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Abstract

Real-time analysis is needed for optimizing the use of many real-time systems.There
are a wide variety of scheduling policies, based on different sets of criteria, designed
to optimize the use of these systems.The focus of this project is on optimizing the
utility of a schedule, where the utility of a schedule is a function of a set of utility
functions describing the time-dependent utility of completing each computation.For
this project, a module for utility-based real-time system scheduling was created.This
module contains a scheduler that implements a greedy utility-based scheduling policy
and an analysis function that compares the utility of the schedule generated to an
approximation of the maximum achievable utility.
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Chapter 1

Introduction

Real-time analysis is applicable in numerous real-world situations. It is useful when a

system has a limited number of resources, limited time in which to use these resources,

or any other constraints in which the functioning of the system can be improved by

scheduling. The focus of this project is processor scheduling, although the methodol-

ogy could apply to any resource with the same sort of information and requirements.

Processor scheduling deals with the allocation of available processor cycles. The pro-

cessor' is a finite resource and can be utilized by at most one task at any point in

time. In addition, each task must satisfy a certain set of constraints, such as execu-

tion time and precedence constraints. Thus, the processor scheduling problem can

be described as assigning a number of tasks to execute on a processor in such a way

that the task constraints are met and some criteria are optimized.

1.1 Optimization Criteria

There are numerous types of constraints and criteria for optimization that vary de-

pending on the system being studied. These constraints may be based on such factors

as time, utility, and available resources.

'The general processor scheduling problem can include multiple processors. For the purposes of
this document, however, only the single processor scheduling problem is being considered.
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1.1.1 Temporal Criteria

Real-time systems include tasks that have time constraints. One common example is

a deadline, where the task must finish by a certain time to have maximal value to the

system. There are two main types of deadlines: hard deadlines and soft deadlines [13].

Hard deadlines are deadlines that require the task to complete by the deadline to be

of any value to the system. Soft deadlines, on the other hand, have a certain value

if they complete by the deadline but have a lesser, non-zero value if they complete

after the deadline.

Deadlines are actually a special case of a more general class of functions, also

known as utility functions. A utility function describes the usefulness of completing

the task with respect to time of completion. Under one formulation, the goal of real-

time systems with respect to time-based criteria is for their tasks to be scheduled

such that they complete at acceptable times with acceptable predictability [13], [15].

A schedule of tasks is a temporal sequence in which the tasks utilize the available

resources. Thus, acceptable collective timeliness can be described as a schedule satis-

fying certain criteria. For example, in the case of scheduling hard real-time systems,

the criterion is to meet all hard deadlines. For soft real-time, there are a variety of

possible criteria, including minimizing number of missed deadlines, minimizing av-

erage lateness or tardiness, and maximizing the total utility. Lateness is defined as

the difference between the time of completion of a task and its deadline. This value

can be negative if the time of completion is before the deadline, so the concept of

tardiness is often more useful. Tardiness is the maximum of lateness and zero or, in

other words, the lateness only if a job finishes execution after its deadline [11].

Predictability describes the degree to which something is known in advance, rang-

ing from pure determinism to complete entropy. For hard real-time, a high enough

degree of predictability is necessary to guarantee a task will complete on time. The

degree of predictability necessary for hard deadlines depends very much on the param-

eters of the specific problem. For example, scheduling a resource where the resource

needs to be in use constantly to meet the criteria would need to have a high degree
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of predictability, but if the resource only had sporadic usage the predictability might

not need to be as high. Soft real-time can encompass varying degrees of predictabil-

ity, sometimes implicitly stated. For example, a periodic task implicitly occurs with

high predictability once per period. Lower predictability for soft real-time may lead

to some deadlines not being met. However, not meeting a deadline in soft real-time

does not carry quite the import of not meetin a deadline in hard real-time.

Tasks have two additional temporal attributes, the release time and the execution

time, which are highly relevant in any implementation of a real-time scheduling policy.

The release time, or ready time, is the time that the task first lets the machine know of

its presence and becomes available for execution on the machine [11]. The execution

time is the amount of time the task must actually utilize the processor before it

completes. In some cases, the execution time is a stochastic variable. A stochastic

variable is one that cannot be described by a deterministic fixed number; it is often

described by a probabilistic distribution. In the case of stochastic variables, this work

considers the execution time to be the worst case execution time [11]. This choice

may not be desirable in all cases (like in best-case scenarios). It was chosen as an

expedient for this work.

1.1.2 Priority

Real-time systems also often have tasks that need to be scheduled based on some

measure of value or importance. One common approach to this is to assign a priority

or weight to each task. A priority is a ranking of importance; a task with higher

priority takes precedence over those with lower priorities. This is a very common

concept in processor scheduling. For example, when an interrupt is sent to a processor

the processor often needs to handle it more urgently than whatever it may be currently

running. A scheduling policy that considers the interrupts as a higher priority than

other tasks can handle this kind of situation. Priority-driven scheduling has been

implemented in such applications as processor and microkernel scheduling [18].

10



1.1.3 Machine Complexity

Real-time systems deal with different levels of complexity within the machines them-

selves. For one, there may be multiple machines on which to schedule the jobs. This

is the case considered in the general job-shop problem. Systems that operate in

parallel need to be able to consider multiple machines running simultaneously when

generating the schedule [20]. In addition, a single machine may be able to utilize

multiple resources. A resource is some component of the system that can be utilized

by a machine while a task is executing on the machine. Resources can be shared by

all machines or only available to a single machine. For example, consider a printer

on a computer network. The printer can only print out one job at a time, so that

particular resource must be scheduled for all machines in the system. For this set of

problems, additional constraints may be derived from the quality of usage of these

resources. Some of the possible constraints include load balancing and

1.2 Terminology

There are additional scheduling considerations that must be introduced to fully de-

scribe relevant scheduling problems. They are different aspects of scheduling problems

that occur in various systems. The first idea is that of preemption. When a task is

executing on a machine, another task may reach its release time and become available

to the machine. In some cases, the machine will achieve an optimal result only if it

stops execution on the currently executing task and allows the newly available task

to begin executing. This is known as preemption [4].

The question then becomes what the preempted task is allowed to do, relative to

its own completion. The two extremes are preempt-resume mode and preempt-repeat

mode. In preempt-resume mode, the task is allowed to begin executing where it left

off, so there is no additional execution time taken by the task itself if it completes

execution. On the other hand, in preempt repeat mode if a task is preempted it must

begin again as if it had not executed at all [4].

In the case of an infeasible schedule, it is necessary to shed various tasks. Shedding
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halts execution of a task and removes it from consideration for future execution. One

example is the removal of the task from an execution queue. An execution queue can

be defined as a queue containing all currently executable tasks and the order in which

they will be executed, although the order may change. For many implementations,

it is necessary to consider more complicated situations, such as what occurs when a

partially completed task holds a shared resource. For this resource, however, there

is only one resource and one processor, so the definition above is sufficient for this

scope.

There are many systems in which it is necessary to consider dependencies. Depen-

dencies are relations between tasks where what can and does occur with one task or

set of tasks determines what can occur with another task or set of tasks. The defini-

tion is narrowed for the scope of this project. For this case, dependencies are relations

between different tasks where, if taski is dependent on tasks, taskj must complete ex-

ecution before taski begins running. Dependencies can have multiple levels, so taski

can depend on taskj, which depends on taskk.

