
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 253-264
www.stacs-conf.org

DISCRETE JORDAN CURVE THEOREM:
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JEAN-FRANÇOIS DUFOURD 1
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Abstract. This paper presents a formalized proof of a discrete form of the Jordan Curve
Theorem. It is based on a hypermap model of planar subdivisions, formal specifications
and proofs assisted by the Coq system. Fundamental properties are proven by structural
or noetherian induction: Genus Theorem, Euler’s Formula, constructive planarity criteria.
A notion of ring of faces is inductively defined and a Jordan Curve Theorem is stated and
proven for any planar hypermap.

Introduction

This paper presents a formal statement and an assisted proof of a Jordan Curve The-
orem (JCT) discrete version. In its common form, the theorem says that the complement
of a continuous simple closed curve (a Jordan curve) C in an affine real plane is made of
two connected components whose border is C, one being bounded and the other not. The
discrete form of JCT we deal with states that in a finite subdivision of the plane, breaking
a ring R of faces increases by 1 the connectivity of the subdivision. It is a weakened version
of the original theorem where the question of bound is missing. However, it is widely used
in computational geometry and discrete geometry for imaging, where connection is the es-
sential information (14; 9). In fact, we only are in a combinatoric framework, where any
embedding is excluded, and where bounding does not make sense.

In computational topology, subdivisions are best described by map models, the most
general being hypermaps (15; 4). We propose a purely combinatorial proof of JCT based
on this structure. The hypermap framework is entirely formalized and the proofs are de-
veloped interactively and verified by the Coq proof assistant (3). Using an original way
to model, build and destruct hypermaps, the present work brings new simple constructive
planarity and connectivity criteria. It proposes a new direct expression of JCT and a simple
constructive proof with algorithmic extensions. It is also a large benchmark for the software
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specification framework we have been developing in the last fifteen years for map models
used in geometric modeling and computer imagery (2; 7; 8).

The useful Coq features are reminded and the whole process is described, but the full
details of the proofs are omitted. Section 1 summarizes related work. Section 2 recalls some
mathematical materials. Section 3 proposes basic hypermap specifications. Section 4 proves
constructive criteria of hypermap planarity and connectivity. Section 5 inductively specifies
the rings and their properties. Section 6 proves the discrete JCT. Section 7 concludes.

1. Related work

The JCT is a result of classical plane topology, first stated by C. Jordan in 1887,
but of which O. Veblen gives the first correct proof in 1905. In 1979, W.T. Tutte proposes
operations and properties of combinatorial maps, e.g. planarity and Euler’s Formula, defines
rings and proves a discrete JCT (15). Our theorem statement is comparable, but our
framework is modeled differently and all our proofs are formalized and computer-assisted.

In 2003, G. Bauer and T. Nipkow specify planar graphs and triangulations in Is-
abelle/Isar to carry out interactive proofs of Euler’s Formula and of the Five Colour The-
orem (1). However, they do not approach the JCT. In 2005, A. Kornilowicz designs for
the MIZAR project a semi-automated classical proof of a continuous form of JCT in an
Euclidean space (13). In 2005 also, on his way towards the proof of the Kepler conjecture
in the Flyspeck projet, T. Hales proves the JCT for planar rectangular grids with the HOL
Light system, following the Kuratowski characterization of planarity (12).

In 2005 always, G. Gonthier et al. prove the Four Colour Theorem using Coq. Plane
subdivisions are described by hypermaps, and Euler’s Formula is used as a global planarity
criterion (10). A local criterion, called hypermap Jordan property, is proven equivalent. The
main part of this work is the gigantic proof of the Four Colour Theorem with hypermaps
and sophisticated proof techniques. The hypermap formalization is very different from ours
and it seems that JCT is not explicitly proven there. Finally, since 1999, we carry out
experiments with Coq for combinatorial map models of space subdivisions (5; 7; 8).

