3,345 research outputs found

    Service-Oriented Framework for Developing Interoperable e-Health Systems in a Low-Income Country

    Get PDF
    e-Health solutions in low-income countries are fragmented, address institution-specific needs, and do little to address the strategic need for inter-institutional exchange of health data. Although various e-health interoperability frameworks exist, contextual factors often hinder their effective adoption in low-income countries. This underlines the need to investigate such factors and to use findings to adapt existing e-health interoperability models. Following a design science approach, this research involved conducting an exploratory survey among 90 medical and Information Technology personnel from 67 health facilities in Uganda. Findings were used to derive requirements for e-health interoperability, and to orchestrate elements of a service oriented framework for developing interoperable e-health systems in a low-income country (SOFIEH). A service-oriented approach yields reusable, flexible, robust, and interoperable services that support communication through well-defined interfaces. SOFIEH was evaluated using structured walkthroughs, and findings indicate that it scored well regarding applicability, usability, and understandability

    A standards-based ICT framework to enable a service-oriented approach to clinical decision support

    Get PDF
    This research provides evidence that standards based Clinical Decision Support (CDS) at the point of care is an essential ingredient of electronic healthcare service delivery. A Service Oriented Architecture (SOA) based solution is explored, that serves as a task management system to coordinate complex distributed and disparate IT systems, processes and resources (human and computer) to provide standards based CDS. This research offers a solution to the challenges in implementing computerised CDS such as integration with heterogeneous legacy systems. Reuse of components and services to reduce costs and save time. The benefits of a sharable CDS service that can be reused by different healthcare practitioners to provide collaborative patient care is demonstrated. This solution provides orchestration among different services by extracting data from sources like patient databases, clinical knowledge bases and evidence-based clinical guidelines (CGs) in order to facilitate multiple CDS requests coming from different healthcare settings. This architecture aims to aid users at different levels of Healthcare Delivery Organizations (HCOs) to maintain a CDS repository, along with monitoring and managing services, thus enabling transparency. The research employs the Design Science research methodology (DSRM) combined with The Open Group Architecture Framework (TOGAF), an open source group initiative for Enterprise Architecture Framework (EAF). DSRM’s iterative capability addresses the rapidly evolving nature of workflows in healthcare. This SOA based solution uses standards-based open source technologies and platforms, the latest healthcare standards by HL7 and OMG, Decision Support Service (DSS) and Retrieve, Update Locate Service (RLUS) standard. Combining business process management (BPM) technologies, business rules with SOA ensures the HCO’s capability to manage its processes. This architectural solution is evaluated by successfully implementing evidence based CGs at the point of care in areas such as; a) Diagnostics (Chronic Obstructive Disease), b) Urgent Referral (Lung Cancer), c) Genome testing and integration with CDS in screening (Lynch’s syndrome). In addition to medical care, the CDS solution can benefit organizational processes for collaborative care delivery by connecting patients, physicians and other associated members. This framework facilitates integration of different types of CDS ideal for the different healthcare processes, enabling sharable CDS capabilities within and across organizations

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine

    Medical Informatics

    Get PDF
    Information technology has been revolutionizing the everyday life of the common man, while medical science has been making rapid strides in understanding disease mechanisms, developing diagnostic techniques and effecting successful treatment regimen, even for those cases which would have been classified as a poor prognosis a decade earlier. The confluence of information technology and biomedicine has brought into its ambit additional dimensions of computerized databases for patient conditions, revolutionizing the way health care and patient information is recorded, processed, interpreted and utilized for improving the quality of life. This book consists of seven chapters dealing with the three primary issues of medical information acquisition from a patient's and health care professional's perspective, translational approaches from a researcher's point of view, and finally the application potential as required by the clinicians/physician. The book covers modern issues in Information Technology, Bioinformatics Methods and Clinical Applications. The chapters describe the basic process of acquisition of information in a health system, recent technological developments in biomedicine and the realistic evaluation of medical informatics

    Preface

    Get PDF

    Clinical foundations and information architecture for the implementation of a federated health record service

    Get PDF
    Clinical care increasingly requires healthcare professionals to access patient record information that may be distributed across multiple sites, held in a variety of paper and electronic formats, and represented as mixtures of narrative, structured, coded and multi-media entries. A longitudinal person-centred electronic health record (EHR) is a much-anticipated solution to this problem, but its realisation is proving to be a long and complex journey. This Thesis explores the history and evolution of clinical information systems, and establishes a set of clinical and ethico-legal requirements for a generic EHR server. A federation approach (FHR) to harmonising distributed heterogeneous electronic clinical databases is advocated as the basis for meeting these requirements. A set of information models and middleware services, needed to implement a Federated Health Record server, are then described, thereby supporting access by clinical applications to a distributed set of feeder systems holding patient record information. The overall information architecture thus defined provides a generic means of combining such feeder system data to create a virtual electronic health record. Active collaboration in a wide range of clinical contexts, across the whole of Europe, has been central to the evolution of the approach taken. A federated health record server based on this architecture has been implemented by the author and colleagues and deployed in a live clinical environment in the Department of Cardiovascular Medicine at the Whittington Hospital in North London. This implementation experience has fed back into the conceptual development of the approach and has provided "proof-of-concept" verification of its completeness and practical utility. This research has benefited from collaboration with a wide range of healthcare sites, informatics organisations and industry across Europe though several EU Health Telematics projects: GEHR, Synapses, EHCR-SupA, SynEx, Medicate and 6WINIT. The information models published here have been placed in the public domain and have substantially contributed to two generations of CEN health informatics standards, including CEN TC/251 ENV 13606