12



Chapter 2

Scheduling Policies and Analysis

There are a wide variety of scheduling policies and forms of analysis that have been

developed, based on different environments (e.g., single or multiple machines, single or

multiple resources available for the machines), timing considerations (e.g., presence of

dependencies, preemption, task shedding, periodicity of events), assumptions about

information (e.g., integrality of data, release times at zero), and optimization criteria

(e.g., timing, priority) [20], [9], [4]. This project deals with a single processor/single

resource. It only considers single occurrence events (where a single occurrence event

only happens once per simulation), although it is possible to deal with periodic events

by representing them as a series of single occurrence events that are periodically

spaced. There are a variety of algorithms that are relevant for the purposes of this

project.

2.1 Scheduling Policies

2.1.1 Earliest Deadline First

Earliest Deadline First (EDF), or Earliest Due Date, is an algorithm developed by

J.R.Jackson that will produce an optimal schedule based on certain timeliness criteria

[12]. The deadline is the time by which the task must be completed. The algorithm

schedules tasks in deadline order, from the task with the earliest deadline to the task
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with the latest deadline. This algorithm guarantees that it will either produce a

feasible solution or guarantee that no feasible solution exists. The running time of

this algorithm is O(n log n) time, where n is the number of jobs that need to execute

[10].

The original EDF algorithm assumes that release times and deadlines are integral,

and all processing times are one unit long. In addition, it assumes no preemption is

allowed. The problem was initially described for a single processor, but it can be ex-

tended to multiple machines by a simple round-robin assignment: given m machines,

the first m tasks are assigned to machines 1,...m, the next m tasks are then assigned

to machines 1,...,m, etc. [10]. The implementation is as described below.

EDF

For t <- 0 to T (T = total processor time available in schedule)

Look at all jobs ji,...,ji with release times < t and deadlines ti,...,ti

j'+- ji

t'+- t 1

For k 1 to i

if tk < t'

j'- Jk

t' tk

if tk > t

FAIL

The problem was initially described for a single processor, but it can be extended

to multiple machines by a simple round-robin assignment: given m machines, the

first m tasks are assigned to machines 1, ...m, the next m tasks are then assigned to

machines 1,...,m, and similarly for all remaining tasks [10]. The difficulty arises when

considering integral, rather than unit, processing times. In this case, the problem

is actually an NP-complete problem [10]. However, in these cases, EDF might act

as a reasonable heuristic. The EDF approach has been shown to minimize both

the maximum task lateness and the maximum task tardiness. These results remain
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consistent if dependencies are considered as well [4].

A variant of EDF, called EDF-var, of this is employed as one of the scheduling

policies available in the scheduling and analysis module implemented for this project.

EDF-var has a few features that differ from the problem as described above. For one,

EDF-var allows for preemption. If preemption is introduced into EDF scheduling,

the NP-complete problem becomes much more tractable. In addition, the release

times, execution times, and even time in simulation are not guaranteed to be integral.

Finally, EDF-var sheds tasks that do not complete in time. This is because the

optimization criteria of the scheduler do not include minimizing lateness or tardiness,

and a task that does not complete in time has no value to the system.

2.1.2 Shortest Processing Time

Shortest Processing Time (SPT) is another common scheduling algorithm. In this

algorithm, the objective is to minimize the mean flow time. The flow time is defined

as the difference between the release time and the completion time. If it is assumed

that there is a single machine, integrality of data (all temporal data can be described

as integer values), release times at start of simulation, and neither dependencies nor

preemption, executing tasks in non-decreasing order of execution time minimizes the

mean flow time [5], [9].

2.1.3 Priority-Based Scheduling

Priority scheduling rules are actually a more global phenomenon that can also be used

to describe time-based scheduling rules. For this case, priority-based scheduling is

considered scheduling based on some measure of priority or value that is independent

of other relevant scheduling characteristics (e.g., execution time, deadline). It is

possible to use execution time or deadline-based priority rules, but simply for the

case of keeping the policies distinct they are considered separately in this case. For

priority-based schedulers, the general policy is to first schedule tasks with the highest

priority. Once that has been accomplished, schedule the tasks with the next highest
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priority, and so on. Priority-based schedulers will often use another scheduling policy

when deciding to schedule among those with equivalent priority (e.g., FIFO, Round

Robin). [17]

2.2 Analysis

2.2.1 Rate Monotonic Analysis

The most common form of analysis available today is Rate Monotonic Analysis

(RMA), invented in the 1970's by Liu and Leyland [19]. RMA is arguably aimed

toward scheduling periodic functions. It is a pessimistic analysis tool that consid-

ers both periodicity and worst-case execution times to determine if a set of tasks is

schedulable. It has been successful in practice, as it is the analysis approach that is

basis of multiple commercial scheduling and analysis products, such as TimeWiz [25]

and RapidRMA [26].

RMA guarantees that a schedule is feasible if the total task utilization is less

than or equal to a utilization bound. For a set of N tasks, the total task utilization is

defined as i'=1 T, where Ci is worst-case execution time of task,, and T is the length

of taski's period. The fraction C is effectively the percent of each period that task

uses. The utilization bound U(N) is defined as U(N) = N(2N - 1). RMA states that

if the utilization bound is greater than or equal to the total task utilization, then the

set of tasks can always be scheduled [26], [19], [16].

This algorithm is inappropriate for the needs of this project. Most importantly,

RMA determines whether or not a set of processes is schedulable. This is important

in many contexts, but the aim of utility-based scheduling is to find the best schedule

whether or not all tasks are schedulable. In fact, there are cases in which all the

processes are schedulable but the highest utility schedule sheds some of the processes.

For example, consider the following case:

" Two tasks ti and t2 running on a single processor

* Each task requires 5 units of execution time

16
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Time Time

Figure 2-1: Utility functions of ti and t2

" Task ti has a utility function described by a line that starts at time 0 with

utility 11 and ends at time 10 with utility 1

" Task t 2 has a utility function described as a constant value of 1 from time 0 to

time 6 and 0 until time 10 (i.e., a hard deadline at time 6)

If t 2 executes from 0 to 5 and ti executes from 5 to 10, both tasks complete.

However, the total utility of this schedule is just the sum of utilities at their completion

times, which ends up being a utility of 2. On the other hand, if ti executes from 0 to

5 and t 2 is shed, the utility of the schedule ends up being 6 even though t 2 was never

executed.

In addition, RMA generally assumes a set of periodic tasks; for the case of the

utility-based scheduler the desired set of tasks might not be predominantly periodic.

There has been some work to extend RMA to tasks that are not purely periodic

[16]. Even with this work, RMA is not particularly well suited towards the analysis

of the systems we are considering. Finally, not only does RMA not consider utility

functions, it does not even consider any kind of priority. For these reasons a new form

of analysis must be developed.
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Chapter 3

Problem Description

The goal of this project is to provide an analysis tool that performs utility-based

analysis on a model of a real-time system. The analysis tools that currently exist are

designed to analyze systems with the rate monotonic analysis approach. Although

these tools are not capable of handling utility-based scheduling in their original form,

it is possible to adapt them for the purposes of utility-based scheduling. In fact, one

of these tools (TimeWiz [25]) was adapted for this implementation by adding a utility

module, informally called UtilityWiz.

The utility-based scheduling problem is not as simple as it first may seem. The

systems in question are suffuciently complex and dynamic that formulae and ap-

proaches as simple as rate monotonic analysis are insufficient to address the problem.

New combinations of rules and simulations must be developed for this analysis.

The expresiveness of utility functions allows them to cover a wide variety of

scheduling issues. This has the advantage of covering most of the previous work,

plus much more. The disadvantage, however, is that the level of complexity and

depth of the problem effectively require that a heuristic approach be taken.

