322 research outputs found

    Human Body Scattering Effects at Millimeter Waves Frequencies for Future 5G Systems and Beyond

    Full text link
    [ES] Se espera que las futuras comunicaciones móviles experimenten una revolución técnica que vaya más allá de las velocidades de datos de Gbps y reduzca las latencias de las velocidades de datos a niveles muy cercanos al milisegundo. Se han investigado nuevas tecnologías habilitadoras para lograr estas exigentes especificaciones. Y la utilización de las bandas de ondas milimétricas, donde hay mucho espectro disponible, es una de ellas. Debido a las numerosas dificultades técnicas asociadas a la utilización de esta banda de frecuencias, se necesitan complicados modelos de canal para anticipar las características del canal de radio y evaluar con precisión el rendimiento de los sistemas celulares en milimétricas. En concreto, los modelos de propagación más precisos son los basados en técnicas de trazado de rayos deterministas. Pero estas técnicas tienen el estigma de ser computacionalmente exigentes, y esto dificulta su uso para caracterizar el canal de radio en escenarios interiores complejos y dinámicos. La complejidad de la caracterización de estos escenarios depende en gran medida de la interacción del cuerpo humano con el entorno radioeléctrico, que en las ondas milimétricas suele ser destructiva y muy impredecible. Por otro lado, en los últimos años, la industria de los videojuegos ha desarrollado potentes herramientas para entornos hiperrealistas, donde la mayor parte de los avances en esta emulación de la realidad tienen que ver con el manejo de la luz. Así, los motores gráficos de estas plataformas se han vuelto cada vez más eficientes para manejar grandes volúmenes de información, por lo que son ideales para emular el comportamiento de la propagación de las ondas de radio, así como para reconstruir un escenario interior complejo. Por ello, en esta Tesis se ha aprovechado la capacidad computacional de este tipo de herramientas para evaluar el canal radioeléctrico milimétricas de la forma más eficiente posible. Esta Tesis ofrece unas pautas para optimizar la propagación de la señal en milimétricas en un entorno interior dinámico y complejo, para lo cual se proponen tres objetivos principales. El primer objetivo es evaluar los efectos de dispersión del cuerpo humano cuando interactúa con el canal de propagación. Una vez evaluado, se propuso un modelo matemático y geométrico simplificado para calcular este efecto de forma fiable y rápida. Otro objetivo fue el diseño de un reflector pasivo modular en milimétricas, que optimiza la cobertura en entornos de interior, evitando la interferencia del ser humano en la propagación. Y, por último, se diseñó un sistema de apuntamiento del haz predictivo en tiempo real, para que opere con el sistema de radiación en milimétricas, cuyo objetivo es evitar las pérdidas de propagación causadas por el cuerpo humano en entornos interiores dinámicos y complejos.[CA] S'espera que les futures comunicacions mòbils experimenten una revolució tècnica que vaja més enllà de les velocitats de dades de Gbps i reduïsca les latències de les velocitats de dades a nivells molt pròxims al milisegundo. S'han investigat noves tecnologies habilitadoras per a aconseguir estes exigents especificacions. I la utilització de les bandes d'ones millimètriques, on hi ha molt espectre disponible, és una d'elles. A causa de les nombroses dificultats tècniques associades a la utilització d'esta banda de freqüències, es necessiten complicats models de canal per a anticipar les característiques del canal de ràdio i avaluar amb precisió el rendiment dels sistemes cellulars en millimètriques. En concret, els models de propagació més precisos són els basats en tècniques de traçat de rajos deterministes. Però estes tècniques tenen l'estigma de ser computacionalment exigents, i açò dificulta el seu ús per a caracteritzar el canal de ràdio en escenaris interiors complexos i dinàmics. La complexitat de la caracterització d'estos escenaris depén en gran manera de la interacció del cos humà amb l'entorn radioelèctric, que en les ones millimètriques sol ser destructiva i molt impredicible. D'altra banda, en els últims anys, la indústria dels videojocs ha desenrotllat potents ferramentes per a entorns hiperrealistes, on la major part dels avanços en esta emulació de la realitat tenen a veure amb el maneig de la llum. Així, els motors gràfics d'estes plataformes s'han tornat cada vegada més eficients per a manejar grans volums d'informació, per la qual cosa són ideals per a emular el comportament de la propagació de les ones de ràdio, així com per a reconstruir un escenari interior complex. Per això, en esta Tesi s'ha aprofitat la capacitat computacional d'este tipus de ferramentes per a avaluar el canal radioelèctric millimètriques de la manera més eficient possible. Esta Tesi oferix unes pautes per a optimitzar la propagació del senyal en millimètriques en un entorn interior dinàmic i complex, per a la qual cosa es proposen tres objectius principals. El primer objectiu és avaluar els efectes de dispersió del cos humà quan interactua amb el canal de propagació. Una vegada avaluat, es va proposar un model matemàtic i geomètric simplificat per a calcular este efecte de forma fiable i ràpida. Un altre objectiu va ser el disseny d'un reflector passiu modular en millimètriques, que optimitza la cobertura en entorns d'interior, evitant la interferència del ser humà en la propagació, per a així evitar pèrdues de propagació addicionals. I, finalment, es va dissenyar un sistema d'apuntament del feix predictiu en temps real, perquè opere amb el sistema de radiació en millimètriques, l'objectiu del qual és evitar les pèrdues de propagació causades pel cos humà en entorns interiors dinàmics i complexos.[EN] Future mobile communications are expected to experience a technical revolution that goes beyond Gbps data rates and reduces data rate latencies to levels very close to a millisecond. New enabling technologies have been researched to achieve these demanding specifications. The utilization of mmWave bands, where a lot of spectrum is available, is one of them. Due to the numerous technical difficulties associated with using this frequency band, complicated channel models are necessary to anticipate the radio channel characteristics and to accurately evaluate the performance of cellular systems in mmWave. In particular, the most accurate propagation models are those based on deterministic ray tracing techniques. But these techniques have the stigma of being computationally intensive, and this makes it difficult to use them to characterize the radio channel in complex and dynamic indoor scenarios. The complexity of characterizing these scenarios depends largely on the interaction of the human body with the radio environment, which at mmWaves is often destructive and highly unpredictable. On the other hand, in recent years, the video game industry has developed powerful tools for hyper-realistic environments, where most of the progress in this reality emulation has to do with the handling of light. Therefore, the graphic engines of these platforms have become more and more efficient to handle large volumes of information, becoming ideal to emulate the radio wave propagation behavior, as well as to reconstruct a complex interior scenario. Therefore, in this Thesis one has taken advantage of the computational capacity of this type of tools to evaluate the mmWave radio channel in the most efficient way possible. This Thesis offers some guidelines to optimize the signal propagation in mmWaves in a dynamic and complex indoor environment, for which three main objectives are proposed. The first objective has been to evaluate the scattering effects of the human body when it interacts with the propagation channel. Once evaluated, a simplified mathematical and geometrical model has been proposed to calculate this effect in a reliable and fast way. Another objective has been the design of a modular passive reflector in mmWaves, which optimizes the coverage in indoor environments, avoiding human interference in the propagation, in order to avoid its harmful scattering effects. And finally, a real-time predictive beam steering system has been designed for the mmWaves radiation system, in order to avoid propagation losses caused by the human body in dynamic and complex indoor environments.Romero Peña, JS. (2022). Human Body Scattering Effects at Millimeter Waves Frequencies for Future 5G Systems and Beyond [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19132

