958 research outputs found

    Scheduling and discrete event control of flexible manufacturing systems based on Petri nets

    Get PDF
    A flexible manufacturing system (FMS) is a computerized production system that can simultaneously manufacture multiple types of products using various resources such as robots and multi-purpose machines. The central problems associated with design of flexible manufacturing systems are related to process planning, scheduling, coordination control, and monitoring. Many methods exist for scheduling and control of flexible manufacturing systems, although very few methods have addressed the complexity of whole FMS operations. This thesis presents a Petri net based method for deadlock-free scheduling and discrete event control of flexible manufacturing systems. A significant advantage of Petri net based methods is their powerful modeling capability. Petri nets can explicitly and concisely model the concurrent and asynchronous activities, multi-layer resource sharing, routing flexibility, limited buffers and precedence constraints in FMSs. Petri nets can also provide an explicit way for considering deadlock situations in FMSs, and thus facilitate significantly the design of a deadlock-free scheduling and control system. The contributions of this work are multifold. First, it develops a methodology for discrete event controller synthesis for flexible manufacturing systems in a timed Petri net framework. The resulting Petri nets have the desired qualitative properties of liveness, boundedness (safeness), and reversibility, which imply freedom from deadlock, no capacity overflow, and cyclic behavior, respectively. This precludes the costly mathematical analysis for these properties and reduces on-line computation overhead to avoid deadlocks. The performance and sensitivity of resulting Petri nets, thus corresponding control systems, are evaluated. Second, it introduces a hybrid heuristic search algorithm based on Petri nets for deadlock-free scheduling of flexible manufacturing systems. The issues such as deadlock, routing flexibility, multiple lot size, limited buffer size and material handling (loading/unloading) are explored. Third, it proposes a way to employ fuzzy dispatching rules in a Petri net framework for multi-criterion scheduling. Finally, it shows the effectiveness of the developed methods through several manufacturing system examples compared with benchmark dispatching rules, integer programming and Lagrangian relaxation approaches

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    An Estelle Compiler for Multiprocessor Platforms

    Get PDF
    Efficient implementation of communication software is of critical importance for high-speed networks. Parallelism can improve the runtime performance of implementations gained by code generation. Therefore, we have modified an existing Estelle compiler to run under OSF/1. It exploits parallelism not only in the actions of the FSMs, but also in the runtime system of the protocol stack

    Parallelism in declarative languages

    Get PDF
    Imperative programming languages were initially built for uniprocessor systems that evolved out of the Von Neumann machine model. This model of storage oriented computation blocks parallelism and increases the cost of parallel program development and porting. Declarative languages based on mathematical models of computation, seem more suitable for the development of parallel programs. In the first part of this thesis we examine different language families under the declarative paradigm: functional, logic, and constraint languages. Functional languages are based on the abstract model of functions and (lamda)-calculus. They were initially developed for symbolic computation, but today they are commonly used in numerical analysis and many other application areas. Pure lisp is a widely known member of this class. Logic languages are based on first order predicate calculus. Although they were initially developed for theorem proving, fifth generation operating systems are written in them. Most logic languages are descendants or distant relatives of Prolog. Constraint languages are related to logic languages. In a constraint language you define a program object by placing constraints on its structure and its behavior. They were initially used in graphics applications, but today researchers work on using them in parallel computation. Here we will compare and contrast the language classes above, locate advantages and deficiencies, and explain different choices made by language implementors. In the second part of thesis we describe a front end for the CONSUL, a prototype constraint language for programming multiprocessors. The most important features of the front end are compact representation of constraints, type definitions, functional use of relations, and the ability to split programs into multiple files

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    A scheduling analysis tool for real-time systems

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (leaves 63-65).by Clarence Bruce Applegate.S.B.and M.Eng

    Acta Cybernetica : Volume 14. Number 3.