UtilityWiz supports dynamic event arrival and utility functions. This tool needed

to cover these issues to achieve meaningful results. In addition, other issues such

as allowing for dependencies and the ability to analyze not only the results but also

the quality of the analysis, both in accuracy and running time, greatly augment the

capabilities of this tool.
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These features are not currently available on any extant commercial evaluation

tool. Two companies that have built analysis tools (TriPacific Software Inc. [26] and

TimeSys Corporation[25]) had previously expressed interest in adding this function-

ality to the current capabilities of their products but have lacked the resources to this

point to undertake the task. The tool created in this project is implemented as a

plug-in to one of their products.'

3.1 Utility Accrual Models

There are a variety of possible models for determining the utility of a schedule. For

example, the utility of a schedule could be based partially on whether all tasks com-

plete. In this case, a schedule where all tasks complete could be worth more than

the case where not all complete but those that complete have a much higher utility.

Another model would only accrue utility from a set of dependent tasks if all the tasks

in the set complete. The model considered for this implementation is a simple utility

accrual model that has been used in previous work[23],[7]. In this model, the util-

ity of a schedule is simply the sum of the utilities of all the tasks at their times of

completion.

3.2 Problem Statement

The utility-based scheduling optimization problem can be described as follows:

Given:

* a set of tasks 1,..,n, where each task i has:

- a time-dependent utility function ui(t)

- an execution time ei

- a release time si

'This work could have been based on either company's product. The selection of TimeWiz does
not indicate any believed superiority to RapidRMA.
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- an optional dependency di:

di j, i must complete before i starts

0, there is no such j

" a single processor on which to execute the tasks

" a time interval [0,T]

Define a schedule S as a set of times tjV tasks i, such that:

" tj is the completion time of i if finishes execution in [0,T]

" ti is 0 if i does not finish execution in [0,T]

Define a legal schedule as a schedule such that:

* at any time t' E [0,T], no more that one task is utilizing the processor

* every task i:

- executes for a total time of < ej

- does not begin executing before si

- if di # 0, for di =j:

* if t= 0, i does not execute

* if ty # 0, i does not begin execution until after tj

The utility of a schedule is defined as:

Utility(S) = Ew

where

util(taski) = {u0 (ti), tj 5 0

0, else

The optimization problem, then, is to determine a schedule S such that Utility(S)

is maximized. That is, find a schedule S such that:

legal(S) A (V S') [legal(S') -- Utility(S) ;> Utility(S')]

20



Chapter 4

Program Description

This scheduler is implemented as an extension to an existing scheduling program,

TimeWiz by TimeSys Corporation [25]. TimeWiz already allows for such scheduling

heuristics as priority-based scheduling or deadline-based scheduling, and is a suitable

framework for extension into the utility domain. In this program, there are three main

items representing components of real-time systems: resources, events, and actions.

Resources are the entities that are being scheduled. Resources could represent

anything schedulable: a tool in a workplace, a machine or piece of equipment, or (in

the case of this implementation) a processor. TimeWiz allows for a resource to have

multiple uses, such as different parts of a computer (e.g., memory, bus) which are

controlled by a larger resource, such as a processor. For the purposes of this initial

program, however, the problem being considered includes only a single processor

as a single resource and does not require or utilize the additional functionality. In

addition, while there are many additional properties of the processor available within

the TimeWiz framework, for the purposes of this implementation the processor is

considered to be a single "black box" resource and the inner workings of the processor

are ignored.

Events are simply triggers for the purposes of this implementation. Each event

has a start time, which corresponds to some point in simulated time. When this start

time is reached the event is triggered, which means that the action dependent on it

is introduced into the simulation. This time is known as the "release time" of the
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action. Note that for a series of dependent actions, the completion of one action in

the chain acts as the trigger for the next action in the chain.

Actions are the items that actually utilize the resource. They can represent the

jobs, tasks, or processes submitted to the processor. When an action needs to be

executed on a processor, it is submitted to a processor to notify the processor that

this action needs to run on it. Each action has a variety of parameters that describe

its activity within the system. They each have their own utility functions, start times,

execution times, and dependencies that allow for the actions to effectively model the

system under study.

4.1 Utility Functions

There is no limit to the number of functions that can be utility functions; any one-

to-one function is possible. In practice it is often sufficient to consider only a small

subset of functions, which can be described fairly simply. This implementation only

considers a set of functions which are broken up into two contiguous time intervals, so

utility-wise they are defined from time t1 to time t2, and from t2 to time t3 ; everywhere

else they are zero. Within each time interval they can be described by a quadratic

equation, a linear equation, or a constant.

For this implementation, the quadratic and linear equations are somewhat differ-

ent than the standard method of describing quadratic and linear equations. For linear

equations, y = mx + b is the standard equation. This implementation considers y to

be the utility function ui and x to be time, so the formulation could be rewritten as

ui(t) = mt + b. It is useful, in the case of this particular implementation, to consider

the value of the functions at the three key time points of the function. Therefore,

this implementation asks for the values of the function at ti and t 2 and the slope of

the line and extracts the standard form equation from there. So, given:

" interval start time (ti or t 2)

" the slope m
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* the utility at the start of the interval (hi at ti or h2 at t 2 , respectively)

it follows that:

y(ti) = mti + b = hi =- b = hi - mti

Similarly, for quadratic equations, given:

" coefficients a and b

" interval start time (ti or t 2)

" the utility at the start of the interval (hi at ti or h2 at t 2, respectively)

it follows that:
y = ax2 +bx + c

y(t) = at 2 + bt + c

y(ti) = at2 + bt1 + c = h

c = hi-at2 - bt1

4.2 Implementation Details

In any implementation, there are certain choices that must be made to represent the

problem being approached. In the section on utility functions (Section 4.1), some

details related to utility functions were described. There is one additional utility

function detail: the code is designed to allow for easy addition of utility "subfunctions"

(e.g., constant, linear, or quadratic) without serious code blowup (where code blowup

is a large increase in the number of lines of code necessary to make the change), as

long as they can be described with two coefficients and a constant start value. Besides

adding code for the function itself, little code must be modified. In addition, there is

not a great deal of difficulty in adding in new coefficients. However, it is a problem to

add in a greater number of subintervals. There are multiple functions that deal with

examining the subintervals, and code blowup can occur with increasing the number

of subintervals. For example, suppose the number of subintervals is increased from

two to three. To implement this, it is necessary to alter imany different sections in

the code by adding a new case to account for examining one more subinterval.
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There are a few issues with processor scheduling which should be clarified for this

particular implementation. For one, it is necessary to consider what the setup time

is for each task. The setup time is the amount of time it takes to begin a task;

in processors, this refers to such things as process creatin times and context switch

times. For the purposes of this implementation, all setup times are set to zero. This

is largely for simplification of the problem. If necessary to consider the setup time,

it could be treated as either a dependency or by adding additional execution time to

the action to account for the setup time.

Another issue that had to be addressed was the handling of multiple simultaneous

release times. In other words, suppose five different tasks become available to the

processor simultaneously. The question becomes whether to wait until all tasks at that

time have become known to the processor before scheduling them or to immediately

begin executing those jobs and simply keep preempting as additional tasks with the

same release time arrive. In this implementation the latter is utilized, even though

the former is what appears most often in reality. Take the case of the five tasks

becoming available at the same time. This acts like a list of the five tasks becoming

available. This implementation starts executing the first task on the list, then looks

at the second to possibly preempt the first, and so on. The choice is purely based on

ease of implementation; however, since for this project all setup times are defined to

be 0, there is no harm in utilizing the multiple preempt approach.

