. RFID is the enabling technology behind applications such as access control, tracking and tracing of containers, file management, baggage sorting or equipment location. With the grow up of RFID, many facilities require multiple RFID readers usually operating close to each other. These are known as Dense Reader Environments (DREs). The co-existence of several readers operating concurrently is known to cause severe interferences on the identification process. One of the key aspects to solve in RFID DREs is achieving proper coordination among readers. This is the focus of the first part of this doctoral thesis. Unlike previous works based on heuristics, we address this problem through an optimization-based approach. The goal is identifying the maximum mean number of tags while network constraints are met. To be able to formulate these optimization problems, we have obtained analytically the mean number of identifications in a bounded -discrete or continuous- time period, an additional novel contribution of our work. Results show that our approach is overwhelmingly better than previous known methods. Along sensing technologies of IoT, Wireless Sensor Networks (WSNs) plays a fundamental role. WSNs have been largely and theoretically studied in the past decade, and many of their initial problems related to communication aspects have been successfully solved. However, with the adoption of WSNs in real-life projects, new issues have arisen, being one of them the development of realistic strategies to deploy WSNs. We have studied different ways of solving this aspect by focusing on different optimality criteria and evaluating the different trade-offs that occur when a balanced solution must be selected. On the one hand, deterministic placements subject to conflicting goals have been addressed. Results can be obtained in the form of Pareto-frontiers, allowing proper solution selection. On the other hand, a number of situations correspond to deployments were the nodes¿ position is inherently random. We have analyzed these situations leading first to a theoretical model, which later has been particularized to a Moon WSN survey. Our work is the first considering a full model with realistic properties such as 3D topography, propellant consumptions or network lifetime and mass limitations. Furthermore, development of smart applications within IoT is the focus of the Ambient Intelligence (AmI) field. Rather than having people adapting to the surrounding environment, AmI pursues the development of sensitive environments able to anticipate support in people¿s actions. AmI is progressively being introduced in many real-life environments like education, homes, health and so forth. In this thesis we develop a sport-oriented AmI system designed to improve athletes training. The goal is developing an assistant able to provide real-time training orders based on both environment and athletes¿ biometry, which is aimed to control the aerobic and the technical-tactical training. Validation experiments with the honor league UCAM Volleyball Murcia team have shown the suitability of this approach.[ENG] Internet of Things (IoT) is being built upon many different elements acting as sources and sinks of information, rather than the previous human-centric Internet conception. Developments in IoT include a vast set of fields ranging from data sensing, to development of new protocols and applications. Indeed, a key concept underlying in the conception of IoT is the smart and autonomous processing of the new huge data flows available. In this work, we aim to study three different aspects within IoT. First, we will focus on the sensing infrastructure. Among the different kind of sensing technologies available to IoT systems, Radio Frequency Identification (RFID) is widely considered one of the leading technologies. RFID is the enabling technology behind applications such as access control, tracking and tracing of containers, file management, baggage sorting or equipment location. With the grow up of RFID, many facilities require multiple RFID readers usually operating close to each other. These are known as Dense Reader Environments (DREs). The co-existence of several readers operating concurrently is known to cause severe interferences on the identification process. One of the key aspects to solve in RFID DREs is achieving proper coordination among readers. This is the focus of the first part of this doctoral thesis. Unlike previous works based on heuristics, we address this problem through an optimization-based approach. The goal is identifying the maximum mean number of tags while network constraints are met. To be able to formulate these optimization problems, we have obtained analytically the mean number of identifications in a bounded -discrete or continuous- time period, an additional novel contribution of our work. Results show that our approach is overwhelmingly better than previous known methods. Along sensing technologies of IoT, Wireless Sensor Networks (WSNs) plays a fundamental role. WSNs have been largely and theoretically studied in the past decade, and many of their initial problems related to communication aspects have been successfully solved. However, with the adoption of WSNs in real-life projects, new issues have arisen, being one of them the development of realistic strategies to deploy WSNs. We have studied different ways of solving this aspect by focusing on different optimality criteria and evaluating the different trade-offs that occur when a balanced solution must be selected. On the one hand, deterministic placements subject to conflicting goals have been addressed. Results can be obtained in the form of Pareto-frontiers, allowing proper solution selection. On the other hand, a number of situations correspond to deployments were the nodes¿ position is inherently random. We have analyzed these situations leading first to a theoretical model, which later has been particularized to a Moon WSN survey. Our work is the first considering a full model with realistic properties such as 3D topography, propellant consumptions or network lifetime and mass limitations. Furthermore, development of smart applications within IoT is the focus of the Ambient Intelligence (AmI) field. Rather than having people adapting to the surrounding environment, AmI pursues the development of sensitive environments able to anticipate support in people¿s actions. AmI is progressively being introduced in many real-life environments like education, homes, health and so forth. In this thesis we develop a sport-oriented AmI system designed to improve athletes training. The goal is developing an assistant able to provide real-time training orders based on both environment and athletes¿ biometry, which is aimed to control the aerobic and the technical-tactical training. Validation experiments with the honor league UCAM Volleyball Murcia team have shown the suitability of this approach.Universidad Politécnica de CartagenaPrograma de doctorado en Tecnología de la Información y de las Comunicacione