2. Mathematical Aspects

Definition 2.1 (Hypermap). A hypermap is an algebraic structure M = (D,α0, α1), where
D is a finite set whose elements are called darts, and α0, α1 are permutations on D.

If y = αk(x), y is the k-successor of x, x is the k-predecessor of y, and x and y are said
to be k-linked.

In Fig. 1, as functions α0 and α1 on D = {1, . . . , 15} are permutations, M = (D,α0, α1)
is a hypermap. It is drawn on the plane by associating to each dart a curved arc oriented
from a bullet to a small stroke: 0-linked (resp. 1-linked) darts share the same small stroke
(resp. bullet). By convention, in the drawings of hypermaps on surfaces, k-successors turn
counterclockwise around strokes and bullets. Let M = (D,α0, α1) be a hypermap.

Definition 2.2. (Orbits and hypermap cells)
(1) Let f1, . . . , fn be n functions in D. The orbit of x ∈ D for f1, . . . , fn is the subset of D
denoted by 〈f1, . . . , fn〉(x), the elements of which are accessible from x by any composition
of f1, . . . , fn.



JORDAN CURVE THEOREM IN COQ WITH HYPERMAPS 255

8

9

10

11

12

1

3
4

5

6
7

2

1 2 153 4 5 7 9 10 11 12 13 14
α0   

α1
6
2

5
4

3 4
6

12
9

10
5 11

8 
10

11
12

14 13
13

15
1514

2
8 

7
8 

6
1
71

9
3

D

13

14

15

Figure 1: An example of hypermap.

(2) In M , 〈α0〉(x) is the 0-orbit or edge of dart x, 〈α1〉(x) its 1-orbit or vertex, 〈φ〉(x) its
face for φ = α−1

1 ◦ α−1
0 , and 〈α0, α1〉(x) its (connected) component.

In Fig. 1 the hypermap contains 7 edges (strokes), 6 vertices (bullets), 6 faces and 3
components. For instance, 〈α0〉(3) = {3, 5, 4} is the edge of dart 3, 〈α1〉(3) = {3, 4, 1, 2} its
vertex. Faces are defined, through φ, for a dart traversal in counterclockwise order, when
the hypermap is drawn on a surface. Then, every face which encloses a bounded (resp.
unbounded) region on its left is called internal (resp. external). In Fig. 1, the (internal)
face of 8 is 〈φ〉(8) = {8, 10} and the (external) face of 13 is 〈φ〉(13) = {13}. Let d, e, v, f
and c be the numbers of darts, edges, vertices, faces and components of M .

Definition 2.3. (Euler characteristic, genus, planarity)
(1) The Euler characteristic of M is χ = v + e + f − d.
(2) The genus of M is g = c − χ/2.
(3) When g = 0, M is said to be planar.

For instance, in Fig. 1, χ = 6 + 6 + 7− 15 = 4 and g = 3−χ/2 = 1. Consequently, the
hypermap is non planar. These values satisfy the following results:

Theorem 2.4 (of the Genus). χ is an even integer and g is a natural number.

Corollary 2.5 (Euler Formula). A non empty connected − i.e. with c = 1 − planar
hypermap satisfies v + e + f − d = 2.

When D 6= ∅, the representation of M on an orientable closed surface is a mapping of
edges and vertices onto points, darts onto open oriented Jordan arcs, and faces onto open
connected regions. It is an embedding when every component of M realizes a partition of
the surface. Then, the genus of M is the minimum number of holes in an orientable closed
surface where such an embedding is possible, thus drawing a subdivision, or a polyhedron,
by hypermap component (11). For instance, all the components of the hypermap in Fig. 1
can be embedded on a torus (1 hole) but not on a sphere or on a plane (0 hole). When a
(planar) hypermap component is embedded on a plane, the corresponding subdivision has
exactly one unbounded (external) face. But a non planar hypermap can never be embedded
on a plane: in a drawing on a plane, some of its faces are neither internal nor external, e.g.
〈φ〉(1) = {1, 5, 2, 11, 12, 7, 6, 4, 9} in Fig. 1. Conversely, any subdivision of an orientable
closed surface can be modeled by a hypermap. In fact, the formal presentation which
follows is purely combinatorial, i.e without any topological or geometrical consideration.

