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Abstract

This thesis sought to evaluate a vehicle detection algorithm based on a passive acous-

tic sensor, intended for autonomous collision avoidance in Unmanned Underwater

Vehicles. By placing a hydrophone at a safe distance from a dock, it was possible to

record the acoustic signature generated by a small motor boat as it navigated towards,
and then away from the sensor. The time-varying sound intensity was estimated by

Root Mean Square of the sound amplitude in discrete samples. The time-derivative

of the sound intensity was then used to estimate the time to arrival, or collision, of

the acoustic source. The algorithm was found to provide a good estimate of the time

to collision, with a small standard deviation for the projected collision time, when the

acoustic source was moving at approximately constant speed, providing validation of

the model at the proof-of-concept level.

Thesis Supervisor: Henrik Schmidt
Title: Professor of Mechanical and Ocean Engineering
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1 Introduction

The last few decades have seen considerable amounts of research in autonomous vehi-

cles and their applications. Specially in recent years, projects such as the Unmanned

Aerial Vehicle (UAV) Predator or the Unmanned Ground Vehicle (UGV) BigDog

have become of great interest in military applications [5], while Google's self-driving

car has attracted the attention of the general public. As with unmanned aerial and

ground vehicles, their marine counterparts have also seen a renovated interest from

the scientific community. Unmanned Surface Vehicles (USVs) and Unmanned Under-

water Vehicles (UUVs) have caught the attention of scientists, the off-shore industry

and the military, for their applications in areas such as sea bottom exploration, hull

inspection and repairing, mine-hunting and economic zone policing [10].

"The need for monitoring and securing harbor environments has grown in recent

years, as a result of increased attention to pollution from runoff or other sources,

natural processes such as sediment transport, water properties, and algal blossoms,

as well as security against threats" [1]. This need has in turn increased the use of

USVs and UUVs in high-traffic areas such as harbors and the surrounding littoral,

for security and scientific applications alike. However, the highly dynamic nature of

these environments requires that autonomous vehicles be capable of reactive collision

avoidance [5].

While USV autonomous systems are now at a sufficiently advanced level of matu-

rity for implementation in harbor observation missions, there is still much work to be

done in obstacle avoidance for underwater vehicles [6]. This thesis continues develop-

ment on the subject by evaluating a passive acoustic detection algorithm presented by

Prof. Henrik Schmidt and Dr. Michael Benjamin under project name ALPACA1 [9].

Results from field tests are presented in order to validate the algorithm.

'The ALPACA technology is owned by MIT. A patent has been filed under United States of
America Serial No. 13/536037, "System And Method For Collision Avoidance In Underwater Vehi-
cles" by Michael Richard Benjamin and Henrik Schmidt. Filed June 28, 2012.
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2 Background

2.1 Motion Control, Sensing and Communication

In the case of USVs, many technical similarities may be drawn with UGVs with

regards to the number of degrees of freedom and operation in the presence of ambient

traffic. The problem of motion control, however, becomes more challenging in USVs

due to the harsh environmental disturbances [5]. This same comparison holds true

for UUV dynamics, with the only exception that depth is added to the system's

controllable degrees of freedom.

Despite the similarities between the kinematic models of USVs and UUVs, major

differences exist between these vehicle types in the fields of sensing and communica-

tion. Whereas electromagnetic-domain devices such as laser scanners and cameras

are useful for obstacle detection and mapping in surface vehicles [1], they are gener-

ally impractical for obstacle detection in underwater applications due to their limited

range. Similarly, USVs rely on satellite systems for position tracking and communica-

tion, allowing for occasional operator guidance and remote control, as is the case for

the Israeli Protector project [5]. UUVs may only use satellite systems when surfacing,

but are otherwise limited to self-contained navigation systems for position tracking,

and to low-bandwidth, low-frequency acoustic communication.

Taking a more general perspective to sensing in collision avoidance systems, the

equipment that is currently used can be classified as either passive or active. The

main difference between these two types is whether the sensor relies on an external

source to serve its purpose, known as passive, or it provides its own source. Laser

scanners, SOund Navigation And Ranging (SONAR) and Doppler radar systems are

then examples of active systems, while cameras, microphones and other input-only

devices are considered passive [11].