4.3 Code Structure

This project is implemented as a plug-in to TimeWiz [25]. TimeWiz is a Windows@application

designed for extensibility to other scheduling and analysis disciplines. This extension

is implemented by compiling a dynamic link library file written in C++, UtilityAnal-

ysis.dll in this case. The details of setting up a plug-in to TimeWiz are discussed in

Appendix A.

There are a number of functions that may be called by the plug-in to interact

with the TimeWiz interface. This implementation uses four of these functions in a
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way that is important for proper execution of the utility-based real-time scheduling:

three for simulation, one for analysis. In addition, each of these functions calls other

functions written specifically for this implementation.

Two of the scheduling functions used in this implementation are StartSimulation

and EndSimulation. These functions are called at the beginning and the end of a run

of a simulation, respectively. For this implementation, these functions are used to

initialize and clear variables, specifically initializing dependencies and initializing the

choice of scheduling policy used for that particular simulation.

The most important scheduling function is SimulateAction. The overall simulation

is run with the TimeWiz simulation engine. The TimeWiz engine keeps track of the

running time in simulation, what is executing on the processor, and the structure

and relevant times of the actions and events being scheduled. When an action is

triggered, either by an event or completion of another action it is dependent on, the

simulation engine makes a call to SimulateAction. This call initiates a SimulateAction

thread specific to that action. Thus, each action has a SimulateAction thread directly

associated with it.

This implementation uses SimulateAction as a means for managing task execution

in a distributed fashion. UtilityWiz keeps track of a global queue where all actions

that have been triggered and are either executing or waiting to execute reside. Every

simulated time where an action is triggered, it is added to the queue in the appropriate

location based on some measure of utility, possibly preempting the currently executing

action. Once an action completes execution, the queue of actions is reorganized based

on newly assessed utilities for all actions that remain. This continues until the end

of simulation.

SimulateAction calls a set of functions in this implementation that are specific

for utility-based scheduling. When an action is first triggered, the SimulateAction

thread created for that action calls ReviseSched. This function initially places the

action in the proper place in the execution queue by comparing the value obtained by

GetDeadline Val to the other values in the queue, and preempts the currently running

action if necessary. When an action completes, the queue is revised by a call to
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ReviseQueue.

The analysis function that interacts with the TimeWiz interface is the Calc func-

tion. This function is called by TimeWiz when the "Run Analysis..." option is

selected by the user. This implementation uses the Calc function to calculate three

values: the utility accrued in the most recent simulation run, an estimate of the max-

imum accruable utility for this set of tasks (across all possible schedules), and the

total runtime of the Calc function in milliseconds.

Calc utilizes a set of analysis functions written for this implementation. Calc

initializes some of the conditions specific to that particular analysis run, then calls

GetMaxUtilWithSubInt. This function initializes variables and arrays specific to the

analysis, and then calls divide Up. divide Up runs through the sets of actions, and for

each set of actions find Valid is called. find Valid calls Run ThroughCombinations, which

runs through the different permutations of each set of actions. DependenciesOkay and

viable are called from there to determine that all of the constraints are met.
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Figure 4-1: Flowchart of Analysis Code
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Chapter 5

Implemented Scheduling Policies

and Analysis

5.1 Scheduling Policies

There are two scheduling policy options available in this particular implementation.

The first one is EDF-var, as discussed in section 2.1.1. This option is implemented

more as a matter of comparison than anything else, since it does not explicitly consider

utility. The second option is designed for utility-based scheduling. This option, called

GreedyUtil, is a greedy scheduler, implementing a scheduling approach that is based

on what is best to run at any particular point in time.

GreedyUtil keeps a running queue of all actions that are ready to run. Any time

a new action is triggered and is added to the queue or an action finishes and leaves

the queue, the scheduler rearranges the queue. It looks at the total execution time

remaining for each action in the queue. It then evaluates the utility of each action at

the time it would finish were it to run to completion without preemption; that is, at

the time t which is equal to the current time in simulation plus the time remaining for

the process to execute in the simulation. If the action cannot complete by its deadline,

it is removed from the queue. The scheduler takes the value of completing the action

at time t and divides it by the time it takes to complete the action, getting the utility

per time unit. The queue is then reordered by decreasing utility per time unit; thus,
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while the next action scheduled may not give the highest utility at completion, it will

get the best utility per time unit.

More formally, considering

" a set of tasks 1,...,n

* V i, e(i) = execution time remaining on task i:

" V i, ui(t) = utility of task i completing at time t
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GreedyUtil

Main:

Time t <-- 0

Queue q <- NULL

While t < T (= total simulation time as set in code)

If |q| > 0

execute 1st element in queue until one of the following is true:

it completes

a new task is released

current time = T

If 1st element completed

remove from queue

ReorgQueue(

t +- current time

Else

wait until a task is released or end of simulation is reached

t +- current time

ReorgQueue:

For i' <- |qj down to 1

If t > deadline(i) (where deadline = time t 3 from Section 4.1)

Remove i from queue (where i = q[i'])

Else

For j' <- i' to Iql

if ui(t+e(i)) > uj(t+e(j))
e(i) e(j)

insert i in front of j (j = q[j'])

break
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This scheduler will often not obtain the optimal utility-based schedule, as it only

looks at the local best rather than the best for all time. So, for example, suppose

the utility function of some action were simply a straight line with a slope of one

starting at time 0 and ending at the end of the simulation. The best time for this

action to finish would be as near the end as possible; however, the greedy scheduler

may schedule it first, obtaining a far from optimal value.

5.2 Analysis

The problem of finding the optimal schedule in the case of utility-based scheduling is

actually an NP-hard problem[11]. Therefore, to analyze the level of success of a given

schedule, it is much more tractable to estimate the optimal rather than calculate

it exactly. The analysis portion of the tool gives an approximation of optimal; the

longer taken by the approximation, the closer to optimal the result.

5.2.1 Algorithm

The algorithm takes the continuous utility functions and breaks them into discrete

chunks that assume the maximum value in that chunk. For example, suppose the

total execution time of the simulation is 100 time units and the number of divisions

chosen is ten. The approximation will create a new piecewise step function for each

action which has constant value from 0-10 time units, a different value from 10-20,

and so on. The constant value it assumes is the maximum value the original utility

function assumes for the interval. An example of the approximation process is shown

in Figures 5-1, 5-2, and 5-3.

Once the function has been discretized as described above, the algorithm imple-

ments something similar to a branch and bound algorithm to search the solution

space [5]. First, consider the number of possible solutions. Suppose, for some run of

the algorithm, there are n actions and a total of m different time intervals. Consider

an artificial (m+1)st time interval, where all actions that are not completed during

the execution time of the simulation are considered to complete in this time interval.
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Time

Figure 5-1: Original utility function

Time

Figure 5-2: Approximation superimposed on utility function
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Time

Figure 5-3: Approximation alone

Every action that completes ends in some time interval, and it ends with a utility

less than or equal to the maximum utility in that interval. In fact, if it is assumed

that both subintervals of a utility function are monotonically increasing, monotoni-

cally decreasing, or constant, then the maximum in each of the m intervals is either

at an endpoint of the interval or at a key point (beginning or end of of one of the

subintervals of the utility function). Thus, the optimal solution of the utility-based

scheduling problem is less than or equal to the optimal solution of the utility-based

scheduling problem with this new step function. Furthermore, a lower bound can be

obtained1 by taking the minimum utility of each task in each of the m intervals and

using that for the step function. Maximizing this value would give a lower bound on

the value of the optimal solution. These two approximations sqeeze the actual value,

as seen in Figure 5-4.

