5,281 research outputs found

    Discrete Jordan Curve Theorem: A proof formalized in Coq with hypermaps

    Get PDF
    This paper presents a formalized proof of a discrete form of the Jordan Curve Theorem. It is based on a hypermap model of planar subdivisions, formal specifications and proofs assisted by the Coq system. Fundamental properties are proven by structural or noetherian induction: Genus Theorem, Euler's Formula, constructive planarity criteria. A notion of ring of faces is inductively defined and a Jordan Curve Theorem is stated and proven for any planar hypermap

    A new proof of Vassiliev's conjecture

    Full text link
    We give a new proof of Vassiliev's planarity criterion for framed four-valent graphs (and more generally, *-graphs), which is based on Pontryagin-Kuratowski theorem.Comment: a planarity criterion for noneven *-graphs is adde

    Some Remarks on Non-Planar Diagrams

    Get PDF
    Two criteria for planarity of a Feynman diagram upon its propagators (momentum flows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.Comment: Presented by K. Bielas at the International Conference of Theoretical Physics "Matter To The Deepest", Ustron 201

    Gauss paragraphs of classical links and a characterization of virtual link groups

    Get PDF
    A classical link in 3-space can be represented by a Gauss paragraph encoding a link diagram in a combinatorial way. A Gauss paragraph may code not a classical link diagram, but a diagram with virtual crossings. We present a criterion and a linear algorithm detecting whether a Gauss paragraph encodes a classical link. We describe Wirtinger presentations realizable by virtual link groups.Comment: 12 pages, 12 figures, v2: new results have been adde

    A Planarity Test via Construction Sequences

    Full text link
    Optimal linear-time algorithms for testing the planarity of a graph are well-known for over 35 years. However, these algorithms are quite involved and recent publications still try to give simpler linear-time tests. We give a simple reduction from planarity testing to the problem of computing a certain construction of a 3-connected graph. The approach is different from previous planarity tests; as key concept, we maintain a planar embedding that is 3-connected at each point in time. The algorithm runs in linear time and computes a planar embedding if the input graph is planar and a Kuratowski-subdivision otherwise

    Occam's razor meets WMAP

    Get PDF
    Using a variety of quantitative implementations of Occam's razor we examine the low quadrupole, the ``axis of evil'' effect and other detections recently made appealing to the excellent WMAP data. We find that some razors {\it fully} demolish the much lauded claims for departures from scale-invariance. They all reduce to pathetic levels the evidence for a low quadrupole (or any other low â„“\ell cut-off), both in the first and third year WMAP releases. The ``axis of evil'' effect is the only anomaly examined here that survives the humiliations of Occam's razor, and even then in the category of ``strong'' rather than ``decisive'' evidence. Statistical considerations aside, differences between the various renditions of the datasets remain worrying
    • …
    corecore