13



2.2 Autonomy and MOOS

The purpose for developing unmanned platforms is to have them perform complex

tasks in situations where a human would be unable to perform well due to physical

limitations, or due to the elevated risk of the scenario. Part of the challenge in

this domain comes from understanding the system's dynamics to achieve a particular

desired outcome. Another element is developing an understanding of the environment

through sensing. However, when communication is limited and the vehicle is unable

to request guidance form the operator, as is the case in underwater applications,

having the ability to make decisions about what the aforementioned desired outcome

is becomes fundamental to the success of a mission.

Because autonomous vehicles have to handle a wide range of problems simultane-

ously in order to complete their missions, development in this domain often becomes

hindered by the complexity of the software and controls systems as a particular

project grows, it becomes increasingly difficult to adapt the associated platform. In

an attempt to overcome this challenge, Paul Newman of Oxford University began

working in 2001 on an innovative software package for mobile robot systems, named

MOOS for "Mission Oriented Operating Suite" [8].

In order to simplify the development and contribution process, MOOS uses a cen-

tralized topology. At the core of every robotic system running MOOS lies a variable

database, MOOSDB. Every other application in the system, called MOOSApp, may then

subscribe to a particular variable in the database to receive reports whenever its value

changes. In this way, some applications may connect to sensors in the system and

update the values in the database with the most up-to-date information, while others

link to the actuators to actually move the vehicle based on the desired heading and

speed in the database. Other applications can simply monitor one variable and post

another in response.

14



2.2.1 Interval Programming and the IvPHelm

Behavior-based controls systems have been used for many years to satisfy the decision-

making requirements mentioned above. The origin of such systems is often attributed

to Rodney Brooks [4], and one of their more important attributes is the ease of

development of independent modules [2].

Given their modularity, MOOS implements behavior-based controls to choose the

best action for the system. However, the decision making process itself has evolved

since the "subsumption architecture" originally presented by Brooks. The Interval

Programming (IvP) architecture presented by Dr. Michael Benjamin uses multiob-

jective optimization by having each behavior generate an objective function instead

of a single desired outcome' [3].

As an example, two behaviors BHVAvoidCollision, a collision avoidance proto-

col based on the Coast Guard Collision Regulations, and BHVWaypoint, a vehicle

displacement behavior based on a given list of waypoints, can produce an interest

value for each speed and heading pair. The pHelmIvP application, which embodies

the architecture described by Dr. Benjamin, then considers the weighed sum of both

objective functions to determine the most beneficial course of action for the overall

mission. These results are then posted to the variable database such that the motor

control process may drive the vehicle as instructed.

'Additional information on the MOOS project and Interval Programming is available at
www.themoos.org and www.moos-ivp.org
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3 Mathematical Model

The model implemented in this thesis is derived from the concept envisioned for

project ALPACA (Autonomous Littoral Passive Acoustic Collision Alarm), hereby

explained. This concept is based on the cylindrical spreading loss associated with

sound propagation in shallow water [9]. For the depth range of normal harbor or

littoral operation, ignoring dissipation, the decay of sound intensity in decibel (dB)

can be expressed as

10 log(r)
IdB = I0 - 10 1og 10(r) = I10 log () (3.1)

log (10)

where Io is a constant dependent on the properties and location of the acoustic

source [7]. For a moving source, then, the rate of change of acoustic intensity may be

expressed as:

dIdB _O'dB dr O'dB 10 (3
dt Or dt Or log(10)r

Rearranging Eq. 3.2 then gives an estimate of the time to collision dT, in the form:

r 10
dT . (3.3)

V log(10)A

In real applications, the time-local sound intensity A may be estimated from a

sound recording or acoustic input by computing the Root Mean Square (RMS) of the

signal amplitude over a predefined amount of time AT.