    A Learning Health Sciences Approach to Understanding Clinical Documentation in Pediatric Rehabilitation Settings

    Full text link
    The work presented in this dissertation provides an analysis of clinical documentation that challenges the concepts and thinking surrounding missingness of data from clinical settings and the factors that influence why data are missing. It also foregrounds the critical role of clinical documentation as infrastructure for creating learning health systems (LHS) for pediatric rehabilitation settings. Although completeness of discrete data is limited, the results presented do not reflect the quality of care or the extent of unstructured data that providers document in other locations of the electronic health record (EHR) interface. While some may view imputation and natural language processing as means to address missingness of clinical data, these practices carry biases in their interpretations and issues of validity in results. The factors that influence missingness of discrete clinical data are rooted not just in technical structures, but larger professional, system level and unobservable phenomena that shape provider practices of clinical documentation. This work has implications for how we view clinical documentation as critical infrastructure for LHS, future studies of data quality and health outcomes research, and EHR design and implementation. The overall research questions for this dissertation are: 1) To what extent can data networks be leveraged to build classifiers of patient functional performance and physical disability? 2) How can discrete clinical data on gross motor function be used to draw conclusions about clinical documentation practices in the EHR for cerebral palsy? 3) Why does missingness of discrete data in the EHR occur? To address these questions, a three-pronged approach is used to examine data completeness and the factors that influence missingness of discrete clinical data in an exemplar pediatric data learning network will be used. As a use-case, evaluation of EHR data completeness of gross motor function related data, populated by providers from 2015-2019 for children with cerebral palsy (CP), will be completed. Mixed methods research strategies will be used to achieve the dissertation objectives, including developing an expert-informed and standards-based phenotype model of gross motor function data as a task-based mechanism, conducting quantitative descriptive analyses of completeness of discrete data in the EHR, and performing qualitative thematic analyses to elicit and interpret the latent concepts that contribute to missingness of discrete data in the EHR. The clinical data for this dissertation are sourced from the Shriners Hospitals for Children (SHC) Health Outcomes Network (SHOnet), while qualitative data were collected through interviews and field observations of clinical providers across three care sites in the SHC system.PHDHlth Infrastr & Lrng Systs PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162994/1/njkoscie_1.pd

    The integrity of digital technologies in the evolving characteristics of real-time enterprise architecture

    Get PDF
    Advancements in interactive and responsive enterprises involve real-time access to the information and capabilities of emerging technologies. Digital technologies (DTs) are emerging technologies that provide end-to-end business processes (BPs), engage a diversified set of real-time enterprise (RTE) participants, and institutes interactive DT services. This thesis offers a selection of the author’s work over the last decade that addresses the real-time access to changing characteristics of information and integration of DTs. They are critical for RTEs to run a competitive business and respond to a dynamic marketplace. The primary contributions of this work are listed below. • Performed an intense investigation to illustrate the challenges of the RTE during the advancement of DTs and corresponding business operations. • Constituted a practical approach to continuously evolve the RTEs and measure the impact of DTs by developing, instrumenting, and inferring the standardized RTE architecture and DTs. • Established the RTE operational governance framework and instituted it to provide structure, oversight responsibilities, features, and interdependencies of business operations. • Formulated the incremental risk (IR) modeling framework to identify and correlate the evolving risks of the RTEs during the deployment of DT services. • DT service classifications scheme is derived based on BPs, BP activities, DT’s paradigms, RTE processes, and RTE policies. • Identified and assessed the evaluation paradigms of the RTEs to measure the progress of the RTE architecture based on the DT service classifications. The starting point was the author’s experience with evolving aspects of DTs that are disrupting industries and consequently impacting the sustainability of the RTE. The initial publications emphasized innovative characteristics of DTs and lack of standardization, indicating the impact and adaptation of DTs are questionable for the RTEs. The publications are focused on developing different elements of RTE architecture. Each published work concerns the creation of an RTE architecture framework fit to the purpose of business operations in association with the DT services and associated capabilities. The RTE operational governance framework and incremental risk methodology presented in subsequent publications ensure the continuous evolution of RTE in advancements of DTs. Eventually, each publication presents the evaluation paradigms based on the identified scheme of DT service classification to measure the success of RTE architecture or corresponding elements of the RTE architecture
    corecore