
International Journal of Future Generation Communication and Networking 

Vol. 8, No. 1 (2015), pp. 191-206 

http://dx.doi.org/10.14257/ijfgcn.2015.8.1.20 

 

 

ISSN: 2233-7857 IJFGCN  

Copyright ⓒ 2015 SERSC 

IGAA: An Efficient Optimization Technique for RFID Network 
Topology Design in Internet of Things 

 

 

Po-Jen Chuang and Wei-Ting Tsai 

Department of Electrical Engineering 
Tamkang University 

Tamsui, New Taipei City, Taiwan 25137, R. O. C. 
E-mail: pjchuang@ee.tku.edu.tw 

Abstract 

Most RFID applications in the Internet of Things (IoTs) use multiple readers to read the 

IDs of multiple tags and form the RFID network. In such a network, unguarded reader 

deployment may generate over-crowded readers, cause interferences and, as a result, 

increases the deployment cost while degrading tag detection. Seeing that desirable reader 

deployment is crucial for RFID system performance, this paper introduces an optimization-

based IGAA approach which outperforms existing RFID topology designs by turning up more 

favorable reader deployment and system performance. The new approach employs an 

advanced multi-objective fitness function and improved genetic annealing algorithms (GAA) 

to pursue a better RFID topology design. By involving an improved gene-stirring operation to 

help preserve good genes and locate optimal solutions for reader deployment, it is simple in 

operation but effective in practice. Experimental evaluation shows that when compared with 

related approaches, IGAA can yield better solution quality with less search time. 

 

Keywords: RFID networks; topology design; optimization-based approaches; Genetic 

Annealing Algorithms (GAA); experimental evaluation. 

 

1. Introduction 

The radio frequency identification (RFID), a widely used technology in practical 

applications [1-6], has been considered as one of the principal building blocks for 

realizing the Internet of Things (IoTs) concept [7-12]. In IoTs, most RFID applications 

use multiple readers to read the IDs of multiple tags and form the RFID network. For 

instance, a supermarket or logistics management usually needs multiple readers to read 

the multiple items in one area. To facilitate the operations, it is necessary to arrange 

those to-be-deployed RFID readers, including their positions and power levels , by an 

optimal topology design. Unguarded or unplanned reader deployment (for instance, 

readers are largely or randomly deployed) may generate over-crowded readers in the 

network and therefore brings up interferences. When the situation happens, the 

deployment cost will escalate sharply and the percentage of successful tag detection 

will tumble down.  

 As mentioned, interferences tend to happen when an RFID network is over-crowded 

with readers. There are two such interferences, the reader-to-tag and reader-to-reader 

interferences [13-15]. In Figure 1, when Tag 3 is read by both readers R1 and R2, the reader-

to-tag collision may happen; while in Figure 2, if R1 and R2 are neighbors and Tag 3 can 

be read by R1, it can cause the reader-to-reader collision. 
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That is to say, when developing an optimal RFID topology design, we must take not 

only the reader deployment cost and the percentage of tag detection but also the above 

two interferences into account. Seeing that reader deployment plays a significant role in 

RFID system performance, we introduce a new RFID topology design in this paper to 

pursue more desirable reader deployment and system performance. To achieve the goal, 

we build the new topology design based on (1) the Genetic Annealing Algorithms 

(GAA) – a previous optimization approach of ours [16], (2) an advanced multi-

objective fitness function and (3) the Improved Genetic Annealing Algorithms (IGAA). 

Simple in design and easy to implement, both GAA and IGAA optimization approaches 

employ a gene-stirring operation, a novel idea out of the annealing concept [17], to help 

preserve good genes, locate the optimal solutions for reader deployment, and ultimately 

upgrade the overall system performance. 

Extensive simulation runs are conducted to evaluate and compare the performance – 

in terms of solution quality and solution search time – of three related optimization 

approaches: GA [18-22], GAA [16] and IGAA, all using the proposed multi-objective 

fitness function. Solution quality refers to the optimality of solutions – to be indicated 

by the fitness values, and solution search time refers to the speed of finding desirable 

solutions – indicated by the needed complexity. The collected simulation results show 

that (1) our advanced multi-objective fitness function can reduce the required cost for 

all of the three approaches, (2) GAA performs better than the original GA approach, 

and (3) among the approaches, the new IGAA proves to be an optimal choice as it 

yields the best performance. 