2.1. Rings of faces and Jordan Curve Theorem

To state the version of JCT we will prove, we need the concepts of double-link, adjacent
faces and ring of faces in a hypermap M = (D,α0, α1).
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Figure 2: Break of M along a ring R of length n = 4 giving M ′.

Definition 2.6. (Double-link and adjacent faces)
(1) A double-link is a pair of darts (y, y ′) where y and y′ belong to the same edge.
(2) The faces F and F ′ of M are said to be adjacent by the double-link (y, y ′) if y is a dart
of F and y′ a dart of F ′.

We choose a face adjacency by an edge rather than by a vertex as does W.T. Tutte (15).
In fact, due to the homogeneity of dimensions 0 and 1 in a hypermap, both are equivalent.

Definition 2.7. (Ring of faces)
A ring of faces R of length n in M is a non empty sequence of double-links (yi, y

′

i), for
i = 1, . . . , n, with the following properties, where Ei and Fi are the edge and face of yi:
(0) Unicity: Ei and Ej are distinct, for i, j = 1, . . . , n and i 6= j;
(1) Continuity: Fi and Fi+1 are adjacent by the double-link (yi, y

′

i), for i = 1, . . . , n − 1;
(2) Circularity, or closure: Fn and F1 are adjacent by the double-link (yn, y′n);
(3) Simplicity: Fi and Fj are distinct, for i, j = 1, . . . , n and i 6= j.

This notion simulates a Jordan curve represented in dotted lines in Fig. 2 on the left
for n = 4. Then, we define the break along a ring, illustrated in Fig. 2 on the right.

Definition 2.8. (Break along a ring)
Let R be a ring of faces of length n in M . Let Mi = (D,α0,i, α1), for i = 0, . . . , n, be a
hypermap sequence, where the α0,i are recursively defined by:
(1) i = 0: α0,0 = α0;
(2) 1 ≤ i ≤ n: for each dart z of D: α0,i(z) = if α0,i−1(z) = yi then y′i else if α0,i−1(z) = y′i
then yi else α0,i−1(z).
Then, Mn = (D,α0,n, α1) is said to be obtained from M by a break along R.

Finally, the theorem we will prove in Coq mimics the behaviour of a cut along a simple
Jordan curve of the plane (or of the sphere) into two components:

Theorem 2.9 (Discrete Jordan Curve Theorem). Let M be a planar hypermap with c
components, R be a ring of faces in M , and M ′ be the break of M along R. The number c′

of components of M ′ is such that c′ = c + 1.

3. Hypermap specifications

3.1. Preliminary specifications

In Coq, we first define an inductive type dim for the two dimensions at stake:

Inductive dim:Set:= zero: dim | one: dim.
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Figure 3: A hypermap with its incompletely linked orbits.

All objects being typed in Coq, dim has the type Set of all concrete types. Its constructors
are the constants zero and one. In each inductive type, the generic equality predicate = is
built-in but its decidability is not, because Coq’s logic is intuitionistic. For dim, the latter
can be established as the lemma:

Lemma eq_dim_dec: forall i j : dim, {i=j}+{~i=j}.

Once it is made, its proof is an object of the sum type {i=j}+{~i=j}, i.e. a function, named
eq dim dec, that tests whenever its two arguments are equal. The lemma is interactively
proven with some tactics, the reasoning being merely a structural induction on both i and
j, here a simple case analysis. Indeed, from each inductive type definition, Coq generates
an induction principle, usable either to prove propositions or to build total functions on the
type. We identify the type dart and its equality decidability eq dart dec with the built-in
nat and eq nat dec. Finally, to manage exceptions, a nil dart is a renaming of 0:

Definition dart:= nat.

