
Aberystwyth University

A Raycast Approach to Collision Avoidance in Sailing Robots
Sauze, Colin; Neal, Mark

Publication date:
2010

Citation for published version (APA):
Sauze, C., & Neal, M. (2010). A Raycast Approach to Collision Avoidance in Sailing Robots.
http://hdl.handle.net/2160/4680

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326659961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2160/4680

A Raycast Approach to Collision Avoidance in
Sailing Robots

Colin Sauze
Department of Computer Science

Aberystwyth University
Aberystwyth, Ceredigion, United Kingdom, SY23 3DB

Email: cjs06@aber.ac.uk

Mark Neal
Department of Computer Science

Aberystwyth University
Aberystwyth, Ceredigion, United Kingdom, SY23 3DB

Email: mjn@aber.ac.uk

Abstract—This paper presents a simple mechanism for an
autonomous sailing robot to detect when it is within close
proximity to fixed obstacles and a reactive mechanism to avoid
those obstacles. This is achieved by using a raster based map of
the local area and raycasting from the boat’s current position
in order to determine the distance and heading to the nearest
coastline. Once this is determined a new target heading which
does not result in any immediate danger is computed. Simulations
have shown that it is possible for a robot to sailing between a
set of waypoints while avoiding obstacles placed between those
waypoints. This method has been shown to be capable of selecting
a sensible course and avoiding collisions in most cases, however
when the robot becomes trapped in small inlets or between groups
of tightly packed islands it can fail to find a suitable course.

I. INTRODUCTION

In order to be considered fully autonomous sailing robots
must be able to avoid collisions both with fixed obstacles
such as shorelines and moving obstacles such as other boats.
Although the legal status of sailing robots is very vague
at present it is likely that as their presence becomes more
common that legislative bodies will create rules governing
them and that these rules will include a provision requiring
some kind of collision avoidance mechanism. Additionally any
operator of a sailing robot will also wish to avoid collisions
in order to avoid the loss of their robot and reduce the need
to continuously monitor it.

Many algorithms already exist to facilitate obstacle avoid-
ance in robotics. Many of these involve planning a path in
advance and can safely assume that conditions will remain
relatively stable between a robot detecting a potential collision
with an obstacle and completing its movement to avoid that
obstacle. However, sailing robots can be somewhat different
as they cannot sail directly up wind they are at the mercy of
the wind to determine where they can travel and any shifts
in wind direction may rapidly render a previously plausible
plan implausible. This can be especially true when sailing
close to the coast or on inshore waters where local topography
can produce dramatic shifts in wind direction when changing
position by just a few metres. Therefore it would seem
more logical to operate in a more reactive manner, simply
making short term adjustments to the robot’s course to avoid
immediate danger. Reactive control systems are well known
in other branches of robotics and will be discussed further in

section III.
As processing power is often limited on sailing robots a

computationally simplistic method is required to detect the
presence of obstacles and to determine appropriate courses to
avoid them. This problem can at least in part be solved simply
by giving the robot a map of its local area and using GPS to
determine its position on that map. The nearest coastline can
then be detected using a ray casting mechanism. It would also
be possible to overlay other information sources such as the
location of storms or shipping onto this map and simply use the
same algorithm to detect and avoid them. Once hazards have
been identified then an a new course must be selected which
avoids a collision with this obstacle and any other obstacles
in the vicinity.

II. MOTIVATIONS

This work is motivated by a desire to be able to operate
sailing robots with a guarantee that they will not attempt to
sail through a land mass in order to get from one waypoint
to another. There is also an additional motivation to stimulate
the discussion of how to perform collision avoidance amongst
the Microtransat/WRSC/Sailbot community of sailing robot
builders. Two very specific motivations originally inspired
this work. The first of these originated during the 2007
Microtransat competition hosted in Aberystwyth. During this
event each sailing robot was equipped with a GPS tracking
device which transmitted the boat’s position over a GSM
network every few minutes. Originally its was expected that
there would not be enough chase boats available for each
robot to be allocated one. Therefore it was desirable to be
able to automatically alert the chase boats if a robot was
too close to the shore or to another robot. It was envisaged
that the raycast algorithm described in this paper would be
suitable for producing such warnings from the tracking data
and a map of hazardous areas. Eventually sufficient chase
boats were found and the need for this system diminished and
it was never fully implemented. The second motivation was
as part of research into biologically inspired neuro-endocrine
control systems. One of the aims of this control system was to
balance long term needs of the robot between performing its
mission, keeping the batteries charged and avoiding danger.
The ability to avoid collisions fulfils a large part of the

need to avoid danger and provides an ideal example which
should be sufficient to demonstrate the capabilities of the neuro
endocrine controller.