 

2. Background Study 
 

2.1. The Multi-objective Fitness Function  

A new optimization-based approach is recently proposed in [18] to give a favorable RFID 

topology design. Constructed on the genetic algorithms (GA), the approach evaluates each 

possible solution by a defined linear weighted multi-objective fitness function which covers six 

 

Figure 2. Illustration of the Reader-to-reader Interference 

 

Figure 1. Illustration of the Reader-to-tag Interference 
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objectives: overlapping of the reading area, the number of useless readers, the number of 

redundant readers, the number of tags located in the overlapped reading areas, the number of 

tags covered, and the number of readers located out of the deployment area. Each objective in 

the fitness function is defined as fi = 1/(1+εi
2
), where εi is the difference between the target and 

current solutions in objective i.  To keep εi an integer and meanwhile avoid unreasonably 

amplifying this difference, it is suggested that εi
2
 be replaced by |εi|.  

For the approach, as we can see from Figure 3, the values of y depict much bigger 

differences between 0 < x < 40 and less differences (i.e., much smoother) around x = 100. To 

prevent our fitness function from encountering the same problem, we believe it is better to 

replace 1 in the denominator by 100. Based on the observation and other references [18-20], 

we redefine each objective in the fitness function to become fi = 1/(100+|εi|), instead of fi = 

1/(1+εi
2
), to remove possible biased effects due to a certain objective, i.e., to be more practical 

and reasonable. By doing so, we attain the fitness = ∑ wi*fi, where fi and wi respectively 

represent objective i and its weight.  

Illustrated in the following are the five objectives in [18]. Note that the last objective – 

the number of readers located out of the deployment area – is not counted in here because 

we consider it unreasonable in practice to deploy readers out of the should -be-known 

deployment area and therefore decide to exclude the objective from our multi-objective 

fitness function. 

 

 
2.1.1. Overlapping of the Reading Area: Dense reader deployment may generate large 

overlapping of the reading area and consequently brings up the mentioned reader-to-reader and 

reader-to-tag interferences. Hence, we should limit the overlapping of the reading area upon 

deployment as Figure 4 shows. When it is practically difficult to keep all readers from 

overlapping, we can set the limit of the overlapping ratio to be 25%. That is, 25% overlapping 

of the reading areas is allowed. We then define this objective as  

 

f1 = 1/(100+|ε1|), where the value of ε1 represents the exceeded overlapping beyond the limit. 

 

 

 

Figure 3. The Curve of Function y = 1/x 

 

Figure 4. Overlapping of the Reading Area 
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2.1.2. The Number of Useless Readers: Useless readers will cause extra cost and also the 

reader-to-reader interference, as Figure 5 demonstrates. The objective is defined as  

 

f2 = 1/(100+|ε2|), in which ε2 represents the number of useless readers. 

 

 
 

2.1.3. The Number of Redundant Readers: Redundant readers also lead to extra cost and 

both the reader-to-reader and reader-to-tag interferences, as Figure 6 displays. This objective is 

defined as 

 

 f3 = 1/(100+|ε3|), where ε3 is the number of redundant readers. 

 

 
 

2.1.4. The Number of Tags Located in Overlapping Reading Areas: To avoid locating 

tags in the overlapping reading area is either difficult or costly (takes substantial deployment 

cost). But if too many tags are located in the overlapping area, it will trigger the reader-to-tag 

interference. Therefore we need to limit the number of such tags upon deployment. In Figure 7, 

we see that the number of tags allowed in the overlapping reading area between any two 

readers is set to be 2. The objective is defined as 

 f4 = 1/(100+|ε4|), ε4 indicating the number of tags located in overlapping reading areas 

beyond the limit. 

 

 
2.1.5. The Number of Tags Covered: Assume that a tag can be successfully identified if it 

is covered by a reading area. Given any number of readers in the deployment area, it will be 

desirable to cover as many tags as possible, as shown in Figure 8. This objective is defined as  

f5 = 1/(100+|ε5|), ε5 referring to the number of uncovered tags which should be minimized. 

 

 

Figure 7. Tags Located in the Overlapped Area  

 

Figure 6. Redundant Readers 

 

Figure 5. Useless Readers 
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2.2. The Optimization Algorithms  

Optimization algorithms can be employed to solve quite a number of problems, including 

task matching and scheduling, reader network planning and so on. The following is the brief 

introduction of the two optimization algorithms involved in this investigation. 