Definition eq_dart_dec:= eq_nat_dec.

Definition nil:= 0.

3.2. Free maps

The hypermaps are now approached by a general notion of free map, thanks to a free
algebra of terms of inductive type fmap with 3 constructors, V, I and L, respectively for the
empty (or void) map, the insertion of a dart, and the linking of two darts:

Inductive fmap:Set:=

V : fmap | I : fmap->dart->fmap | L : fmap->dim->dart->dart->fmap.

For instance, the hypermap in Fig. 1 can be modeled by the free map represented in Fig.3
where the 0- and 1-links by L are represented by arcs of circle, and where the orbits remain
open. Again, Coq generates an induction principle on free maps.

Next, observers of free maps can be defined. The predicate exd express that a dart
exists in a hypermap. Its definition is recursive, which is indicated by Fixpoint, thanks
to a pattern matching on m written match m with.... The attribute {struct m} allows
Coq to verify that the recursive calls are performed on smaller fmap terms, thus ensuring
termination. The result is False or True, basic constants of Prop, the built-in type of
propositions. Note that terms are in prefix notation and that is a place holder:

Fixpoint exd(m:fmap)(z:dart){struct m}:Prop:=

match m with

V => False | I m0 x => z=x \/ exd m0 z | L m0 _ _ _ => exd m0 z

end.
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The decidability exd dec of exd directly derives, thanks to a proof by induction on m. Then,
a version, denoted A, of operation αk of Definition 2.1 completed with nil for convenience
is written as follows, the inverse A 1 being similar:

Fixpoint A(m:fmap)(k:dim)(z:dart){struct m}:dart:=

match m with

V => nil | I m0 x => A m0 k z | L m0 k0 x y =>

if eq_dim_dec k k0 then if eq_dart_dec z x then y else A m0 k z

else A m0 k z

end.

Predicates succ and pred express that a dart has a k-successor and a k-predecessor (not
nil), with the decidabilities succ dec and pred dec. In hypermap m of Fig. 3, A m zero 4

= 3, A m zero 5 = nil, succ m zero 4 = True, succ m zero 5 = False, A 1 m one

2 = 1. In fact, when a k-orbit remains open, which will be required in the following, we
can obtain its top and bottom from one of its dart z. Then, we can do as if the k-orbit
were closed, thanks to the operations cA and cA 1 which close A and A 1, in a way similar
to operation K of W.T. Tutte (15). For instance, in Fig. 3, top m one 1 = 3, bottom m

one 1 = 4, cA m one 3 = 4, cA 1 m one 4 = 3.
Finally, destructors are also recursively defined. First, D:fmap->dart->fmap deletes

the latest insertion of a dart by I. Second, B, B :fmap->dim->dart->fmap break the latest
k-link inserted for a dart by L, forward and backward respectively.

3.3. Hypermaps

Preconditions written as predicates are introduced for I and L:

Definition prec_I(m:fmap)(x:dart):= x <> nil /\ ~ exd m x.

Definition prec_L(m:fmap)(k:dim)(x y:dart):=

exd m x /\ exd m y /\ ~ succ m k x /\ ~ pred m k y /\ cA m k x <> y.

If I and L are used under these conditions, the free map built necessarily has open orbits.
In fact, thanks to the closures cA and cA 1, it can always be considered as a true hypermap
exactly equipped with operations αk of Definition 2.1. It satisfies the invariant:

Fixpoint inv_hmap(m:fmap):Prop:=

match m with

V => True | I m0 x => inv_hmap m0 /\ prec_I m0 x

| L m0 k0 x y => inv_hmap m0 /\ prec_L m0 k0 x y

end.