    Get PDF

    Synthesizing stream control

    Get PDF
    For the management of reactive systems, controllers must coordinate time, data streams, and data transformations, all joint by the high level perspective of their control flow. This control flow is required to drive the system correctly and continuously, which turns the development into a challenge. The process is error-prone, time consuming, unintuitive, and costly. An attractive alternative is to synthesize the system instead, where the developer only needs to specify the desired behavior. The synthesis engine then automatically takes care of all the technical details. However, while current algorithms for the synthesis of reactive systems are well-suited to handle control, they fail on complex data transformations due to the complexity of the comparably large data space. Thus, to overcome the challenge of explicitly handling the data we must separate data and control. We introduce Temporal Stream Logic (TSL), a logic which exclusively argues about the control of the controller, while treating data and functional transformations as interchangeable black-boxes. In TSL it is possible to specify control flow properties independently of the complexity of the handled data. Furthermore, with TSL at hand a synthesis engine can check for realizability, even without a concrete implementation of the data transformations. We present a modular development framework that first uses synthesis to identify the high level control flow of a program. If successful, the created control flow then is extended with concrete data transformations in order to be compiled into a final executable. Our results also show that the current synthesis approaches cannot replace existing manual development work flows immediately. During the development of a reactive system, the developer still may use incomplete or faulty specifications at first, that need the be refined after a subsequent inspection. In the worst case, constraints are contradictory or miss important assumptions, which leads to unrealizable specifications. In both scenarios, the developer needs additional feedback from the synthesis engine to debug errors for finally improving the system specification. To this end, we explore two further possible improvements. On the one hand, we consider output sensitive synthesis metrics, which allow to synthesize simple and well structured solutions that help the developer to understand and verify the underlying behavior quickly. On the other hand, we consider the extension of delay, whose requirement is a frequent reason for unrealizability. With both methods at hand, we resolve the aforementioned problems and therefore help the developer in the development phase with the effective creation of a safe and correct reactive system.Um reaktive Systeme zu regeln müssen Steuergeräte Zeit, Datenströme und Datentransformationen koordinieren, die durch den übergeordneten Kontrollfluss zusammengefasst werden. Die Aufgabe des Kontrollflusses ist es das System korrekt und dauerhaft zu betreiben. Die Entwicklung solcher Systeme wird dadurch zu einer Herausforderung, denn der Prozess ist fehleranfällig, zeitraubend, unintuitiv und kostspielig. Eine attraktive Alternative ist es stattdessen das System zu synthetisieren, wobei der Entwickler nur das gewünschte Verhalten des Systems festlegt. Der Syntheseapparat kümmert sich dann automatisch um alle technischen Details. Während aktuelle Algorithmen für die Synthese von reaktiven Systemen erfolgreich mit dem Kontrollanteil umgehen können, versagen sie jedoch, sobald komplexe Datentransformationen hinzukommen, aufgrund der Komplexität des vergleichsweise großen Datenraums. Daten und Kontrolle müssen demnach getrennt behandelt werden, um auch große Datenräumen effizient handhaben zu können. Wir präsentieren Temporal Stream Logic (TSL), eine Logik die ausschließlich die Kontrolle einer Steuerung betrachtet, wohingegen Daten und funktionale Datentransformationen als austauschbare Blackboxen gehandhabt werden. In TSL ist es möglich Kontrollflusseigenschaften unabhängig von der Komplexität der zugrunde liegenden Daten zu beschreiben. Des Weiteren kann ein auf TSL beruhender Syntheseapparat die Realisierbarkeit einer Spezifikation prüfen, selbst ohne die konkreten Implementierungen der Datentransformationen zu kennen. Wir präsentieren ein modulares Grundgerüst für die Entwicklung. Es verwendet zunächst den Syntheseapparat um den übergeordneten Kontrollfluss zu erzeugen. Ist dies erfolgreich, so wird der resultierende Kontrollfluss um die konkreten Implementierungen der Datentransformationen erweitert und anschließend zu einer ausführbare Anwendung kompiliert. Wir zeigen auch auf, dass bisherige Syntheseverfahren bereits existierende manuelle Entwicklungsprozesse noch nicht instantan ersetzen können. Im Verlauf der Entwicklung ist es auch weiterhin möglich, dass der Entwickler zunächst unvollständige oder fehlerhafte Spezifikationen erstellt, welche dann erst nach genauerer Betrachtung des synthetisierten Systems weiter verbessert werden können. Im schlimmsten Fall sind Anforderungen inkonsistent oder wichtige Annahmen über das Verhalten fehlen, was zu unrealisierbaren Spezifikationen führt. In beiden Fällen benötigt der Entwickler zusätzliche Rückmeldungen vom Syntheseapparat, um Fehler zu identifizieren und die Spezifikation schlussendlich zu verbessern. In diesem Zusammenhang untersuchen wir zwei mögliche Erweiterungen. Zum einen betrachten wir ausgabeabhängige Metriken, die es dem Entwickler erlauben einfache und wohlstrukturierte Lösungen zu synthetisieren die verständlich sind und deren Verhalten einfach zu verifizieren ist. Zum anderen betrachten wir die Erweiterung um Verzögerungen, welche eine der Hauptursachen für Unrealisierbarkeit darstellen. Mit beiden Methoden beheben wir die jeweils zuvor genannten Probleme und helfen damit dem Entwickler während der Entwicklungsphase auch wirklich das reaktive System zu kreieren, dass er sich auch tatsächlich vorstellt

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing
    corecore