 

2.2.1. The Genetic Algorithms (GA) [23]: GA has three major operations: selection, 

crossover and mutation. It uses the selection process, which covers selection and copying, to 

select better fitness values into the next generation (common mechanisms include roulette 

wheel and tournament), the crossover process to mix the species in order to produce a better 

next generation (common mechanisms include a single point, pairs of points and even 

crossover), and the mutation process to avoid the missing of excellent species. 

 

GA operates in the following steps: 

Step1: Initialize the population size 

Step2: Calculate the fitness value of each species according to the objective function 

Step3: Go through the selection process according to the fitness values 

Step4: Go through the crossover process to produce the next generation 

Step5: Take the mutation process to avoid local optima  

Repeat steps 2 to 5 until convergence or reaching a stop condition. Figure 9 gives the 

flowchart of GA. 

 
2.2.2. The Genetic Annealing Algorithms (GAA) [16]: A previous optimization approach 

of ours, GAA is the hybrid practice of GA, SA (simulated annealing) [17] and GESA (guided 

evolutionary simulated annealing) [24]. It involves only one operation, the stir operation, and 

four parameters: the number of genes to be stirred (N), the decreased number of genes to be 
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Figure 9. The Flowchart of GA 

 

Figure 8. The Number of Tags Covered 
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stirred (n), the number of stirs (M), and the decreased number of stirs (m). G = N/n = the 

number of generations. M decides the frequency of stirs while m decides the decreasing stir 

frequency, in the stir operation. 

 

Denoted by Stir(X, N), where X represents any solution and N is the number of genes to be 

stirred, the stir operation works as follows. 

(1)  Randomly select N genes (characters) from an X. 

(2)  Change the values of the selected genes or their positions in the chromosomes. 

(3) Completely stir the genes in the chromosomes to bring up all possible solutions 

scattering over the search space.  

 

GAA operates in the following steps: 

Step1: Set the four parameters N, n, M and m 

Step2: Randomly generate a solution X 

Step3: Generate a new solution Y after executing the stir operation for X 

Step4: Select Y if F(Y) is better than F(X) or select X if otherwise 

Repeat steps 3 and 4 M times. Then, decrease N by n and repeat steps 3 and 4 M = M-m 

times, until N becomes 0. Figure 10 shows the flowchart of GAA. 

 
2.2.3. GA and GAA: Table 1 lists the features of GA and GAA for easier contrast. As 

GAA has a limited number of iterations, we need to adjust the number of genes to be stirred (N) 

so that the generations can outnumber the genes. For example, If N = 30 and the decreased 

number of genes to be stirred n = 1, GAA will produce at most 30 generations. To produce 

more than 30 generations, it needs to adjust N. 
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Figure 10. The Flowchart of GAA  
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We adjust the number of genes to be stirred, use the above mentioned multi-objective 

fitness function to simulate GA and GAA, and run up to 200 iterations. Figure 11 gives the 

fitness values obtained in each iteration. As we can see, in earlier iterations, GAA does not 

yield much better search capability than GA because it has more genes to be stirred. But, in 

later iterations, it is able to generate more favorable fitness values due to its special features. 

 
 

3. The Proposed Approaches 
 

3.1. The Advanced Multi-objective Fitness Function  

As the cost objective function in existing literature [19] considers only the total price 

(related to the total power) of deploying readers, it may lead to biased reader 

deployment in multi-objective optimization. More specifically, it may lead to biased 

consideration and hence two biased deployment results: (1) covered tags will decrease 

extensively – because the cost issue prevails and (2) remaining readers become 

useless – because more readers with high power have been deployed (e.g., intending to 

deploy 10 readers but end up deploying only 4 with the maximum power). To avoid 

such biased effects, we thus define a more proper cost objective f6 = 1/(100+|ε6|) , where 

 
 

 

Figure 11. Fitness values for GA and GAA in each Iteration 

Table 1. Characteristic Comparison between GA and GAA 

 GA GAA 
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Complex Simple 
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while n is the number of deployed readers. The value of ε6 indicates the average reader 

coverage area per tag, related to the density of covered tags (the smaller ε6 is, the higher 

the density). Minimizing ε6 can reduce the cost and increase the covered tags, as the 3 

cases in Figures 12-14 (resulting from our cost objective f6) illustrate. In Case 1, for a 

deployed reader R1, reducing its coverage area (from left R1 to right R1 in Figure 12) 

to cover the same number of tags can generate better deployment. By better deployment, 

we indicate R1 needs a smaller coverage area, lower power and reduced cost. That is, 

minimizing ε6 can reduce the average coverage area and power consumption per reader, 

and as a result bring down the overall deployment cost. 