Such a hypermap was already drawn in Fig. 3. Fundamental proven properties are that,
for any m and k, (A m k) and (A 1 m k) are injections inverse of each other, and (cA m k)

and (cA 1 m k) are permutations inverse of each other, and are closures. Finally, traversals
of faces are based on function F and its closure cF, which correspond to φ (Definition 2.2).
So, in Fig. 3, F m 1 = nil, cF m 1 = 5. Properties similar to the ones of A, cA are proven
for F, cF and their inverses F 1, cF 1.

3.4. Orbits

Testing if there exists a path from a dart to another in an orbit for a hypermap permu-
tation is of prime importance, for instance to determine the number of orbits. The problem
is exactly the same for α0, α1 or φ (Definitions 2.1 and 2.2). That is why a signature Sigf

with formal parameters f, f 1 and their properties is first defined.



JORDAN CURVE THEOREM IN COQ WITH HYPERMAPS 259

L m zero x y

x

y

F’ F’’

y

x_1
x

m

F

F’

L m zero x y

x

y

F’’
m

F
x

y

x_1

Planar 0−linking inside a face F giving 2 faces F’ and F’’. Non planar 0−linking between 2 faces F and F’ giving face F’’.

Figure 4: Linking at dimension 0.

Next, a generic module (or functor) Mf(M:Sigf), the formal parameter M being a module
of type Sigf, is written in Coq to package generic definitions and proven properties about
f and f 1. Among them, we have that each f-orbit of m is periodic with a positive smallest
uniform period for any dart z of the orbit. The predicate expo m z t asserts the existence
of a path in an f-orbit of m from a dart z to another t, which is proven to be a decidable
equivalence. Note that most of the properties are obtained by noetherian induction on the
length of iterated sequences of f-successors, bounded by the period.

Appropriate modules, called MA0, MA1 and MF, are written to instantiate for (cA m

zero), (cA m one) and (cF m) definitions and properties of f. So, a generic definition or
property in Mf(M) has to be prefixed by the module name to be concretely applied. For
instance, MF.expo m z t is the existence of a path from z to t in a face. In the following,
MF.expo is abbreviated into expf. For instance, in Fig. 3, expf m 1 5 = True, expf m

5 3 = False. Finally, a binary relation eqc stating that two darts belong to the same
component is easily defined by induction. For instance, in Fig. 3, we have eqc m 1 5 =

True, eqc m 1 13 = False. We quickly prove that (eqc m) is a decidable equivalence.

3.5. Characteristics, Genus Theorem and Euler Formula

We now count cells and components of a hypermap using the Coq library module ZArith
containing all the features of Z, the integer ring, including tools to solve linear systems in
Presburger’s arithmetics. The numbers nd, ne, nv, nf and nc of darts, edges, vertices, faces
and components are easily defined by induction. Euler’s characteristic ec and genus derive.
The Genus Theorem and the Euler Formula (for any number (nc m) of components) are
obtained as corollaries of the fact that ec is even and satisfies 2 * (nc m) >= (ec m) (8).
Remark that -> denotes a functional type in Set as well as an implication in Prop:

Definition ec(m:fmap): Z:= nv m + ne m + nf m - nd m.

Definition genus(m:fmap): Z:= (nc m) - (ec m)/2.

Definition planar(m:fmap): Prop:= genus m = 0.

Theorem Genus_Theorem: forall m:fmap, inv_hmap m -> genus m >= 0.

Theorem Euler_Formula: forall m:fmap, inv_hmap m -> planar m ->

ec m / 2 = nc m.