The estimated time to collision will be sensitive to fluctuations in ambient noise

as well as in the signal from the approaching acoustic source. While the estimation of

intensity through RMS will reduce the apparent noise in the system, these variations

will still be directly reflected in the estimated time to collision. Consequently, it is

necessary to perform a statistical regression analysis to determine, with an adequate

level of confidence, whether evasive action is necessary. In order to simplify the

17



analysis, the deviation may be observed in terms of the predicted collision time T by

adding the current time T to the estimated time to collision dTn at some measurement

n,

Tn = T + dTn. (3.4)

By creating a running average Tm of the predicted collision time over the last N

measurements, it is then possible to obtain a robust estimate of the collision time

at measurement m. Should the standard deviation among said N measurements be

small enough, the system would then be allowed to make a decision regarding evasive

action based on the time to collision.

'Tm N -1 $ (Tn - tm) 2 .
n=m-N+1

In addition, the model is expected to provide a conservative estimate of the time

to collision, since sound dissipation would effectively increase the range derivative of

sound intensity [9].

18



4 Experimental Configuration

The threat detection algorithm studied in this thesis is aimed at Unmanned Under-

water Vehicles. By integrating a hydrophone to a UUV and processing its input

appropriately, the vehicle's autonomy platform, such as MOOS (Sec. 2.2), would be

capable of triggering some collision avoidance behavior. For practical reasons, how-

ever, the UUV was replaced by a single hydrophone in the experimental setup, and

the data was processed at shore instead of aboard the UUV.

Where the hydrophone line imposed a range limitation, and where the Charles

basin serves as an adequate testing environment for shallow water tests, all experi-

ments were conducted from the MIT Sailing Pavilion. As such, the hydrophone was

installed approximately 35m away from the dock, at a depth of approximately 2m.

Its input was recorded at a frequency of 44100Hz.

Another fundamental element in this experiment is the acoustic source. While a

number of larger vessels do transit the Charles Basin on a regular basis during the late

Spring and Summer, a smaller motor boat was considered safest given the proximity

of the hydrophone to the dock. One such vehicle was borrowed from the MIT Sailing

Pavilion to serve this purpose.

The components above would be considered sufficient in a practical implementa-

tion of the algorithm, with the exception of processing data aboard the unmanned

vehicle. However, some additional elements were necessary in the experimental setup

to provide the data required for a detailed evaluation of the algorithm's performance;

given the nature and purpose of this detection model, the most important metric is

the comparison of the estimated values with ground truth.

4.1 Ground truth of acoustic source

While a number of sensors and methods were given consideration in the initial devel-

opment of a system to acquire the boat's true speed on the approach, such as laser

19



guns or indirect measurements of the speed by using a chronometer and a predefined

path of known length, the resolution of these was ultimately regarded as insufficient

for appropriate validation of the algorithm.

In place of the solutions presented above, a GPS sensor was selected to provide

the actual boat location throughout the tests. In particular, the GARMIN GPS 18x

5Hz was deemed capable of meeting the needs of this project, and was made available

through MIT's Laboratory for Autonomous Marine Sensing Systems.

4.1.1 GPS data logging and time matching

Given that the test data provided in this setup is divided in two main blocks - the

acoustic data at shore and the boat true position aboard the vehicle itself - real-time

processing was not an option during the experiments. Instead, it was necessary to

store the GPS data for later analysis. For this purpose, a virtual vehicle was created

under the MOOS architecture, which already allows for generation of detailed logs

of unmanned vehicle state variables, such as operating state and position, within its

pLogger process.

An added benefit of using a virtual MOOS vehicle to store the GPS data logs was

that, by fitting the on-board computer with a long-range wireless network antenna,

the true position of the boat could be monitored from shore during the tests. This

made it possible to provide initial characterization of the results by concurrently

monitoring the position of the boat and the audio recording.

While these initial observations helped understand how the two datasets should fit

together for processing, an additional component was necessary to ensure that they

were correctly synchronized. In order to achieve this, the device would have to create

a signature on both datasets. For the specifics of this setup, that meant the device

would have to communicate directly with the virtual vehicle to add an entry to the

log, and produce some recognizable sound to be received through the hydrophone.