III. BACKGROUND

Traditionally there have been two schools of thought regard-
ing collision avoidance techniques in robotics. Deliberative
methods work by using a model of their world and planning a
path through that world, they rely on all necessary information
to plan that path being available to them. Should the system
discover that the world has changed then the model of the
world must be updated and the path re-planned. Typically
to avoid collisions deliberative robots will attempt to build
a model of the world from sensor data and plan a route
through that model. An early example of such a robot was
the SHAKEY robot [1] built at Stanford University in the late
1960s, this used a laser range finder to build models of a room
and was capable of rebuilding its model should it encounter
an previously unknown object. These methods were further
advanced in the 1980s by the work of Borenstein and Koren
[2] who attempted to classify obstacles into moving and non-
moving and created methods to ensure that a moving mobile
robot would plan a path that would not collide with other
moving obstacles. They later devised the idea of a “Virtual
Force Field” [3] which is placed around obstacles to influence
the planned path away from those obstacles.

Reactive methods operate by simply reacting to the in-
formation immediately available to them through the robot’s
sensors’. This means that the robot is not able to see the
“bigger picture” but that it does not need to build any model
of the world and instead uses the world as its own model as it
perceives through its sensors. Reactive robots use their sensors
to detect when they are within close proximity to an obstacle
and will then move until they are no longer in close proximity
to any obstacles and then continue on their way. This can
lead to problems of becoming stuck by local minima such
as corners of a room. A common example of such reactive
robots are Braitenberg Vehicles [4], these typically have 2
sensors which detect obstacle proximity (such as sonars, IR
range finders or bump sensors) and two motors one on each
side of the robot, when a stimulus is detected by a sensor the
motor on the opposite side of the robot is slowed causing it
to turn away from the obstacle.

Realising that both methods have their limitations attempts
have been made to bridge the gap and employ reactive tech-
niques as an immediate reaction to colliding or nearly colliding
with an obstacle while deliberative techniques provide global
path planning and longer distance navigation. These are often
combined using techniques such as Brooks’ Subsubmption
Architecture [5] or Arkin’s Schema approach [6].

A. Existing Approaches to Collision Avoidance in Non-
Wheeled Robotics

More recently many researchers have attempted to apply a
variety of general mobile robot collision avoidance techniques
to powered autonomous surface craft or to act as a navigation

aid on manned vessels. To the best of the author’s knowledge
nobody has tried with sailing robots. In 2000 Smierzchalski
and Michaelwicz [7] demonstrated a method for ships to avoid
other ships using an evolutionary strategy, their system re-
quired approximately 800 generations of evolution to generate
a solution, this could be computed in under 1 minute and could
track up to 20 ships. Although this method is clearly capable
something with faster computation time would be ideal as it is
quite possible that more than 20 ships are in the vicinity of a
robot and the processing time maybe significantly higher on a
small embedded computer as might be used in a sailing robot.
In 2004 Lee and Kim [8] attempted to implement a subset
of the International Rules for the Prevention of Collisions at
Sea (COLREGs) in a fuzzy logic system. They focused on
those rules which are concerned with making manoeuvres to
avoid a collision and were able to demonstrate movements that
are compliant with COLREGs. In 2006 Benjamin, Leonard
et al [9], [10] developed a more extensive and complete
implementation of an autonomous COLREGs system and
demonstrated it using several powered autonomous kayaks. As
with Lee and Kim’s system they were not able to address all
of the COLREGs as many of these concern tasks which are
still only really achievable by humans such as maintaining
a constant watch, responding to VHF radio messages or
responding to vessels in distress. In 2009 Bandyophadyay,
Sarcione and Hover [11] tested a reactive collision avoidance
system onboard in Singapore harbour based around the same
kind of kayak as Benjamin and Leonard. They used a laser
scanner with a 250m range to detect obstacles, however this
suffered from noise especially against large waves. They were
able to successfully autonomously steer around a moored boat.
As their system worked in a reactive manner based upon laser
scanner data there is no attempt to distinguish the nature of the
obstacle and this system should operate equally well (assuming
the laser scanner has no problems sensing the obstacle) when
avoiding a coastline, a ship or any other kind of obstacle.
However the system does not take account of objects which
might be moving as all of the other systems discussed here
do.