 
To achieve our cost objective f6, we may change the deployment result from deploying one 

reader to two readers. As Case 2 in Figure 13 shows, the reduced coverage area from left R1 to 

right R1 and R2 can still cover the same number of tags. Assuming the cost of two low-power 

readers is lower than that of a high-power reader – which is usually true in practice, such a 

deployment change can help reduce the overall deployment cost. 

 
Figure 14 shows that achieving our cost objective f6 may bring a deployed reader, such as 

R1 here, to cover more tags. This may not cut down the cost of the deployed reader but we can 

still expect the overall deployment cost down because of the obtained more covered tags.  

 

 
 

3.2. The Proposed Improved Genetic Annealing Algorithm (IGAA)  

The performance differences of GA and GAA reveal two problems with GAA:  (1) 

generating limited iterations and (2) yielding less search capability in the middle of 

iterations. To increase iterations, we can take a proper decimal number less than 1 as 

the decreased number of genes to be stirred n (1>n>0) to extend the number of 

iterations. For example, with the initial number of stir genes N = 10 and n = 1, GAA 

will have at most 10 iterations, but if we set n = 1/20 = 0.05, we can extend the number 

of iterations from 10 to 200. As N is an integer, it will decrease by 1 after each 20 

iterations. We use the notation (10,...,10), (9,..,9), …, (2,..,2), (1,..,1) to illustrate the 

value changes of N, where each parenthesis indicates the values of N for 20 iterations.  

 

Figure 14. Case 3: Achieved by Cost Objective f6 

 

Figure 13. Case 2: Achieved by Cost Objective f6 

 

Figure 12. Case 1: achieved by cost objective f6 
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The two problems with GAA are actually related. That is, the solution for the first 

problem may worsen the second problem because when we take smaller n to produce 

more iterations, the stir operations will generate large-scale mutations and unexpectedly 

degrade the search capability. To improve the situation, we decrease n by a new 

approach: moving from constant decrement to cyclic decrement, to narrow down 

possible large-scale mutations. The new approach is called Improved GAA or IGAA 

because it removes the disadvantages of GAA. To help illustrate IGAA, Figure 15 recaps 

the operations of Stirs and the four parameters (N, n, M, m) in GAA [16]. 

 

 
 

Figure 15. The Operations of GAA 

 
Figure 16 gives the operations of IGAA. As the figure shows, IGAA can arbitrarily 

set iter to be any number of iterations, in contrast to GAA which needs to set n between 

0 and 1 to increase the number of iterations. By changing the values of N, it also avoids 

unnecessary large-scale mutations in GAA. To see how IGAA works, we use k (Figure 

16) instead of i (Figure 15) to indicate N in each iteration, and calculate k by function 

transform(i, iter) (Figure 17). To give an example, assuming iter = 200, N = 10, n = 1 

and i is initialized to be iter = 200, the value changes of k for 200 iterations in IGAA 

will be (10,9,8,…,3,2,1,10,9,…), (9,8,7,…,3,2,1,9,8,…), …, (2,1,2,1,…), (1,1,…) – in 

contrast to (10,...,10), (9,..,9), …, (2,..,2), (1,..,1) in GAA with 1>n>0. It is clear that 

IGAA moves from constant decrement to cyclic decrement for each 20 iterations, to 

narrow down possible large-scale mutations. Figure 18 shows the flowchart of IGAA. 

 

 
 

Figure 16. The Operations of IGAA 

 

 
 

Figure 17. Function Transform() 
 

int transform(i,iter){ 

 temp=(i-1)/(iter/N)+1; 

 k=(i-1)%temp+1; 

 return k; 

} 

for( i=iter ; i>0 ; i-=n ){ 

 k=transform(i,iter); 

 for( j=0 ; j<M ; j++ ){ 

  Y = stir(X,k); 

  if( F(X) > F(Y) ) Y=X; 

 } 

 M-=m; 

} 

for( i=N ; i>0 ; i-=n ){ 

 for( j=0 ; j<M ; j++ ){ 

  Y = stir(X,i); 

  if( F(X) > F(Y) ) Y=X; 

 } 

 M-=m; 

} 
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4. Experimental Evaluation  

We have carried out extensive simulation runs to evaluate the performance of related 

optimization-based RFID network topology designs, including GA, GAA and IGAA. 