4. Planarity and connectivity criteria

A consequence of the previous theorems is a completely constructive criterion of pla-
narity, when one correctly links with L at dimensions 0 or 1, e.g. for 0:

Theorem planarity_crit_0: forall (m:fmap)(x y:dart),

inv_hmap m -> prec_L m zero x y -> (planar (L m zero x y) <->

(planar m /\ (~ eqc m x y \/ expf m (cA_1 m one x) y))).
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So, the planarity of m is preserved for (L m zero x y) iff one of the following two conditions
holds: (1) x and y are not in the same component of m; (2) x 1 = (cA 1 m one x) and
y are in the same face of m, i.e. the linking operates inside the face containing y. Fig. 4
illustrates 0-linking inside a face, giving two new faces, and between two (connected) faces,
giving a new face, thus destroying planarity. Finally, after a long development, we prove
the expected planarity criterion, when breaking a link with B, at any dimension, e.g. for 0:

Lemma planarity_crit_B0: forall (m:fmap)(x:dart), inv_hmap m ->

succ m zero x -> let m0 := B m zero x in let y := A m zero x in

(planar m <-> (planar m0 /\ (~ eqc m0 x y \/ expf m0 (cA_1 m0 one x) y))).

Such a lemma is easy to write/understand as a mirror form of the 0-linking criterion, but it
is much more difficult to obtain. It would be fruitful to relate these constructive/destructive
criteria with the static one of G. Gonthier (10). Finally, some useful results quickly char-
acterize the effect of a link break on the connectivity of a planar hypermap. For instance,
when 0-breaking x, a disconnection occurs iff expf m y x0:

Lemma disconnect_planar_criterion_B0:forall (m:fmap)(x:dart),

inv_hmap m -> planar m -> succ m zero x ->

let y := A m zero x in let x0 := bottom m zero x in

(expf m y x0 <-> ~eqc (B m zero x) x y).

5. Rings of faces

5.1. Coding a double-links and identifying a face

Since an edge is always open in our specification, when doing the backward break of a
unique 0-link from y or y’, we in fact realize a double-link break, as in Definition 2.8. So,
we choose to identify a double-link by the unique dart, we called x, where the 0-link to be
broken begins. In fact, with respect to the face F on the left of the double-link in the ring,
there are two cases, depending on the position of x and its forward 0-link, as shown in Fig.
5 (a) and (b). We decided to distinguish them by a Boolean b. Then, a double-link is coded
by a pair (x, b). So, we implicitely identify each ring face F by the double-link coding on
its right in the ring. In Fig. 5 (a), face F is identified by (x, true) and contains y:= A m

zero x, whereas in Fig. 5 (b), face F is identified by (x, false) and contains x0:= bottom

m zero x. These modeling choices considerably simplify the problems. Indeed, in closed
orbits, a true double-link break would entail 2 applications of B followed by 2 applications
of L, and would be much more complicated to deal with in proofs.
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5.2. Modeling a ring of faces

First, we inductively define linear lists of pairs of booleans and darts, with the two
classical constructors lam and cons, and usual observers and destructors, which we do not
give, because their effect is directly comprehensible:

Inductive list:Set := lam: list | cons: dart*bool -> list -> list.

Such a list is composed of couples (x, b), each identifying a face F: if b is true, F is
represented by y:= A m zero x, otherwise by x0:= bottom m zero x (Fig. 5). In the
following, Bl m l breaks all the 0-links starting from the darts of list l in a hypermap
m. Now, we have to model the conditions required for list l to be a ring of hypermap m.
Translating Definition 2.7, we have four conditions, called pre ringk m l, for k = 0, . . . , 3,
which we explain in the following sections. Finally, a predicate ring is defined by:

Definition ring(m:fmap)(l:list):Prop:= ~emptyl l /\

pre_ring0 m l /\ pre_ring1 m l /\ pre_ring2 m l /\ pre_ring3 m l.

5.3. Ring Condition (0): unicity

The predicate distinct edge list m x l0 saying that the edges of l0 are distinct in
m from a given edge of x, pre ring0 m l is defined recursively on l to impose that all edges
in l are distinct: Condition (0) of Definition 2.7. It also imposes that each dart in l has
a 0-successor, in order to have well defined links, which is implicit in the mathematical
definition, but not in our specification whith open orbits.

Fixpoint pre_ring0(m:fmap)(l:list){struct l}:Prop:=

match l with

lam => True | cons (x,_) l0 =>

pre_ring0 m l0 /\ distinct_edge_list m x l0 /\ succ m zero x

end.