Collision avoidance techniques used in other branches of
outdoor robotics may also be of use in sailing robots. In par-
ticular systems used in unmanned aerial vehicles (UAVs) face
many similar problems to autonomous surface craft (except
they have to worry about 3 dimensions not 2) as they cannot
simply stop or immediately reverse direction and are easily
affected by wind. Of particular interest is work by Viquerat,
Blackhall et al [12] who have developed a UAV with a forward
facing doppler RADAR system that is able to detect obstacles
10-15 metres away at a rate of 10hz. Given this short range
they opted for a reactive algorithm which avoids obstacles
detected with the RADAR. They also note that deliberative
path planning approaches suffer from increasing computational
complexity as the number of obstacles increase while reactive
methods do not, given the speed at which they must compute
new trajectories it is vital to minimise computation time.

IV. METHODOLOGIES

A. Reactive Architectures

Given the ever changing nature of a sailing robot’s envi-
ronment it would seem more sensible to follow the reactive
approach to collision avoidance. Any attempt to plan a path
over any significant distance must take the wind direction into
account. Especially when sailing in coastal or inshore waters
it is difficult to determine wind direction in advance, therefore
rendering any previously planned path invalid. However some
higher level planning is needed, it is expected that the robot’s
operator has given the robot a predefined set of waypoints
that they wish it to sail between and that these are reasonably
sensible and that if a line were drawn between these they
would not intersect major obstacles.

B. Raycasting

A technique known as raycasting has been selected to
determine the heading and distance to an obstacle and to
discover obstacle free routes to sail. Raycasting is a technique
often used in early 3D computer games such as Wolfenstein
3D or Doom. It works by tracing the path of a series of
rays originating from the players current position on a map
of objects. When one of these rays hits an object (such as a
wall) the distance is registered and the object is rendered at
a size proportional to its distance. This can be applied to a
robot by using the robot’s GPS position to place the robot on
a map and then casting the rays from the robot’s position until
they reach an obstacle (such as a land mass) on the map. This
will result in the robot knowing the distance to the coastline
in every direction. Based upon this information the robot can
take appropriate action to avoid a collision with the coastline.
A pseudo code algorithm is shown below.

for angle=0 ; angle<360 ; angle++
for dist=0 ; dist<max_dist ; dist++

x=sin(angle)*dist
y=cos(angle)*dist

if getpixel(x,y) not = 0
if dist < nearest_dist

nearest_x=x
nearest_y=y
nearest_dist=dist

Figure 1 shows an example raycast set against a map with
some islands as obstacles.

Depending on the intended usage of the data there may not
be a need to scan through a full 360 degrees as obstacles
behind the robot may not be of concern. Instead a “beam” of
60 degrees centred around the current heading of the boat (As
shown in figure 2) would be sufficient to detect any obstacle
that the boat might sail into. However if the boat was not
sailing properly or being dragged by tides or currents then
this may not be a sensible option, one possible alternative is
to derive the heading from GPS data instead of the compass

Fig. 1. An example raycast. The rays can be seem emerging from the boat
which is represented by the circular dot. The square just to the right of this
indicates the closest coastline to the boat. The obstacles are islands on the
map.

heading as this will determine the direction the boat is actually
travelling in, not the direction it is facing. If the beam is to
be less than 360 degrees then an optimal with needs to be
determined. Wider beams will detect obstacles which are not
directly ahead of the robot but which might still be a collision
risk if the robot alters course (either willingly or unwillingly).
This could result in false positives being generated when
obstacles appear at the extremities of the beam. Conversely a
narrow beam will miss these false positives but will be more
susceptible to missing actual obstacles if the boat changes
course.

C. Obstacle Avoidance Strategies

Once an obstacle has been detected then appropriate action
needs to be taken to avoid it. The avoidance strategy must
select a new course which avoids colliding with the detected
obstacle or any other obstacle.