The number of possible solutions to this problem is still large, but an important
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Time

Figure 5-4: Lower and Upper Approximationd Superimposed on Original Function

observation simplifies this: the new piecewise utility function has the same value for

the full length of every interval. Thus, it is sufficient to find actions that complete by

the end of the interval and not worry about exactly when they complete within the

time interval. The problem can then be considered as placing actions in "buckets"

based on time of completion. There are m+1 different buckets, so each action has m+1

different possible completion time slots. Thus, there are (m+1)" different possible

combinations for placing the n actions into m + 1 buckets. In addition, any of these

schedules can be checked in 0(n) time. Therefore, the naive approach of simply

trying all possible time/bucket assignments and checking them for correctness takes

O(n(m+1)") time.

It is possible to improve greatly on the running time of the algorithm in many

cases, although asymptotically the running time is the same. This is done by adding

in optimizations while checking the viability of schedules to shortcut the number of

schedules checked.

First, consider the manner in which schedules are checked. To allow for greater
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flexibility in optimization, consider a scheme in which all possibilities are checked

recursively through the actions. That is, for each of the N tasks i C {1,...,n}, set

action i to execute and check all possibilities for actions (i+1) to n. Subsequently set

action i to not execute and check all possibilities for actions (i+1) to n. Finally, take

the maximum of these two results. If this approach is considered, it is then possible

to consider some optimizations based on the recursion in constructing the different

potential schedules.

One of these optimizations is limiting the number of possibilities checked by not

adding additional items to a schedule if no more can be added such that the schedule

remains feasible. This is implemented by setting up an array at the beginning of the

analysis that tells the minimum length execution time of any of the remaining tasks.

This is done by looking at each action starting at the end of the list of actions (there

is a list of actions maintained by the resource that can be accessed from within the

code). Initialize the "min-time" array by setting the nth element of the array to be

the execution time of the nth action. Note that the order is based on the order in

the action array and is independent of actual order of execution. For any action i,

look at action i+1 (the action previously examined). If the execution time of action

i is less than the (i+l)" element of the "min-time" array, then the ith element of the

"min-time" array is set to the execution time of element i. If not, the ith element

of the "min-time" array is set to the (i+l)" element of the "min-time" array. What

this produces is an array of the minimum execution times remaining.

With this array, it is possible to look at any point in the recursion and check if

it might be feasible to add an additional action and not exceed total running time.

If not, simply set the remaining actions to not execute. This simple "pruning" gives

the ability to only look at the combinations of schedules that might execute based

on total running time alone. It eliminates the finding of permutations of schedules

that cannot be met under any circumstances simply due to total execution time. In

addition, this approach does not even examine a subset of the variables that cannot

be added in.

Another simple optimization that greatly reduces the runtime of the analysis in
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the average case is to keep track of the best result so far. Before checking the different

possible permutations of the schedule, find the maximum utility value of each utility

function that will be considered in this particular combination of tasks and sum them

up. If the sum is not greater than the maximum value achieved so far, then there is

no need to check the possible permutations of this set of tasks, as it is not possible to

improve on the current best. This "pruning" on average greatly reduces the number

of permutations examined, and the permutations take up a large amount of total

running time in the analysis.

Based on these optimizations, the algorithm is as follows:
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Division-analyze

Main:

Initialize "min-time" array, max so far ( 0), all tasks (to not executing)

Return ZeroOne called with current task equal to 0

ZeroOne(current task):

If over total time in simulation (as defined in code)

return 0

If no tasks can be added without exceeding total time in simulation

set all remaining tasks to not execute

return CheckAll()

If at last action

return CheckAll()

Else

Set current task i to executing

Call ZeroOne(current task = i+1)

Set current task i to not executing

Call ZeroOne(current task = i+1)

Return the max of these two ZeroOne calls

CheckA ll(:

if max possible for this set of actions is greater than max so far

go through all permutations

return the max utility permutation that satisfies temporal and

precedence constraints

if not

return max so far
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5.2.2 Analysis of Algorithm

Each of the three parts of Division-analyze has a purpose in the algorithm. Main sets

up some necessary data. ZeroOne runs through all of the possible sets of actions. In

ZeroOne, one of the optimizations is performed. Combinations of tasks that cannot

complete by the end of the simulation are eliminated without further examination

and, in many cases, not even considered at all. CheckAll first checks if the sum of

the maximum utilities of all tasks in the current combination is greater than the

maximum total utility achieved so far; if not, there is no need to check further. If so,

it runs through all possible permutations and takes the maximum permutation that

meets all scheduling constraints. CheckAll performs another optimization, by only

checking tasks in the intervals where the utility function is defined. In this fashion,

all of the possible ways of legally placing the tasks into the intervals are checked by

Division-analyze.

The algorithm will always give a set of time slots that is feasible. When the algo-

rithm actually assigns the actions to the time slots, the schedule is feasible. However,

the values of the approximated utility function (see Figure 5-3) that are reached may

not be possible. In fact, the difference between the value of the optimal solution pos-

sible and the solution presented by the algorithm is less than or equal to the sum of

the differences between the maximum utility and the minimum utility of each action

in the interval where each action is assigned in this solution. Implementing the ap-

proximation with the minimum value in the intervals (as described in Section 5.2.1)

will give a lower bound for the maximum utility, so the maximum utility is between

the upper bound obtained in this implementation and the lower bound as described

in Section 5.2.1.
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Chapter 6

Description of Variables

Each component in TimeWiz has a set of variables specific to that component. The

variables most relevant to the UtilityWiz plug-in are listed below.

One implementation detail to note is that when the situation arose in which a

choice had to be made between different options (e.g., choice of scheduling policy)

the choice was always between integer values. This choice was made due to the greater

simplicity of working with integer values in TimeWiz.
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Table 6.1: Resource-Specific Input variables

Table 6.2: Resource-Specific Output variables

40

Variable Title in Values assumed Description
name in code interface
TWZName Name String Name of resource, default is CPU
TWZScheduling Scheduling Heuristic 100, 101 Scheduling policy used when
Heuristic (100=EDF, a simulation is run; 100

101=GreedyUtil) means EDF-var, 101 means
greedy utility

TWZSubdivisions Subdivisions positive Integers Number of segments or chunks of
time that the total time in
simulation is divided into for the
purpose of analysis

Variable Title in Values assumed Description
name in code interface
TWZUtility Utility non-negative float Total accrued utility of all

actions reached in most recent
run of simulation of all the
actions; calculated when
analysis is run

TWZUtilityPossible UtilityPossible non-negative float Upper bound on the maximum
achievable accrued utility;
calculated when analysis is run

TWZTimeElapsed TimeElapsed (ms) Non-negative int Total runtime of analysis in
milliseconds; calculated
when analysis is run



Table 6.3: Event-Specific Input Variables

Table 6.4: Event-Specific Output Variables
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Variable Title in Values assumed Description
name in code interface
TWZName Name String Name of the event
TWZSimFirst first arrival in Float Time that the event occurs in the
Arrival simulation simulation and triggers its associated action

Variable Title in Values assumed Description
name in code interface
TWZResponse Response String Ordered list of action(s) dependent on this

event; for example, "act->act #2" means
act #2 depends on act which is triggered
by this event