    Evaluation of mmWave 5G Performance by Advanced Ray Tracing Techniques

    Get PDF
    Technological progress leads to the emergence of new concepts, which can change people’s everyday lives and accelerate the transformation of many industries. Among the more recent of these revolutionary concepts are big data analysis, artificial intelligence, augmented/virtual reality, quantum computing, and autonomous vehicles. However, this list would be incomplete without referring to fifth-generation (5G) technology, which is driven by several trends. First, the exponential growth of the worldwide monthly smartphone traffic up to 50 petabytes during the next three years will require the development of mobile networks supporting high datasharing capabilities, excellent spectral efficiency, and gigabits per second of throughput. Another trend is Industry 4.0/5.0 (also called the smart factory), which refers to advanced levels of automation requiring millions of distributed sensors/devices connected into a scalable and smart network. Finally, the automation of critical industrial processes, as well as communication between autonomous vehicles, will require 99.999% reliability and under 1 ms latency as they also become the drivers for the emergence of 5G. Besides traditional sub-6 GHz microwave spectrum, the 5G communication encompasses the novel millimeter-wave bands to mitigate spectrum scarcity and provide large bandwidth of up to several GHz. However, there are challenges to be overcome with the millimeter-wave band. The band suffers from higher pathloss, more atmospheric attenuation, and higher diffraction losses than microwave signals. Because the millimeter-wave band has such a small wavelength (< 1 cm), it is now feasible to implement compact antenna arrays. This enables the use of beamforming and multi-input and multi-output techniques. In this thesis, advanced ray tracing methodology is developed and utilized to simulate the propagation mechanisms and their effect on the system-level metrics. The main novelty of this work is in the introduction of typical millimeter-wave 5G technologies into channel modelling and propagation specifics into the system-level simulation, as well as the adaptation of the ray tracing methods to support extensive simulations with multiple antennas