5.4. Ring Condition (1): continuity

Then, we define adjacency between two faces identified by xb = (x, b) and xb’ =

(x’, b’), along the link corresponding to xb:

Definition adjacent_faces(m:fmap)(xb xb’:dart*bool):=

match xb with (x,b) => match xb’ with (x’,b’) =>

let y := A m zero x in let y’:= A m zero x’ in

let x0 := bottom m zero x in let x’0:= bottom m zero x’ in

if eq_bool_dec b true

then if eq_bool_dec b’ true then expf m x0 y’ else expf m x0 x’0

else if eq_bool_dec b’ true then expf m y y’ else expf m y x’0

end end.

This definition is illustrated in Fig. 6 for the four possible cases of double-link codings.
So, the predicate pre ring1 m l recursively specifies that two successive faces in l are
adjacent: Condition (1) in Definition 2.7:

Fixpoint pre_ring1(m:fmap)(l:list){struct l}:Prop:=

match l with

lam => True | cons xb l0 => pre_ring1 m l0 /\

match l0 with lam => True | cons xb’ l’ => adjacent_faces m xb xb’ end

end.
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5.5. Ring Condition (2): circularity, or closure

The predicate pre ring2 m l specifies that the last and first faces in l are adjacent:
Condition (2) of circularity in Definition 2.7:

Definition pre_ring2(m:fmap)(l:list):Prop:=

match l with

lam => True | cons xb l0 =>

match xb with (x,b) => let y := A m zero x in match l0 with

lam => let x0 := bottom m zero x in expf m y x0

| cons _ l’ => let xb’:= last l0 in adjacent_faces m xb’ xb

end end

end.

5.6. Ring Condition (3): simplicity

The predicate specifiying that the faces of m identified by xb and xb’ are distinct is
easy to write by cases on the Booleans in xb and xb’. The predicate distinct face list

m xb l0 expressing that the face identified by xb is distinct from all faces of list l0 entails.
Then, the predicate pre ring3 m l says that all faces of l are distinct: Condition (3) in
Definition 2.7:

Fixpoint pre_ring3(m:fmap)(l:list){struct l}:Prop:=

match l with

lam => True | cons xb l0 => pre_ring3 m l0 /\ distinct_face_list m xb l0

end.

6. Discrete Jordan Curve Theorem

The general principle of the JCT proof for a hypermap m and a ring l is a structural
induction on l. The case where l is empty is immediatly excluded because l is not a ring
by definition. Thus the true first case is when l is reduced to one element, i.e. is of the
form cons (x, b) lam. Then, we prove the following lemma as a direct consequence of the
planarity criterion planarity crit B0 and the criterion face cut join criterion B0:

Lemma Jordan1:forall(m:fmap)(x:dart)(b:bool), inv_hmap m -> planar m ->

let l:= cons (x,b) lam in ring m l -> nc (Bl m l) = nc m + 1.

When a ring l1 contains at least two elements, we prove that the condition ~expf m y

x0 must hold with the first element (x,b) of l1 (in fact, conditions (1) and (3) are enough):



JORDAN CURVE THEOREM IN COQ WITH HYPERMAPS 263

Lemma ring1_ring3_connect:

forall(m:fmap)(x x’:dart)(b b’:bool)(l:list), inv_hmap m ->

let l1:= cons (x,b) (cons (x’,b’) l) in

let y:=A m zero x in let x0:= bottom m zero x in

planar m -> pre_ring1 m l1 -> pre_ring3 m l1 -> ~expf m y x0.