1) Behaviour Switching: The robot needs to eventually
return to sailing towards its waypoint. Once a new course
has been decided upon that course (or one very close to
it) must be followed for enough time to allow the robot to
actually complete the change course and sail far enough to
avoid the collision. There is a need to commit to the avoiding
action and stay with it for sufficient time that it becomes
useful. Conversely this time cannot be too long or the robot
may become at risk of colliding with another obstacle that
was not previously accounted for. Part of the author’s other
research is concerned with biologically inspired behaviour
switching and action selection mechanisms based upon an
abstracted version of the neural and endocrine systems. In
these systems, chemical messengers known as hormones are
released in response to certain stimuli, these then bind with

Fig. 2. An raycast with the beam limited to a 60 degree width, centred
around the current heading of the robot.

receptors on target cells and trigger a change in the behaviour
of those cells. These changes can take place on timescales
varying between a few seconds and many months, the result
can be that behavioural changes occur gradually with multiple
behaviours being simultaneously exhibited. Such properties
could be useful in a collision avoidance system to allow a
gradual transition between sailing a course which avoids an
obstacle and one which sails towards a pre-designated way-
point. However a gradual switching between sailing towards
the waypoint and avoiding an obstacle (when the obstacle is
first detected) may not be as desirable as an early and decisive
action is more likely to avoid a collision than a gradual one
which leaves things too late.

To achieve these properties when an obstacle is detected
hormone is not released directly but instead it is stored (also
known as pooling) until a threshold value is reached, then all
of the stored hormone is released at once triggering a sudden
change in behaviour. This hormone then gradually decays to
return to a normal behaviour. This is achieved by setting the
heading that the robot follows to be determined by multiplying
the hormone quantity (which is always between 0 and 1) by
the difference between the robot’s original heading and the
new heading that was determined by the obstacle avoider. As
the hormone decays the target heading gradually returns to
its original value. The end result is for the first few seconds
when the robot approaches an obstacle nothing happens while
the hormone pools, then the hormone is released and there
is a dramatic change in heading and then the robot gradually
returns to its original heading. If the robot is still in danger
of collision then the process will repeat itself, it is vital that
the hormone decay is quite slow to allow enough time for
the obstacle to be passed and it is also vital that the initial
hormone release is fast enough to allow action to be taken

before a collision occurs.
2) Deciding on the new course: The first attempt at an al-

gorithm to avoid collisions was simply 180 degrees away from
the obstacle, this worked fine for simple round obstacles and
where no other obstacles where present nearby, but when more
complex coastlines with jagged edges where used the robot
often oscillated between two headings. At best this caused it
to hold station in a small area, at worst the momentum lost
during the turn resulted in a collision. At second attempt had
the robot sail towards the heading with the longest clear path,
this prevented it becoming stuck by inlets but often caused
the robot to sail away from its intended destination, on other
occasions it would constantly change direction as the heading
with the longest clear path could potentially change by 180
degrees from one iteration to the next.

The final algorithm to find the new course searches for a
clear course to sail that is as close as possible to the current
target heading (rather than the actual course). The reason for
this is to minimise the change in course in order to keep the
boat going in the correct general direction and to minimise
rudder/sail movements which are relatively expensive in terms
of power consumption. To achieve this the algorithm checks
the distance to the nearest coastline by alternating either side
of the target heading, the first course which is found to be
safely sailable is selected. For these simulations a distance
of 150 metres was selected. An additional criteria that the
new course must differ from the current course by at least 5
degrees as courses of less than 5 degrees don’t actually trigger
a change in rudder position in our control system. This strategy
worked for the most part but it was observed that the selected
course often barely cleared the obstacle and that sometimes
even resulted in a collision. So an additional rule was added
that the selected heading must also be at least 5 degrees away
from the nearest point where the coast was of a distance less
than 150 metres. This does leave the obvious limitation that
if the robot becomes trapped inside an inlet where they only
way out is through a narrow passage that is less than 5 degrees
wide then it will never be able to escape from the inlet.