Table 6.5: Action-Specific Input Variables

Variable Title in Values assumed Description
name in code interface
TWZName Name String Name of the action
TWZTime TimePoint Non-negative First time point at which the
PointOne One Float utility function is defined; utility = 0 for

all earlier times
TWZStart StartValOne Float Value the utility function assumes
ValOne at time point one
TWZFirst First Float First parameter (if applicable) of the
ParameterOne ParameterOne function describing the utility function from

time point one to time point two
TWZFirst First Float Second parameter (if applicable) of the
ParameterTwo ParameterTwo function describing the utility function from

time point one to time point two
TWZUtility Utility 0,1,2 Description of the utility function from
FunctionOne FunctionOne time point one to time point two; 0 means

constant, 1 means linear, 2 means quadratic
TWZTime TimePoint Non-negative Time point at which the utility function
PointTwo Two Float changes from function one to function two
TWZStartVal StartValTwo Float Value the utility function
Two assumes at time point two
TWZSecond Second Float First parameter (if applicable) of the
ParameterOne ParameterOne function describing the utility function from

time point two to time point three
TWZSecond Second Float Second parameter (if applicable) of the
ParameterTwo ParameterTwo function describing the utility function from

time point two to time point three
TWZUtility Utility 0,1,2 Description of the utility function from
FunctionTwo FunctionTwo time point two to time point three; 0 means

constant, 1 means linear, 2 means quadratic
TWZTime TimePoint Non-negative Last time point at which the utility
PointThree Three Float function is defined; utility = 0 for all later

times
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Table 6.6: Action-Specific Output Variables
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Variable Title in Values assumed Description
name in code interface
TWZTime Time Float Remaining execution time; only valid
Remaining Remaining during a simulation run
TWZUtility Utility Float Utility obtained by the action at time

of completion during a simulation run
TWZDependsOn DependsOn String Name of the action that depends on

this action, if there is one

TWZIs IsDependentOn String Name of the action that this action is
DependentOn dependent on, if there is one
TWZPredecessor Predecessor 0,1 1 if predecessor has completed, 0 if
Complete Complete has not completed (ignored if there

is no predecessor); only valid
during a simulation run



Chapter 7

Results

There are two components in the UtilityWiz module, the scheduler and the analysis

tool.

7.1 Scheduling Results

The greedy utility scheduler is known to be non-optimal, but one important question

is whether it will run with appropriate data sets and how good the results will be. For

this purpose, each of the following data sets was scheduled with both the EDF-var

and the GreedyUtil policy. The results are as detailed below.

7.1.1 Step Utility Functions

For the simple step functions, there are two issues examined in the data sets: preemp-

tion/no preemption and increasing/decreasing value in step. To cover these issues,

one case of each combination was examined in the simulator as described in Table

7.1.
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Table 7.1: Step Utility Function Data Sets

Action Start time Execution Time Value in Time Value in Time
time point interval point interval point

one one two two three
St_1: Act#1 0 100 0 30 50 55 150

Act#2 0 100 0 60 110 45 200
St_2: Act#1 0 100 0 60 50 45 150

Act#2 0 100 0 30 110 55 200
St_3: Act#1 0 100 0 30 50 55 150

Act#2 50 100 0 60 110 45 200
StA: Act#1 0 100 0 60 50 45 150

Act#2 50 100 0 30 110 55 200

7.1.2 Step and Linear Utility Functions

The linear and quadratic functions add in a new dimension to utility functions. For

these functions, the value is increasing or decreasing for a segment, so it makes a

difference where the function is evaluated. To test this property, it is sufficient to test

for only the performance on the linear functions, based on the previous assumption

that all utility functions are monotonically increasing, monotonically decreasing, or

constant within each subinterval. In the data set described by Table 7.2, all non-step

functions composed of an increase/decrease/constant pair are compared against a

step function they cross.
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Table 7.2: Step and Linear Utility Function Data Sets
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Action Slope in Slope in Time Value in Time Value in Time
segment 1 segment 2 point interval point interval point

one one two two three
Li_1: Act#1 0 0 0 140 110 160 150

Act#2 0 1 0 100 100 100 200
Li_2: Act#1 0 0 0 140 110 160 150

Act#2 0 -1 0 200 100 200 200
Li_3: Act#1 0 0 0 140 110 160 150

Act#2 1 1 0 100 100 200 200
Li_4: Act#1 0 0 0 140 110 160 150

Act#2 1 -1 0 100 100 200 200
Li_5: Act#1 0 0 0 140 110 160 150

Act#2 1 0 0 100 100 200 200
Li_6: Act#1 0 0 0 140 110 160 150

Act#2 -1 1 0 200 100 100 200
Li_7: Act#1 0 0 0 140 110 160 150

Act#2 -1 -1 0 300 100 200 200
Li_8: Act#1 0 0 0 140 110 160 150

Act#2 -1 0 0 200 100 100 200



Table 7.3: Step and Linear Scheduling Results

Data set EDF-var GreedyUtil EDF-var GreedyUtil EDF-var GreedyUtil
Act#1 utility Act#1 utility Act#2 utility Act#2 utility accrued accrued

utility utility
St_1 55 0 45 60 100 60
St_2 45 45 55 55 100 100
St_3 55 55 45 45 100 100
StA 45 0 55 55 100 55
Li_1 140 140 200 200 340 340
Li_2 150 0 200 200 350 200
Li_3 140 0 100 200 240 200
Li4 140 0 100 200 240 200
Li_5 140 0 200 200 340 200
Li_6 140 140 200 200 340 340
Li_7 140 0 100 200 240 200
Li_8 140 140 100 100 240 240

7.1.3 Summary of Scheduling Results

Table 7.3 compares the results obtained for both EDF-var and the greedy utility

scheduler.

The EDF-var outperformed the GreedyUtil algorithm in many cases. The reason

for this is simple: the GreedyUtil algorithm is designed for the case of much system

overload. In this case, the disadvantage that the greedy algorithm has of possibly

executing something that will block some higher total utility functions from executing

is greatly decreased, as it is much less probable that there will be processor down time.

In this case, since GreedyUtil optimizes utility per unit time, GreedyUtil performs

much more strongly.

7.2 Analysis Results

The level of success of the analysis portion of the tool can be described as the closeness

of approximation to optimal and the amount of running time it took to reach it. One

set of test runs to evaluate the success of the analysis tool was performed with the set
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Table 7.4: Actions for Analysis Data Set

Action Start time Execution Time Value in Time Value in Time point
time point one interval one point two interval two three

Act 0 100 0 0 90 50 100
Act#2 0 100 0 0 110 30 200
Act#3 0 50 0 10 150 20 300
Act#4 0 50 0 20 200 30 300
Act#5 20 20 0 60 30 50 300
Act#6 20 40 20 50 30 40 60
Act#7 100 20 50 10 100 70 400
Act#8 300 100 100 100 150 20 400

of actions described in Table 7.4. Note that all of these functions are step functions;

this choice was made to allow for calculation by hand of the maximum achievable

utilities.

The first simulation, denoted Act_2, was composed of the first two actions in Table

7.4. There were a series of seven simulations, denoted Act_2 to Act_8, where Act-n

is composed of the first n actions in the above table. Each simulation was analyzed

for increasing numbers of divisions of the total time in simulation. The results are

displayed in Table 7.5.

For each simulation Act_2, ... Act_8, there exists a schedule that maximizes the

possible accrued value. These were calculated by hand and are shown in the Gantt

chart depicted in figure 7-1.

The first interesting schedule to notice is that for Act_5. In Act_5, it is necessary

to shed task Act#3 to achieve maximum accrued utility. In fact, it is impossible to

schedule these tasks without shedding at least one. The second interesting schedule

to notice is that for Act_8. In Act_8, it is impossible to feasibly achieve maximum

accrued utility without preempting a task; in this case, Act#3 is preempted.

