637 research outputs found

    A Simple Reactive Obstacle Avoidance Algorithm and Its Application in Singapore Harbor

    Get PDF
    Autonomous surface craft (ASC) are increasingly attractive as a means for performing harbor operations including monitoring and inspection. However, due to the presence of many fixed and moving structures such as pilings, moorings, and vessels, harbor environments are extremely dynamic and cluttered. In order to move autonomously in such conditions ASC’s must be capable of detecting stationary and moving objects and plan their paths accordingly. We propose a simple and scalable online navigation scheme, wherein the relative motion of surrounding obstacles is estimated by the ASC, and the motion plan is modified accordingly at each time step. Since the approach is model-free and its decisions are made at a high frequency, the system is able to deal with highly dynamic scenarios. We deployed ASC’s in the Selat Pauh region of Singapore Harbor to test the technique using a short-range 2-D laser sensor; detection in the rough waters we encountered was quite poor. Nonetheless, the ASC’s were able to avoid both stationary as well as mobile obstacles, the motions of which were unknown a priori. The successful demonstration of obstacle avoidance in the field validates our fast online approach.Massachusetts Institute of Technology. Singapore-MIT Alliance in Research and Technology (SMART

    Infrastructure for mobile sensor network in the Singapore coastal zone

    Get PDF
    URL to conference page. Scroll down to 2010 conference, click on "Paper and session list," and search the PDF for Patrikalakis.Singapore is an island nation located at southern tip of the Malaysian Peninsula. She is at a strategic location along major shipping routes and therefore has one of the busiest harbors in the world. Having a safe and secure harbor environment is vital to maintain trade and growth in the country and region. To help build and maintain a safe harbor environment, the Center of Environmental Sensing and Modelling (CENSAM) under the Singapore-MIT Alliance for Research and Technology (SMART) is developing a mobile sensor network in the Singapore coastal zone

    Evaluation of an acoustic detection algorithm for reactive collision avoidance in underwater applications

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (page 33).This thesis sought to evaluate a vehicle detection algorithm based on a passive acoustic sensor, intended for autonomous collision avoidance in Unmanned Underwater Vehicles. By placing a hydrophone at a safe distance from a dock, it was possible to record the acoustic signature generated by a small motor boat as it navigated towards, and then away from the sensor. The time-varying sound intensity was estimated by Root Mean Square of the sound amplitude in discrete samples. The time-derivative of the sound intensity was then used to estimate the time to arrival, or collision, of the acoustic source. The algorithm was found to provide a good estimate of the time to collision, with a small standard deviation for the projected collision time, when the acoustic source was moving at approximately constant speed, providing validation of the model at the proof-of-concept level.by Oscar Alberto Viquez Rojas.S.B

    A Locking Sweeping Method Based Path Planning for Unmanned Surface Vehicles in Dynamic Maritime Environments

    Get PDF
    Unmanned surface vehicles (USVs) are new marine intelligent platforms that can autonomously operate in various ocean environments with intelligent decision-making capability. As one of key technologies enabling such a capability, path planning algorithms underpin the navigation and motion control of USVs by providing optimized navigational trajectories. To accommodate complex maritime environments that include various static/moving obstacles, it is important to develop a computational efficient path planning algorithm for USVs so that real-time operation can be effectively carried out. This paper therefore proposes a new algorithm based on the fast sweeping method, named the locking sweeping method (LSM). Compared with other conventional path planning algorithms, the proposed LSM has an improved computational efficiency and can be well applied in dynamic environments that have multiple moving obstacles. When generating an optimal collision-free path, moving obstacles are modelled with ship domains that are calculated based upon ships’ velocities. To evaluate the effectiveness of the algorithm, particularly the capacity in dealing with practical environments, three different sets of simulations were undertaken in environments built using electronic nautical charts (ENCs). Results show that the proposed algorithm can effectively cope with complex maritime traffic scenarios by generating smooth and safe trajectories

    A planned approach to high collision risk area

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.This thesis examines the transition of a vessel from the open ocean, where collisions are rare, to a high risk and heavy traffic area such as a Traffic Separation Scheme (TSS). Previous autonomy approaches generally view path planning and collision avoidance as two separate functions, i.e. a vessel will follow the planned path until conditions are met for collision avoidance algorithms to take over. Here an intermediate phase is proposed with the goal of adjusting the time of arrival to a high vessel density area so that the risk of collision is reduced. A general algorithm that calculates maximum future traffic density for all choices in the speed domain is proposed and implemented as a MOOS-IvP behavior. This behavior gives the vessel awareness of future collision risks and aids the collision avoidance process. This new approach improves the safety of the vessel by reducing the number of risky encounters that will likely require the vessel to maneuver for safety

    Modelling of a Braitenberg inspired guidance system for an Autonomous surface vessel (ASV)

    Get PDF
    Master's thesis in Mechatronics (MAS500

    PERFORMANCE EVALUATION AND REVIEW FRAMEWORK OF ROBOTIC MISSIONS (PERFORM): AUTONOMOUS PATH PLANNING AND AUTONOMY PERFORMANCE EVALUATION

    Get PDF
    The scope of this work spans two main areas of autonomy research 1) autonomous path planning and 2) test and evaluation of autonomous systems. Path planning is an integral part of autonomous decision-making, and a deep understanding in this area provides valuable perspective on approaching the problem of how to effectively evaluate vehicle behavior. Autonomous decision-making capabilities must include reliability, robustness, and trustworthiness in a real-world environment. A major component of robot decision-making lies in intelligent path-planning. Serving as the brains of an autonomous system, an efficient and reliable path planner is crucial to mission success and overall safety. A hybrid global and local planner is implemented using a combination of the Potential Field Method (PFM) and A-star (A*) algorithms. Created using a layered vector field strategy, this allows for flexibility along with the ability to add and remove layers to take into account other parameters such as currents, wind, dynamics, and the International Regulations for Preventing Collisions at Sea (COLGREGS). Different weights can be attributed to each layer based on the determined level of importance in a hierarchical manner. Different obstacle scenarios are shown in simulation, and proof-of-concept validation of the path-planning algorithms on an actual ASV is accomplished in an indoor environment. Results show that the combination of PFM and A* complement each other to generate a successfully planned path to goal that alleviates local minima and entrapment issues. Additionally, the planner demonstrates the ability to update for new obstacles in real time using an obstacle detection sensor. Regarding test and evaluation of autonomous vehicles, trust and confidence in autonomous behavior is required to send autonomous vehicles into operational missions. The author introduces the Performance Evaluation and Review Framework Of Robotic Missions (PERFORM), a framework for which to enable a rigorous and replicable autonomy test environment, thereby filling the void between that of merely simulating autonomy and that of completing true field missions. A generic architecture for defining the missions under test is proposed and a unique Interval Type-2 Fuzzy Logic approach is used as the foundation for the mathematically rigorous autonomy evaluation framework. The test environment is designed to aid in (1) new technology development (i.e. providing direct comparisons and quantitative evaluations of varying autonomy algorithms), (2) the validation of the performance of specific autonomous platforms, and (3) the selection of the appropriate robotic platform(s) for a given mission type (e.g. for surveying, surveillance, search and rescue). Several case studies are presented to apply the metric to various test scenarios. Results demonstrate the flexibility of the technique with the ability to tailor tests to the user’s design requirements accounting for different priorities related to acceptable risks and goals of a given mission
    • …
    corecore