A simple Arduino-based switch sensor was chosen for this purpose, given the

flexibility of the microcontroller for serial communication applications. By adding a

pull-down resistor to the chosen input pin, and using two pieces of metal connected to

20



the input pin and to 5V, the microcontroller was then programmed to send a message

through the serial port whenever the pieces of metal were struck together, drawing

the input pin to 5V and also creating a particular sound. A process was added to

the virtual vehicle to create an entry in the log whenever the microcontroller sent the

desired message through the serial port.

Fig. 4-1 illustrates the basic experimental setup used for this project, including

all elements discussed above.

Motor Boat Hydrophone

Radio
MOS

Mehicle
0 Recording moos.

Figure 4-1: Basic experimental setup for passive acoustic detection system.

4.2 Data Processing

The final element of the experimental setup was a platform to facilitate the data

analysis. Through preliminary measurements with the hydrophone and an initial

round of experiments to become familiarized with the system, it was possible to

develop a series of scripts to extract the data from the vehicle logs and then present

the results in a readable format. In its current form, the platform requires that

the user identifies the start and end times of each segment of interest, namely the

instances where the boat was performing an approach and departure maneuver.

The working principle of the audio processing script is drawn from the difference

21



in sampling frequency between the datasets and represents the intended approach to

on-board processing. Where the audio signal is recorded at 44100Hz, the GPS data

is stored at about 5Hz. In a real implementation of this algorithm, the application

that records the input from the hydrophone would subscribe to the GPS reports,

which would then give the application a working frame to estimate sound intensity

by computing the Root Mean Square (RMS) of all points in the audio track between

the previous position report and the latest one. Besides providing a smoother estimate

of the sound intensity, the RMS would enable a real vehicle to track only one or two

such segments of audio at a high sampling rate, resulting in reduced memory usage.

The script, then, computes the sound intensity data by identifying the segment

of the hydrophone recording that belongs to each step in the vehicle position log.

These values are then handed to the algorithm to generate an estimate of the time

to collision and appropriate confidence metric as explained in Sec. 3.

22



5 Results and Discussion

After all data was recorded and the offset was identified, the vehicle log and audio

recording were processed together. In order to identify the subsets of interest to this

study, the vehicle position was plotted in a 3-dimensional graph with time on the

vertical axis, as illustrated in Fig. 5-1.

2500 s

- boat path
o switch sensor signature
X - hydronhone

2000--

1500--

E
1000--

500

x

-2-0250 -

y-coordinate (m)
x-coordinate (m)

Figure 5-1: Boat position versus time, with switch sensor triggers marked.

This representation allowed to break the data into segments, corresponding to

the different approach-and-departure pairs of the boat from the perspective of the

hydrophone. Each path segment was then plotted individually, to provide a visual

aid for the analysis of its corresponding data (Fig. 5-2). Similarly, the distance to

the hydrophone, or range, was plotted against the corresponding subset of the audio

track and its RMS intensity estimation (Fig. 5-3). This representation shows that

23
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the peak in sound intensity occurs after the boat has already passed the hydrophone.

However, the spread of clear growth in sound intensity over approximately 30s before

the range minimum already suggests this acoustic detection system may be practical

in real applications.

Boat Path (segment)

0- - Path
0 Start
0 End

4 -50- X Hydrophone
Cz

-2 -100-
0
0

-150-

-200 - I -
-400 -300 -200 -100 0 100 200

x-coordinate (m)

Figure 5-2: Boat position through pass 7, April 26.

-Distance to hydrophone-

200-

100- -

0
1380 1390 1400 1410 1420 1430 1440 1450

-Audio segment-
0.2-

0~
E- 0

1380 1390 1400 1410 1420 1430 1440 1450

-Audio segment (RMS)-

0.05-
0 0.04k-

0.03-

E 0.02
03 0.01

1380 1390 1400 1410 1420 1430 1440 1450
time (s)

Figure 5-3: Boat distance to hydrophone from GPS data through pass 7, April 26.