Each of the systems achieved some accrued value in simulation. Table 7.6 com-

pares the accrued value achieved in simulation, the maximum achievable accrued

utility, and the estimate on maximum utility achieved in each run of the analysis
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Act_2

Act_3 Act #1 Act #2 Act #3

Act-4 Act #1 Act #2 Act #3 Act #4

Act Act #1 Act#2 Act#4

Act-5

Act #6 - Act #2 Act #3 Act #4

Act-7
Act #6 Act #2 Act #3 Act #4 -

Act_8 Act #6 Act #2 Act #4 Act #8

100 200 300 400

Time in ms

Figure 7-1: Gantt chart for systems Act_2 to Act_8
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Table 7.5: Runtime of Analysis (ms); *

#divs Act_2 Act_3 Act_4 Act_5 Act_6 Act_7 Act_8
5 1 3 8 19 43 93 267
10 1 4 10 29 81 173 1209
15 2 4 13 53 327 1402 16460
20 2 6 21 125 914 5524 *

25 3 7 39 349 2339 37454 *

30 3 9 58 669 6887 * *

40 3 13 128 2237 * * *

50 4 24 359 16280 * * *
60 5 38 822 * * * *
70 7 58 1586 * * * *

80 7 83 3482 * * * *

90 9 139 6841 * * * *
100 11 189 27027 * * * *

function.

Unfortunately, as can be seen in table 7.5, the exponential factor quickly became

too large for the system to handle even with the pruning of unneccessary info early

on in the search. Although the size of the problem handled could be improve with a

faster computer with more memory, it would soon be outstripped by the exponential

growth in operating time.

7.3 Implementation Difficulties

There are some problems with the current implementation, which will need to be

corrected for full functionality of the tool. First, there is some difficulty in extracting

the dependency relationships of the various actions from within the plug-in. The

current implementation therefore does not consider dependencies at all in the analysis

portion, leading to the possibility of a large overestimate. In addition, there are some

difficulties that arise with the simulation of dependencies as well. If task i is dependent

on task j, the current implementation will consider the release time of task i as the

release time of task j plus the execution time of task j. Thus, if task j is preempted,

50

means did not complete



Table 7.6: Analysis of Utility

#divs Act_2 Act_3 Act_4 Act_5 Act_6 Act_7 Act_8
Utility 80 100 130 130 170 240 260
accrued
in sim.
(EDF)
Utility 80 70 90 120 120 160 180
accrued
in sim.
(greedy)
Max 80 100 130 160 170 240 260
possible
utility
5 80 100 130 190 220 290 340
10 80 100 130 190 210 280 330
15 80 100 130 180 180 250 320
20 80 100 130 180 180 250 *

25 80 100 130 180 180 250 *

30 80 100 130 180 180 * *

40 80 100 130 180 * * *

50 80 100 130 180 * * *

60 80 100 130 * * * *

70 80 100 130 * * * *

80 80 100 130 * * * *

90 80 100 130 * * * *

100 80 100 130 * * * *
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the simulation behaviour can be incorrect.

The functionality is fully in place once the dependency relationships can be es-

tablished. In addition, there has been some limited testing in which the dependency

relationships for one particular set of dependent actions were entered manually into

the code. In this testing, all dependencies were obeyed, both in the analysis and in

the simulation.

Most of the other problems arise with difficulties interfacing the plug-in with the

full range of TimeWiz's functionality. For one, there is an error message that fre-

quently appears during most simulation runs1 . Clicking Ignore on this error message

every time it appears will eventually lead to obtaining the desired results, so the error

is no more than an annoyance. Another difficulty is the inability to produce a correct

Gantt chart. A Gantt chart is a graph that models machine use vs. time, where

whatever action is using the machine is represented by a unique numbered or colored

bar [4]. The Gantt chart is a very effective tool for visual representation of a schedule,

and is implemented in TimeWiz through the "timeline" function. Unfortunately, the

plug-in has not been able to produce the correct Gantt chart for its schedule. Finally,

there are a set of output windows at the bottom of the interface which allow for text

to be displayed to the user, which this implementation has not been able to access to

output implementation-specific text.

One remaining problem is actually a problem that depends on the capabilities

of the computer on which TimeWiz is executing. The Time Elapsed (ms) variable

is set by making two calls to the system counter, subtracting the first value from

the second, dividing by the frequency of the counter, then multiplying by 103 to get

milliseconds elapsed. The difficulty with this is that not all computers are able to

handle the 64-bit value used for the system counter and the frequency. For these

machines, the Time Elapsed value will always be zero.

'Error: "The value of ESP was not properly saved across a function call. This is usually a result
of calling a function declared with one calling convention with a function pointer declared with a
different calling convention."
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Chapter 8

Future Work

There are some unexplored possibilities and directions that hopefully will be fruitful

for future work.

8.1 Linear Programming Analysis

In 1959, H.M.Wagner proposed an integer programming formulation of a general

version of the processor scheduling problem. This formulation considered a single

processor and immediate ready time for all jobs. In addition, this formula assumed all

jobs would finish, and had some notion of idle time and wait time for processors. This

formulation considered the permutations of running orders for the different processes

with respect to the set of idle and wait times [11], [24].

The set of parameters for an integer programming formulation of the utility-based

scheduling problem is somewhat different from this formulation. To describe the

formulation, begin with the model where all execution, start, and simulation times

are integral (the reasoning will be elaborated on later). If this is the case, all possible

maximum solutions are integral as well. Begin by dividing the total running time T

in simulation into J-1 different unit length time chunks (where J-1 = integral total

execution time in the simulation). In addition, consider a Jth time chunk which means

that all actions that complete in that time chunk do not complete in simulation. For

each process i, assign a cost cij where cij is the utility value of completing activity i
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at time j. In addition, let xij be 1 if action i completes in time unit j. This gives an

objective function of

Maximize E cigjix
icI jEJ

subject to:

Xij E 0, 1

There are some additional necessary constraints. First of all, note that no task

can finish before the sum of its start time and its total execution time. Therefore,

add in the constraint:

xij = OVj < start time + execution time of i

In addition, the formulation must guarantee that the total execution time of all

actions that have completed by each time point is less than the total time up to that

point. This guarantees that the schedule is feasible with respect to execution time.

Thus, add in another constraint:

E xig * execution time of process i < + l)T Vj E j # J
iEI J

The formulation also needs to guarantee that all dependencies hold, so dependent

tasks do not begin executing until the tasks they are dependent on have completed.

To guarantee this, add in the final constraint

xij + xzgg = xiVj' < j + execution time of i', i'dependent oni

Considering all constraints together, the complete integer programming formula-
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tion is described as follows.

Maximize E Ecijji
subject to:

xig + xzgy/ = xijVj' < j + execution time of i', i' dependent on i

E Zij * execution time of process i < + )T Vj J,j : J
iEI

E zij = iVi
jEJ

zij =OVj < start time + execution time of i

Xi E 0, 1

The difficulty for the integer program is that it is only correct for a certain subset

of utility problems. The integer program requires, first of all, that every significant

length of time be divisible by some factor. Significant, in this case, means earliest

start time of each action, total time in simulation, time length of the first segment of

each utility function, and time length of the second segment of each utility function.

This is true if all values are integral, or even if all values are rational, but not for all

reals. This creates a problem for trying to analyze a probabilistic distribution, which

is one of the future objectives of this project.