    Terahertz Wireless Channels: A Holistic Survey on Measurement, Modeling, and Analysis

    Full text link
    Terahertz (0.1-10 THz) communications are envisioned as a key technology for sixth generation (6G) wireless systems. The study of underlying THz wireless propagation channels provides the foundations for the development of reliable THz communication systems and their applications. This article provides a comprehensive overview of the study of THz wireless channels. First, the three most popular THz channel measurement methodologies, namely, frequency-domain channel measurement based on a vector network analyzer (VNA), time-domain channel measurement based on sliding correlation, and time-domain channel measurement based on THz pulses from time-domain spectroscopy (THz-TDS), are introduced and compared. Current channel measurement systems and measurement campaigns are reviewed. Then, existing channel modeling methodologies are categorized into deterministic, stochastic, and hybrid approaches. State-of-the-art THz channel models are analyzed, and the channel simulators that are based on them are introduced. Next, an in-depth review of channel characteristics in the THz band is presented. Finally, open problems and future research directions for research studies on THz wireless channels for 6G are elaborated.Comment: to appear in IEEE Communications Surveys and Tutorial

    Empirical multi-band characterization of propagation with modelling aspects for communictions

    Get PDF
    Diese Arbeit präsentiert eine empirische Untersuchung der Wellenausbreitung für drahtlose Kommunikation im Millimeterwellen- und sub-THz-Band, wobei als Referenz das bereits bekannte und untersuchte sub-6-GHz-Band verwendet wird. Die großen verfügbaren Bandbreiten in diesen hohen Frequenzbändern erlauben die Verwendung hoher instantaner Bandbreiten zur Erfüllung der wesentlichen Anforderungen zukünftiger Mobilfunktechnologien (5G, “5G and beyond” und 6G). Aufgrund zunehmender Pfad- und Eindringverluste bei zunehmender Trägerfrequenz ist die resultierende Abdeckung dabei jedoch stark reduziert. Die entstehenden Pfadverluste können durch die Verwendung hochdirektiver Funkschnittstellen kompensiert werden, wodurch die resultierende Auflösung im Winkelbereich erhöht wird und die Notwendigkeit einer räumlichen Kenntnis der Systeme mit sich bringt: Woher kommt das Signal? Darüber hinaus erhöhen größere Anwendungsbandbreiten die Auflösung im Zeitbereich, reduzieren das small-scale Fading und ermöglichen die Untersuchung innerhalb von Clustern von Mehrwegekomponenten. Daraus ergibt sich für Kommunikationssysteme ein vorhersagbareres Bild im Winkel-, Zeit- und Polarisationsbereich, welches Eigenschaften sind, die in Kanalmodellen für diese Frequenzen widergespiegelt werden müssen. Aus diesem Grund wurde in der vorliegenden Arbeit eine umfassende Charakterisierung der Wellenausbreitung durch simultane Multibandmessungen in den sub-6 GHz-, Millimeterwellen- und sub-THz-Bändern vorgestellt. Zu Beginn wurde die Eignung des simultanen Multiband-Messverfahrens zur Charakterisierung der Ausbreitung von Grenzwert-Leistungsprofilen und large-scale Parametern bewertet. Anschließend wurden wichtige Wellenausbreitungsaspekte für die Ein- und Multibandkanalmodellierung innerhalb mehrerer Säulen der 5G-Technologie identifiziert und Erweiterungen zu verbreiteten räumlichen Kanalmodellen eingeführt und bewertet, welche die oben genannten Systemaspekte abdecken.This thesis presents an empirical characterization of propagation for wireless communications at mm-waves and sub-THz, taking as a reference the already well known and studied sub-6 GHz band. The large blocks of free spectrum available at these high frequency bands makes them particularly suitable to provide the necessary instantaneous bandwidths to meet the requirements of future wireless technologies (5G, 5G and beyond, and 6G). However, isotropic path-loss and penetration-loss are larger with increasing carrier frequency, hence, coverage is severely reduced. Path-loss can be compensated with the utilization of highly directive radio-interfaces, which increases the resolution in the angular domain. Nonetheless, this emphasizes the need of spatial awareness of systems, making more relevant the question “where does the signal come from?” In addition, larger application bandwidths increase the resolution in the time domain, reducing small-scale fading and allowing to observe inside of clusters of multi-path components (MPCs). Consequently, communication systems have a more deterministic picture of the environment in the angular, time, and polarization domain, characteristics that need to be reflected in channel models for these frequencies. Therefore, in the present work we introduce an extensive characterization of propagation by intensive simultaneous multi-band measurements in the sub-6 GHz, mm-waves, and sub-THz bands. Firstly, the suitability of the simultaneous multi-band measurement procedure to characterize propagation from marginal power profiles and large-scale parameters (LSPs) has been evaluated. Then, key propagation aspects for single and multi-band channel modelling in several verticals of 5G have been identified, and extensions to popular spatial channel models (SCMs) covering the aforementioned system aspects have been introduced and evaluated