Figure 3 illustrates an example of the heading selection
algorithm split into seven stages. The desired heading is shown
as a solid line with an arrow, the rays which are checking the
distance to the coast are shown as dashed lines. In stages one
to five the rays are always finding that the coastline is within
150 metres so these cannot be used as valid courses. In stage
6 a ray goes beyond 150 metres but it is still within 5 degrees
(angles in this diagram have been exaggerated for illustrative
purposes). Finally in stage 7 a ray goes beyond 150 metres
and is more than 5 degrees clear of the coastline, so this is
selected as the new heading.

3) Dealing with tacking: Additional problems are presented
when sailing up wind. Sailing boats cannot sail directly into
the wind, sailors often quote the figure of 45 degrees as the
minimum angle between the boat’s heading and the wind,
although this figure can vary depending on the boat. This is
often referred to as the “no go zone”. This limits the number of
potential courses that the robot can sail to avoid a collision as

Fig. 3. The heading selection algorithm.

the no go zone must be ruled out. So the alternating algorithm
previously described must be modified to avoid searching in
the no go zone.

V. RESULTS

The work presented in this paper has been simulated using
a modified version of the tracksail-AI program 1. The sim-
ulations where conducted using a map of Strangford Lough
in Northern Ireland (54.5 degrees North, 5.6 degrees West
- see figure 4). It is the largest inlet in the British Isles at
150km2 in area, approximately 30km long at its longest point
and contains over 70 islands (although many of these are often
submerged by the tide). This was chosen as it presents a very
challenging environment to sail in with plenty of small inlets
and groups of islands which could easily trap a robot and
confuse collision avoidance algorithms. A map based on the
OpenStreetMap map was modified (as shown in figure 5 to
remove all land features and only use two colours, one of the
water and one for the land.

An experiment was devised to sail between two waypoints
when the direct line between them was clearly obstructed. The
algorithm would therefore be required to avoid sailing through
the land and find a suitable path. The route that it took is
shown in figure 5, the start point is labelled “start“ and the

1http://microtransat.svn.sourceforge.net/viewvc/microtransat/tracksail-AI/

Fig. 4. A map of Strangford Lough from OpenStreetMap.

Fig. 5. The course sailed by the robot in Strangford Lough. The only
waypoints specified are those at the points labelled start and end.

end point ”end“, no other waypoints where specified. The wind
was set to be consistently from the West which did allow the
robot to sail on a beam reach which is usually considered the
fastest, most stable and easiest point of sail to use. A further
challenge for future work is to setup a triangular course where
the collision avoidance algorithm must cope with wind from
all directions.

A number of attempts where made to get the boat to
navigate through the narrow channel at the south of Strangford
Lough which leads into the Irish sea. However because this
channel is so narrow the boat would often fail to see any
possible sailable route and would just continue sailing its
existing course causing a collision. This has in part been made
worse by an implementation decision in the simulator, the
translation between units of distance in the real Strangford
Lough and the simulated one are somewhat arbitrary and the
simulator believes this channel to be less than 100 metres wide
whereas in reality it is over 500m wide at its narrowest point.
The system needs to be modified so that if a solution meeting
the criteria specified in section IV-C2 cannot be found that
the nearest possible solution is returned instead of giving no
solution and sailing into the shore! There are also several
points where the robot appears to almost clip the coastline
and sails very close despite the rule requiring 5 degrees of
clearance, perhaps a better strategy would be to require a
suitable course to achieve a minimum distance rather than a
minimum angle.

A. Dealing with local minima

Figure 6 shows an example of how the boat can become
trapped in inlets. In this example the boat was supposed to

Fig. 6. An example of the algorithm becoming stuck inside a small inlet.

sail down the channel on the right but instead chose to sail to
the left to avoid a collision with the peninsula in the centre. It
was then unable to escape from the inlet because it detected
a potential collision as it nearer the entrance to the inlet. A
narrower beam width might have allowed it to proceed but may
have caused problems elsewhere. Some potential solutions
to this are to either modify the beam width when the boat
becomes trapped, to set narrow inlets as no go zone’s on the
map so that the robot will not view them as a potentially valid
place to sail (this will require all maps to be checked before
use) or to attempt to use an edge following routine to just
follow the coastline until open water is found.

VI. CONCLUSIONS AND FUTURE WORK

A. Using a real robot

If time permits this experiment will be recreated on a real
robot which will avoid some buoys that have been placed in
its way. Unfortunately the winter of 2009/2010 (when much
of this work has been undertaken) in Wales has not been
favourable for testing sailing robots and what experiment time
that has been available had already been allocated to other
experiments. Hopefully spring will be bring better weather
and additional results will be available for the final version of
this paper and a full demonstration of this algorithm will be
shown at the 2010 World Robotic Sailing Championships in
Kingston, Ontario.