In addition, the integer programming formulation is solvable in polynomial time,

but it is polynomial in the number of actions and in the total length of time divided

by the size of the minimal subdivision. For example, suppose the total length of time

allowed for the schedule is 103 seconds. Suppose, however, that the greatest common

divisor is 10-6. Then number of time subsegments being looked at is of size 109. This

can blow up very quickly with a negligible time difference so a scheduling problem

with execution times of, say, 100.0000001 and 20 will take a long time but one with

execution times 100 and 20 will not.

One more difficulty with this formulation is that it does not account for start

times fully. The formulation guarantees that nothing will finish before its start time
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plus its run time. However, it does not consider the case where some processor time

is not used because of start times. An example of a case which the integer program

does not handle correctly is the case where two actions start at time 2, execute for 2

time units, and finish at time 4. In reality, it is not possible to schedule both, as only

one may execute from time 2 to time 4, but the integer programming formulation

does not recognize that.

The advantage of the integer program is that it can be relaxed to a linear pro-

gramming formulation, which can be solved in polynomial time. In addition, if it is

possible make the assumption that all relevant time units are integral, then assign-

ment of the cij based on the value of the utility function of action i at each time point

j will actually give the optimal solution with the integer program. Unfortunately, the

integer program is not solvable in polynomial time, but if the constraint xij E {0, 1}

is relaxed to xij > 0, the integer program becomes a linear program that can be

solved in polynomial time using such standard methods as the simplex method or the

interior point method.

8.2 Introduction of Probabilistic Distributions

In many real-time systems, there are tasks which do have a known execution time, but

rather have a probability distribution describing when an action is likely to occur or

how long it is likely to take to finish execution. This would allow for a more realistic

model of this sort of scheduling problem. The one large drawback is that it would

complicate the analysis greatly. It would render an integer or linear program analysis

infeasible, due to the lack of a specific time interval which divides into all elements

of the problem. Some item that completes at an irrational time is not plausible for

the integer and linear program representations.

At the same time, it complicates the analysis greatly. The question becomes what

values the variables take in the analysis. Many options are available and reasonable

for just the execution times alone. The analysis could analyze a particular case

compared to the expected case, a particular case compared to how well it might
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have done given that certain set of execution times, the average execution times, the

average execution times in some set of simulations, or the expected execution times

just to name a few. Allowing for probabilistic distributions of the variables allows for

greater opportunities but requires greater choices.
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Chapter 9

Related Work

9.1 General

Real-time analysis can benefit a wide variety of real-world systems. These systems

need to meet a variety of different needs, and as such have a wide variety of definitions

of optimal in terms of schedules. The problem is known as the general job-shop prob-

lem. The general job-shop problem is defined as given n jobs that need to be executed

on m machines, create a feasible schedule that optimizes some specific objective [11].

A feasible schedule is a schedule where all constraints specific to the problem are met.

There are numerous different real-world situations that can be described as job-

shop problems. For example, one general job-shop scheduling problem is construction

of a brick-built workshop. This problem has a certain number of skilled and unskilled

labourers. In addition, there is a certain set of tasks that must be performed to build

the workshop. These tasks have time and precedence constraints: building a wall or

a frame takes a certain amount of time, and the roof can't be started until the walls

are in place. The "machines" or resources are the labourers, and the tasks are the

different jobs that must be done to complete construction of the workshop [21].

Another general scheduling problem is in the realm of air traffic control. Each

flight needs to take off by a certain time from a certain airport, fly for a certain

amount of time, and land in a certain airport. One problem that is encountered

is congestion, namely the number of planes in the same airspace at the same time.
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Consider each flight path as a set of points that a plane needs reach in order, where

the first and last points are the takeoff and landing points, respectively. If proximity

of these points is considered, then the scheduling problem can be to schedule the

flights in such a way as to minimize the number of flights that are in close proximity

while maintaining all precedence constraints (each flight must reach the set of points

in a specified order, there is a certain amount of time needed for each flight to reach

point a from point b) [6].

9.2 Utility-based

Utility-based schedulers have been implemented in a variety of different arenas up to

this point. One implementation was in a US Air Force Advanced Technology Demon-

stration (ATD). This project is design of an adaptive distributed tracking system

for the Airborne Warning and Control System (AWACS). Different tracks were given

different value functions to describe their importance. The issue addressed by this im-

plementation is how the AWACS scheduler performs under overload condition. This

implementation met with marked success, as the tracks that were deemed "more im-

portant" (and thus given higher utility) were processed with a great deal of reliability

even under overload conditions [7].

Another example of an implementation of a real-time utility-based scheduling

policy is the Dependent Activity Scheduling (DASA) algorithm. The DASA algorithm

is a utility-based algorithm that considers a smaller class of utility functions, namely

those composed purely of step functions. This algorithm is particularly effective in a

set of real-time systems known as supervisory control systems. It was simulated with

very positive results, especially in the case of overload [8].

There have been multiple implementations of utility-based real-time scheduling in

the realm of microkernels. A utility-based policy called the Best Effort policy was

successfully implemented in the Alpha operating system developed at Carnegie Mellon

University [22], [14]. In this environment, another tracking scenario was implemented

under real-time scheduling policies to a high level of success [23]. The Best Effort
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scheduling policy was later adapted as one of the multiple policies implemented in

the MK 7.3a microkernel [1].

In addition, there is currently a specification for real-time Java under develop-

ment. The extension of the language under development is real-time CORBA 1.0.

This specification includes provision for real-time utility-based scheduling, especially

distributed scheduling [15], [3], [2].

A large chunk of real-time work ([25], [26]) to this point has used the Rate Mono-

tonic Analysis approach. This approach as described above can guarantee that a

system is schedulable, assuming a certain set of requirements is met [18]. There have

also been implemented some utility-based schedulers in practice, with very positive

results. Some utility based schedulers have already been implemented ([23], [1], [7]),

although until now there has been no current analysis tools for this type of scheduling.

These may also in the future be implemented in the specification for real-time Java

[31.
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Chapter 10

Conclusions

Utility-based real-time analysis is a view of scheduling that can be applied to a vari-

ety of real-world real-time systems [23], [7]. In addition, this approach can describe

a variety of other scheduling approaches (such as EDF and priority-based) if utility

functions are carefully chosen; if the utility function of each task is simply deadline'

this models the EDF problem. The problem with this real-time paradigm is that it is

hard to analyze how optimal any schedule is. The results from running the analysis

algorithm with this module show that even a good approximation of optimal can

be an exponential problem. For large cases, it is necessary with the current level of

knowledge to make more limiting assumptions than were made for this implementa-

tion for this analysis to become tractable. Nonetheless, utility-based scheduling of

systems remains effective in practice even if still hard in theory.
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Appendix A

Implementation of Module in

TimeWiz

Implementation of module in TimeWiz was a relatively straightforward process. TimeSys

provided a set of instructions to create a <name>Analysis.dll file; for this case, the

file was named UtilityAnalysis.dll. By following these instructions, a workspace in

Microsoft Visual C++ was created which created the .dll file when compiled. All

code written for this project was incorporated into the files UtilityAnalysis.cpp and

UtilityAnalysis.h.

To implement the utility module in TimeWiz from the compiled .dll file, a few

steps were necessary. First, a catalog was made through the TimeWiz Catalog De-

signer (named Utility.TWZ) that contained all of the desired variables as described

in Chapter 6. This catalog was then moved to the Catalogs subdirectory contained in

the TimeWiz directory. Finally, the UtilityAnalysis.dll file was moved to the Plugins

subdirectory in the TimeWiz directory. Once these steps were complete, the utility

module could be run within TimeWiz by selecting File-+New-±Utility.
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