In this case, thanks to disconnect planar criterion B0 (Section 4), the lemma entails
that the break of the first ring link does never disconnect the hypermap. Then, after
examining the behavior of pre ringk, for k = 0, . . . , 3, we are able to prove the following
lemma which states that the four ring properties are preserved after the first break in l:

Lemma pre_ring_B: forall(m:fmap)(l:list), inv_hmap m -> planar m ->

let x := fst (first l) in let y := A m zero x in

let x0 := bottom m zero x in let m1 := B m zero x in

~expf m y x0 -> ring m l -> (pre_ring0 m1 (tail l) /\ pre_ring1 m1 (tail l)

/\ pre_ring2 m1 (tail l) /\ pre_ring3 m1 (tail l)).

The most difficult is to prove the part of the result concerning pre ringk, for k = 0, . . . , 3.
The four proofs are led by induction on l in separate lemmas. For pre ring0, the proof is
rather simple. But, for the other three, the core is a long reasoning where 2, 3 or 4 links are
involved in input. Since each link contains a Boolean, sometimes appearing also in output,
until 24 = 16 cases are to be considered to combine the Boolean values.

Finally, from Jordan1 and pre ring B above, we have the expected result by a quick
reasoning by induction on l, where links are broken one by one from the first:

Theorem Jordan: forall(l:list)(m:fmap),

inv_hmap m -> planar m -> ring m l -> nc (Bl m l) = nc m + 1.

It is clear that, provided a mathematical hypermap M and a mathematical ring R conform to
Definitions 2.1 and 2.7, we can always describe them as terms of our specification framework
in order to apply our JCT. Conversely, given a hypermap term, some mathematical rings
cannot directly be written as terms. To do it, our ring description and our JCT proof have
to be slightly extended. However, that is not necessary for the combinatorial maps (where
α0 is an involution) terms, for which our ring specification and our JCT formalization are
complete. This is more than enough to affirm the value of our results.

7. Conclusion

We have presented a new discrete statement of the JCT based on hypermaps and
rings, and a formalized proof assisted by the Coq system. Our hypermap modeling with
open orbits simplifies and precises most of known facts. It also allows to obtain some new
results, particularly about hypermap construction/destruction, connection/disconnection
and planarity. This work involves a substantial framework of hypermap specification, which
is built from scratch, i.e. exempt from any proper axiom. It is basically the same as the
one we have designed to develop geometric modelers via algebraic specifications (2). So, we
know how to efficiently implement all the notions we formally deal with.

The Coq system turned out to be a precious auxiliary to guide and check all the process
of specification and proof. The preexistent framework of hypermap specification represents
about 15,000 lines of Coq, and the JCT development about 5,000 lines, including about 25
new definitions, and 400 lemmas and theorems. Note that all results about the dimension 0
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were actually proven, but some planarity properties about dimension 1, which are perfectly
symmetrical, have just been admitted. However, the JCT formal proof is complete.

So, we have a solid foundation to tackle any topological problem involving orientable
surface subdivisions. Extensions are in 2D or 3D computational geometry and geometric
modeling by introducing embeddings (6; 2), and computer imagery by dealing with pixels
(7) or voxels.
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[9] Françon, J.: Discrete Combinatorial Surfaces. CVGIP : Graphical Models and Image
Processing 57:1, (1995), 20–26.

[10] Gonthier, G.: A computer-checked proof of the Four Colour Theorem. Microsoft Re-
search, Cambridge, http://coq.inria.fr/doc/main.html (2005), 57 pages.

[11] Griffiths, H.: Surfaces. Cambridge University Press (1981).
[12] Hales, T.: A verified proof of the Jordan curve theorem. Seminar Talk. Dep. of Math.,

University of Toronto (2005), http://www.math.pitt.edu/~thales.
[13] Kornilowicz A.: Jordan Curve Theorem. In: Formalized Mathematics 13:4 (2005),

Univ. of Bialystock, 481–491.
[14] Rosenfeld, A.: Picture Languages - Formal Models for Picture Recognition. In: Comp.

Science and Appl. Math. series. Academic Press, New-York (1979).
[15] Tutte, W.T.: Combinatorial oriented maps. Can. J. Math., XXXI:5 (1979), 986–1004.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.