In order to appropriately validate the model, however, it was necessary to confirm

whether the algorithm is able to approximate the time to collision provided by the

24



on-board GPS system. After performing the statistical regression analysis described

in Sec. 3, the output values were multiplied by a calibration factor. The resulting

estimated time to collision and sound intensity were plotted against the confidence

metric given by Eq. 3.5, as shown in Fig. 5-4. It may be observed that the time to

collision predicted by the acoustic system in this particular case is indeed a generally

conservative estimate of the value given by the GPS tracker.

-Time to collision (ETA)-
100

- - GPS
~50 Acoustic model

50-

1380 1390 1400 1410 1420 1430 1440 1450

-Audio segment (RMS)-

1380 1390 1400 1410 1420 1430 1440 1450

-Boat speed from GPS-

0.

(D

1380 1390 1400 1410 1420 1430 1440 1450

-Standard deviation for projected collision time-
GC I

40-
30-

1380 1390 1400 1410 1420 1430 1440 1450
time (s)

Figure 5-4: Time to collision estimate, sound intensity, boat speed and standard
deviation of collision time through pass 7, April 26.

Fig. 5-5 show an instance where the predicted time to collision displays more vari-

ation and a less conservative estimate. However, the estimates presented in this case

are still considered valuable for a vehicle's behavior decision protocol, in particular

for high risk-averse conditions. Here, the standard deviation drops below 5 seconds

25
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in multiple occasions during the first 60 seconds of the approach, giving a hypothet-

ical UUV sufficient time to take evasive action such as sinking to the bottom and

anchoring, or initiating travel to a known safe location.

-Time to collision (ETA)-
100

-GPS
(50 _Acoustic model

S0--SL 
I L I I I

1160 1170 1180 1190 1200 1210 1220 1230 1240 1250

-Audio segment (RMS)-
0.1 -

0.08-
. 0.06-

- 0.04-

M 0.02 -

1160 1170 1180 1190 1200 1210 1220 1230 1240 1250

-Boat speed from GPS-

E
70a-o

01
1160 1170 1180 1190 1200 1210 1220 1230 1240 1250

-Standard deviation for projected collision time-
50 L

40 -

30-
20-

10 N

1160 1170 1180 1190 1200 1210 1220 1230 1240 1250
time (s)

Figure 5-5: Time to collision estimate, sound intensity, boat speed and standard
deviation of collision time through pass 5, April 26.

5.1 Confidence metric for estimation

As is explained in the ALPACA project white paper, the vehicle would only initiate

an alarm or reactive behavior if the confidence level is high enough (small standard

deviation) and the time to collision is smaller than a predefined value. Similarly, the

alarm or behavior would only be cleared once the time estimate is sufficiently large in

26
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the negative domain and the standard deviation is also large enough. In the case of

Fig. 5-6, the estimated time to collision from t = 814s to t = 822s does not match the

value provided by the GPS data. It must also be noted that the particular conditions

for clearing a reactive behavior could be met by this case, depending on the preset

values of trigger time AT and standard deviation &.

-Time to collision (ETA)-
100 I I I

--- S GPS

50 _Acoustic model

-50 7 I

805 810 815 820 825 830 835 840 845 850

-Audio segment (RMS)-
0.08-

0.06-

0.04 -
ECO 0.02

805 810 815 820 825 830 835 840 845 850

-Boat speed from GPS-

~10-
E

CD
CL

0 1 1 1
805 810 815 820 825 830 835 840 845 850

-Standard deviation for projected collision time-
50 I

40-

30-

20-

10 -

0
805 810 815 820 825 830 835 840 845 850

time (s)

Figure 5-6: Time to collision estimate, sound intensity, boat speed and standard
deviation of collision time through pass 3, April 26.

As such, it is strongly recommended that the system tracks not only the active

values Tm and arTm, but also the last instance where trigger conditions were met and its

corresponding timestamp. Should this be the case, the scenario presented in Fig. 5-6

would be able to use this detection algorithm by holding the estimate given around

t = 808s, since the standard deviation in the timeframe t = 814s to t = 822s is large
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and a sufficiently recent, high-confidence prediction exists.