B. Limitations

There are still several key limitations to this work. Firstly
no account of the tides or currents are made and these should
be taken into account when deciding upon an appropriate
course to sail in order to avoid an obstacle. This would be
especially true if really sailing in Strangford Lough as the
narrow entrance to the Lough creates very strong tidal currents.

The ability to avoid obstacles using this system is only as
good as the data provided in the map files. An ideal data source

would include submerged or semi-submerged obstacles. There
may be some need for reprocessing of data depending on the
draught of the boat it is to be used with. Potential data sources
are discussed in the next section.

As shown in section V-A the boat can become stuck inside
inlets or between groups of islands. In these cases it may be
necessary to have a higher level path planning system which
can produce a complete plan to get back to clear water. Such
situations might be avoided (or at least reduced) by creating
additional waypoints along straight lines between the normal
waypoints, this would reduce the opportunity for the robot to
“wander” off course between waypoints. Having prespecified
waypoints which clearly avoid danger areas should always be
preferable to relying on an autonomous routing system to avoid
those areas.

C. Global coastline databases

A sailing robot could be loaded with a database of the entire
global coastline could generate a map of its surrounding area
for use with the raycaster. This could allow the robot to sail
anywhere in the world and be able to avoid collisions with
the coastline. Of course this assumes that the database of the
coastline is sufficiently accurate, up to date and it will not
include moving hazards such as ice. An ideal database would
also include submerged obstacles such as shipwrecks, sand
bars and rocks and would outline the coastline at the low
water mark. Several potential data sources are presented below,
although none of them represent a totally ideal solution. A few
potential sources are listed below.

• PGS (Prototype Global Shoreline) 2- A free to use
database of global coastlines produced by the US gov-
ernment. Resolution is quite poor and there are explicit
warnings on the webpage that it is not suitable for
navigation, although it may be sufficient if the aim is
to always remain 10s of kilometres from shore.

• DNC (Digital Nautical Charts) 3 - These digital charts are
produced by the US government and are listed are suit-
able for navigation, but their usage is restricted outside
the USA.

• GSHHS (Global Self-Consistent Hierarchical High reso-
lution Shoreline) 4 - A high resolution shoreline dataset
based on the combination of two previously available
public sources.

• STRM (Shuttle Radar Topography Mission) 5 - A digital
elevation model of the world taken from a RADAR on
board the space shuttle.

• OpenStreeetMap 6 - This is an open source project aiming
to produce an open source free to use map of the entire
world. Its coastline data is constructed from a number of

2http://www.nga.mil/portal/site/nga01/index.jsp?epi-content=
GENERIC&itemID=9328fbd8dcc4a010VgnVCMServer3c02010aRCRD&beanID=
1629630080&viewID=Article

3http://www.nga.mil/portal/site/dnc/
4http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
5http://www2.jpl.nasa.gov/srtm/
6http://www.openstreetmap.org

free sources including PGS and STRM data. However the
accuracy can vary depending on the original data source.
There may also be inconsistencies between whether the
high water, mean water or low water mark was used to
establish the coastline position.

These databases are not particularly small but could realis-
tically be placed on a computer operating a sailing robot. For
example the entire OpenStreetMap dataset is 160 gigabytes
uncompressed (this includes data irrelevant to nautical use
such as streets, topography, city names etc). When compressed
or reduced to just coastline data this database could easily be
placed on a flash memory device stored inside the robot. It is
not inconceivable that even a small microcontroller connected
to a flash memory device could access and process this data.

D. Adding obstacles other than coastline

There is no reason that the methods presented in this paper
need to be restricted to avoiding only fixed obstacles. A
composite map including coastline data, ship locations from
Automatic Identification System (AIS) and weather informa-
tion could be created. This would allow the robot to avoid
collisions with any of these hazards. Instead of plotting ships
simply as dots on the map they could be plotted as cones who’s
length is proportional to the ship’s speed and who’s direction
is that of the ship’s direction of travel.