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table

    An improved channel model for medical body area network device testing

    Get PDF
    For testing and validation of medical body area network devices the knowledge of the wireless channel is very crucial. Although this could be implemented by utilizing existing BAN channel models, their restriction to specific device usage scenarios and environments make them less appropriate. For this purpose, this thesis presents a methodology for an MBAN device testing by developing an improved channel model, which accounts for a room size and use case variability. The improved channel model is based on channel sounding, over the frequency band from 2.3 GHz to 2.5 GHz, performed for five different use cases defined based on body posture, movement, and orientation. In order to study the room size effect, the measurements have been carried out in three different office rooms and an anechoic chamber. The proposed channel model is composed of three components, which are modeled separately: the mean path loss, body shadowing, and multipath fading. The mean path loss is modeled as a distance log function, while the body shadowing is modeled statistically by a lognormal distribution, and the multipath fading by a Rician distribution. The impact of room size is mainly notified in the Rician K-factor value; whereas the effect of movement is notified in the lognormal parameter. Furthermore, the effect of body orientation and posture is represented in the path loss model parameters

    Radio propagation for the next generation mobile communication system

    Get PDF

    Modelling of mmWave Propagation Channel for Off-body Communication Scenarios

    Get PDF
    Předkládaná disertační práce je zaměřena na \uv{Modelování propagačního kanálu pro off-body komunikaci v oblasti milimetrových vln}. Navzdory pokrokům v rámci bezdrátových sítí v přímé blízkosti člověka stále systémy 5. generace postrádají dostatečnou šířku pásma a dostatečně nízkou odezvu. To je způsobeno neefektivním využíváním rádiového spektra. Tento nedostatek je potřeba co nejdříve odstranit a právě z tohoto důvodu je hlavním cílem této práce navrhnout vylepšený model rádiového kanálů pro off-body komunikaci. Úkolem tohoto modelu je umožnit uživatelům efektivněji a přesněji simulovat propagaci signálu v rámci daného prostředí. Navržený model je dále optimalizován a ověřen vůči nejnovějším měřením, získaným z literatury. Nakonec je tento model implementován do simulačního nástroje NS-3, pomocí kterého je následně využit k simulaci množství scénářů. Hlavním výstupem této práce je ověřený model přenosového kanálu pro off-body komunikaci v rámci milimetrových vln, společně s jeho implementací do simulačního nástroje NS-3, díky čemuž je dostupný pro širokou veřejnost.This thesis addresses the \uv{Modeling of mmWave Propagation Channel for Off-body Communication Scenarios}. Despite the advancements in the body area wireless networks, the 5G systems are still struggling with not enough bandwidth and large latency due to inefficient utilization of radio spectrum. This issue calls for immediate action and therefore the main aim of this Ph.D. thesis is to propose a novel mmWave off-body channel, which will enable its users to more effectively simulate the signal propagation. The proposed model is further optimized and verified against state-of-the-art measurements from the literature. Finally, the developed model is implemented into the NS-3 simulator and utilized for plethora of simulation scenarios. The main output of this thesis is the verified developed model as well as the implementation inside the NS-3 simulator, which enables a wide society to use it.
    corecore