Table 2 lists the involved simulation parameters [18]. 

 

We first calculate the cost of GA and GAA before and after using our new cost 

objective to check its effect. The stop criterion is set at 200 iterations, and the results 

(i.e., the cost differences of the two approaches) are plotted in Figure 19. We define the 

cost as the total power of the deployed readers, and find that the new cost objective 

helps both GA and GAA drop the cost notably, each from 44.9 to 35.5 and 49.8 to 38.6. 
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Y
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Generate a new 
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Figure 18. The Flowchart of IGAA 

Table 2. The Simulation Parameters 

Readers 10 w1 0.2 

Reader area 32m*32m w2 0.2 

Tags 30 w3 0.2 

Tag area 20m*20m w4 0.1 

Overlapping 

ratio limit 
0.25 w5 0.2 

Tag limit in 

overlapping  
2 w6 0.1 
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Based on the results, we henceforth simulate and compare the three target approaches 

under the practice of the advanced fitness function and new cost objective. 

 

Figure 20 gives the fitness values obtained in each iteration for GA, GAA and IGAA. 

Among the approaches, IGAA yields the best fitness value in each iteration, thanks to 

its improved reader deployment. The performance of GAA and GA stays close for the 

first 80 iterations and then starts to differ, with the advantage going to GAA. 

 

Figure 21 exhibits the fitness values obtained upon convergence. Our simulation 

assumes convergence happens when the fitness value deference between two back-to-

back iterations drops below a preset small value continuously for 20 iterations.  Recall 

that in our objective function fi = 1/(100+|εi|), εi is the difference between the target and 

current solutions for objective i and will become 0 when reaching objective i. As the 

smallest difference of εi/fi between two back-to-back iterations is 1/(1/100-1/101), we 

thus preset the small value = (1/100-1/101). In Figure 21, we see that GAA generates 

slightly smaller fitness values than GA – the consequence of the problems mentioned in 

Section 3.2. By contrast, IGAA which improves on the problems generates remarkably 

better fitness values upon convergence (i.e., better solution quality) than GAA and GA. 

 

Figure 20. Fitness Values Obtained in each Iteration for the Approaches 

 

Figure 19. Cost Performance before and After using Our New Cost 
Objective 
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Figure 22 displays complexity. We define complexity as the average processing time 

per iteration, to indicate the solution search time or the simplicity of operations. The 

results show that GAA and IGAA take much less complexity than GA because they 

both involve only the simple stir operation in each iteration. We also notice that IGAA, 

which obtains N from function transform(), takes higher complexity than GAA. 

 

Figure 23 gives the number of iterations upon convergence for the approaches, to 

indicate their ability to jump out of local optima or the probability not to fall into local 

optima. Note that we assume convergence happens when the fitness value deference 

between two back-to-back iterations drops below a preset value (1/100-1/101) 

continuously for 20 iterations. Therefore, when an approach has higher ability to jump 

out of local optima, it may widen the difference of fitness values between iterations and 

result in later convergence (i.e., reaching convergence with increased iterations). That is 

to say, the number of iterations upon convergence is not a proper indication for search 

capability. As Figure 21 exhibits, IGAA generates the biggest number of iterations but 

also significantly the best fitness value upon convergence among the approaches. 

Compared with GA, GAA takes a smaller number of iterations and also smaller fitness 

value upon convergence due to its limited number of iterations. The key point is, if the 

three approaches are to reach the same fitness value, we believe our IGAA will take the 

least number of iterations. 

     

Figure 22. Complexity for the Approaches 

 

Figure 21. Fitness Values Obtained upon Convergence 
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5. Conclusions  

 Observing that reader deployment plays a significant role in RFID system 

performance, this investigation introduces a new RFID topology design to pursue more 

desirable reader deployment and enhanced system performance. The new approach is 

built on genetic annealing algorithms (GAA) but has improved over existing design 

loopholes to ensure better practice. To achieve the goal, we develop an advanced multi-

objective fitness function and the improved genetic annealing algorithms (IGAA). The 

IGAA approach is simple in design and easy to implement. It employs an improved 

gene-stirring operation to help preserve good genes, locate the optimal solutions for 

reader deployment and, as a result, uplift the overall system performance. As the 

obtained simulation results have demonstrated, our advanced multi-objective fitness 

function can reduce the required cost for all of the target approaches, and the proposed 

IGAA approach outperforms the other target approaches in both solution quality (better 

fitness values) and solution search time (less complexity). 
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