E. Compliance with COLREGs

Ideally a collision avoidance system for a sailing robot
that can avoid other shipping will do so in a manner which
is compliant with the International Rules for Preventions
of Collisions at Sea (COLREGs) as was implemented by
Benjamin, Leonard et al [9], [10] and Lee and Kim [8]. To be
of serious use the methods presented in this paper need to be
combined with some kind of COLREGs rule checking system
which could ensure that movements taken to avoid collisions
with vessels are done in a COLREGs compliant manner.

F. Using RADAR

It is worth noting that the data resulting from the ray-
cast method demonstrated in this paper bear a very strong
resemblance to those which would be returned by a RADAR.
Therefore there should be no major reasons stopping these
algorithms from being applied to RADAR data almost without
modification. A boat equipped with a RADAR would be able
to use this algorithm to travel around without any map data
and avoid collisions with any obstacle that will register on
RADAR. These techniques could also be applied to a laser
scanner as used by Bandyophadyay, Sarcione and Hover [11].

REFERENCES

[1] N. J. Nilsson, “A mobile automation: An application of artificial
intelligence techniques,” in Proceedings of the IJCAI, 1969. [Online].
Available: http://www.ai.sri.com/pubs/files/1302.pdf

[2] J. Borenstein and Y. Koren, “Optimal path algorithms for autonomous
vehicles,” CIRP Manufacturing System, vol. 16, no. 4, pp. 297–309,
1987. [Online]. Available: http://www-personal.umich.edu/∼johannb/
Papers/paper04.pdf

[3] ——, “Real-time obstacle avoidance for fast mobile robots,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 19, no. 5,
pp. 1179–1187, 1989. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.22.8555

[4] V. Braitenberg, Vehicles - Experiments in Synthetic Physcology. MIT
Press, 1996, no. ISBN 0-262-52112-1.

[5] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal of Robotics and Automation, vol. 2, pp. 14–23, 1986. [Online].
Available: http://people.csail.mit.edu/brooks/papers/AIM-864.pdf

[6] R. C. Arkin, “Homeostatic control for a mobile robot: Dynamic replan-
ning in hazardous environments,” Journal of Robotic Systems, vol. 9,
pp. 197–214, 1992.

[7] R. Smierzchalski and Z. Michalewicz, “Modeling of ship trajectory in
collision situations by an evolutionary algorithm,” IEEE Transactions
on Evolutionary Computation, vol. 3, pp. 227–241, 2000. [Online].
Available: http://www.cs.adelaide.edu.au/∼zbyszek/Papers/p41.pdf

[8] Y.-I. Lee and Y.-G. Kim, A Collision Avoidance System for
Autonomous Ship Using Fuzzy Relational Products and COLREGs.
Springer Berlin / Heidelberg, 2004, vol. 3177/2004, no. ISBN 978-
3-540-22881-3. [Online]. Available: http://www.springerlink.com/index/
c62fju712fp9f10h.pdf

[9] J. C. M. R. Benjamin, J.J. Leonard and P. M. . Newman, “A method for
protocol-based collision avoidance between autonomous marine surface
craft,” Journal of Field Robotics, vol. 23, no. 5, pp. 333–346, April
2006 2006. [Online]. Available: http://maribotics.com/publications/9
jfr-paper.pdf

[10] J. L. M. Benjamin, J. Curcio and P. Newman, “Navigation of
unmanned marine vehicles in accordance with the rules of the
road,” in In proceedings of the Interational Conference on Robotics
and Automation (IRCA) 2006, 2006. [Online]. Available: http:
//oceanai.mit.edu/mikerb/publications/benjamin-icra-colregs-2006.pdf

[11] L. S. T. Bandyophadyay and F. Hover, “A simple reactive
obstacle avoidance algorithm and its application in singapore
harbor,” in In proceedisng of the International Conference on
Field and Service Robotics 2009, 2009. [Online]. Available: http:
//censam.mit.edu/publications/tirtha09.pdf

[12] L. B. e. a. A. Viquerat, “Reactive collision avoidance for unmanned
aerial vehicles using doppler radar,” in In proceedings of the
6th International Conference on Field and Service Robotics -
FSR 2007, Chamonix, France, 2007. [Online]. Available: http:
//hal.archives-ouvertes.fr/docs/00/19/59/33/PDF/fsr 53.pdf