5.2 Effect of accelerating acoustic source

As with Fig 5-2, passes 3, 5 and 7 of the April 26 experiment, discussed above, shared

a common path feature: they started near the northern side of the Harvard Bridge and

ended before reaching the Charles River Yacht Club, heading east. This feature was

also present in other data sets that support the validity of the detection algorithm.

In order to acquire additional test data for validation, the reverse segments were

also evaluated. The consequence of this path choice, however, was that the the

approach leg was significantly shorter than in the previous cases. As an example,

Fig. 5-8 shows the boat as it turns around from its previous pass and into the next

one. The corresponding estimate of time to collision for this case meets the required

conditions to enable evasive action less than 10 seconds before the boat passes over

the range minimum.

Boat Path (segment)

0 Path
o Start
0 End

4( -50 X Hydrophone

-2 -100-
0
0

-150-

-200 I I I I
-400 -300 -200 -100 0 100 200 300

x-coordinate (m)

Figure 5-7: Boat position through pass 2, April 26.

Two different arguments arise from these results. On the one hand, the short

amount of time available after detection makes any evasive action impractical in this

scenario. On the other hand, the self-correcting nature of the statistical regression

analysis allowed the system to produce a good estimate of the time to collision, with

sufficient confidence to meet the established trigger conditions.

In addition to the arguments presented above, it is possible that other variations
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Figure 5-8: Time to collision estimate, sound intensity, boat speed and standard
deviation of collision time through pass 2, April 26.

in the system affected the predictions provided by the detection algorithm. One such

variation would be the boat speed as it moved towards the hydrophone. It is possible

that due to the short length of the westward approach legs, the initial estimate of

time to collision in these tests was affected by the boat picking up speed and perhaps

even transitioning into planing. For this reason, a second look is taken to the time

estimations discussed above, with respect to the speed logged via the GPS system.

At first glance, the vehicle speed in the first two cases discussed (Fig. 5-4 and 5-5)

appears to be approximately constant. By comparison, Fig. 5-8 displays pronounced

variations in speed around the same times where the confidence metric (the standard

deviation of the projected collision time) increases significantly. In comparing these
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observations with the seemingly unexpected behavior of the algorithm in pass 3 of

the April 26 tests (Fig.5-6), it becomes apparent that the section where the model

failed to approximate the GPS data coincides with a notorious increase in speed.

Accounting for the effects of an accelerating source in the perception of sound

intensity related to the detection system is a non-trivial problem. However, the

scenario envisioned for this algorithm is one where acoustic sources, such as barges

or other motor boats, are traveling at approximately constant speed in a waterway,

near a harbor or in littoral areas.

5.3 Estimation for departing acoustic source

A final observation is made, regarding the departure leg of all measurements presented

in this document. From the graphs above, it may be drawn that the estimation of

collision time as the boat moves away does not fit well the data obtained from the

GPS. It may be possible that the faster drop in sound intensity is related with the

motion of water in the wake. Despite this inaccuracy of the estimate, the algorithm

appears to hold a negative value for the time to collision, with high confidence in the

estimation. As such, it would be possible to modify the behavior or alarm release

conditions to observe the amount of time this estimate has held a negative value

before resetting.
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6 Conclusions

Where the envisioned usage of the detection algorithm hereby evaluated involves ve-

hicles traveling at approximately constant speed, the results provide proof-of-concept

validation of the model. It has been demonstrated that detection of other vehicles

through acoustics is possible, with sufficient confidence to command a collision avoid-

ance behavior.

It is strongly recommended, however, that additional testing be performed to

appropriately characterize the departure leg of a boat's path, as well as the transition

from approach to departure.

Given the possible effects of the boat's wake on acoustic perception, it is also

recommended that tests be performed in parallel lines, moving incrementally away

from the detection system, be it a hydrophone setup or an actual UUV.

Additionally, as reaction time may be a concern in different applications, it is

recommended that tests be performed in locations with greater water depth, and

with a range of boat types as acoustic sources, to better understand the effects of

these parameters in the algorithm and its calibration.
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