    Real-time localization using received signal strength

    Get PDF
    Locating and tracking assets in an indoor environment is a fundamental requirement for several applications which include for instance network enabled manufacturing. However, translating time of flight-based GPS technique for indoor solutions has proven very costly and inaccurate primarily due to the need for high resolution clocks and the non-availability of reliable line of sight condition between the transmitter and receiver. In this dissertation, localization and tracking of wireless devices using radio signal strength (RSS) measurements in an indoor environment is undertaken. This dissertation is presented in the form of five papers. The first two papers deal with localization and placement of receivers using a range-based method where the Friis transmission equation is used to relate the variation of the power with radial distance separation between the transmitter and receiver. The third paper introduces the cross correlation based localization methodology. Additionally, this paper also presents localization of passive RFID tags operating at 13.56MHz frequency or less by measuring the cross-correlation in multipath noise from the backscattered signals. The fourth paper extends the cross-correlation based localization algorithm to wireless devices operating at 2.4GHz by exploiting shadow fading cross-correlation. The final paper explores the placement of receivers in the target environment to ensure certain level of localization accuracy under cross-correlation based method. The effectiveness of our localization methodology is demonstrated experimentally by using IEEE 802.15.4 radios operating in fading noise rich environment such as an indoor mall and in a laboratory facility of Missouri University of Science and Technology. Analytical performance guarantees are also included for these methods in the dissertation --Abstract, page iv

    Comparison of WiFi-based indoor positioning techniques

    Get PDF

    A Novel and Efficient Anti-Collision Protocol for RFID Tag Identification

    Get PDF
    Radio frequency identification (RFID) is prominent technology for fast object identification and tracking. In RFID systems, reader-to-reader or tag-to-tag collisions are common. Majority of probabilistic and deterministic anti-collisions methods are inefficient in channel distribution and improving the performance. In this work, simulation annealing based anti-collision protocol is proposed where there is uniform distribution of channels among readers. In addition, preference is given to tag state parameters over fixed scheduling in order to increase the performance. The tag state parameters named energy efficiency, distance from selected reader and distance from obstacles are considered. The simulation results show that the proposed approach is an effective mechanism where there is a minimum improvement of 16.7% for 100 readers and maximum of 32.7% for 1000 readers in tag identification ratio, and a minimum improvement of 23% for 1000 readers and maximum of 75.3% for 100 readers in total successful interrogation cycles. Further, total time cycles, total IDLE cycles, total number of collisions, delay, and total number of packets sent and received are reduced compared to state of-art protocols. It is observed that the proposed simulation annealing based protocol is contiguous channels allocation algorithm with zero collision

    An interactive product development model in remanufacturing environment: a chaos-based artificial bee colony approach

    Get PDF
    This research presents an interactive product development model in re-manufacturing environment. The product development model defined a quantitative value model considering product design and development tasks and their value attributes responsible to describe functions of the product. At the last stage of the product development process, re-manufacturing feasibility of used components is incorporated. The consummate feature of this consideration lies in considering variability in cost, weight, and size of the constituted components depending on its types and physical states. Further, this research focuses on reverse logistics paradigm to drive environmental management and economic concerns of the manufacturing industry after the product launching and selling in the market. Moreover, the model is extended by integrating it with RFID technology. This RFID embedded model is aimed at analyzing the economical impact on the account of having advantage of a real time system with reduced inventory shrinkage, reduced processing time, reduced labor cost, process accuracy, and other directly measurable benefits. Consideration the computational complexity involved in product development process reverse logistics, this research proposes; Self-Guided Algorithms & Control (S-CAG) approach for the product development model, and Chaos-based Interactive Artificial Bee Colony (CI-ABC) approach for re-manufacturing model. Illustrative Examples has been presented to test the efficacy of the models. Numerical results from using the S-CAG and CI-ABC for optimal performance are presented and analyzed. The results clearly reveal the efficacy of proposed algorithms when applied to the underlying problems. --Abstract, page iv
    corecore