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Hybrid Concurrency Control and Recovery for 
Multi-Level Transactions 

Klaus-Dieter Schewe * Torsten Ripke * Sven Drechsler * 

Abstract 

Multi-level transaction schedulers adapt confiict-serializability on different 
levels. They exploit the fact that many low-level conflicts (e.g. on the level 
of pages) become irrelevant, if higher-level application semantics is taken into 
account. Multi-level transactions may lead to an increase in concurrency. 

It is easy to generalize locking protocols to the case of multi-level transac-
tions. In this, however, the possibility of deadlocks may diminish the increase 
in concurrency. This stimulates the investigation of optimistic or hybrid ap-
proaches to concurrency control. 

Until now no hybrid concurrency control protocol for multi-level transac-
tions has been published. The new FoPL protocol (Forward oriented Con-
currency Control with Preordered Locking) is such a protocol. It employs 
access lists on the database objects and forward oriented commit validation. 
The basic test on all levels is based on the reordering of the access lists. 
When combined with queueing and deadlock detection, the protocol is not 
only sound, but also complete for multi-level serializable schedules. This is 
definitely an advantage of FoPL compared with locking protocols. The com-
plexity of deadlock detection is not crucial, since waiting transactions do not 
hold locks on database objects. Furthermore, the basic FoPL protocol can be 
optimized in various ways. 

Since the concurrency control protocol may force transactions to be 
aborted, it is necessary to support operation logging. It is shown that as 
well as multi-level locking protocols can be easily coupled with the ARIES 
algorithms. This also solves the problem of rollback during normal processing 
and crash recovery. 

Keywords . [H2.4] Transaction Processing, Concurrency [H2.7] Logging and 
Recovery 

General Terms. Algorithms, Reliability 
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1 Introduction 

One of the major intentions underlying the development of database systems was 
data sharing. As a consequence user programs must be realized as atomic units, 
which leads to the well-known notion of a transaction. Roughly spoken a trans-
action is the sequence of database operations resulting from program execution. 
Although these sequences must be interleaved to achieve acceptable performance, 
the effect must be the same as if transactions were executed sequentially. 

Transaction throughput is a crucial issue for all databases. The common ap-
proach in practice considers conflict-serializable schedules, where conflicts corre-
spond to read- and write-operations on database objects [8, 20]. No matter which 
granularity is taken for these objects - pages, records or even relations occur in 
practice - this approach rules out acceptable, but formally not serializable sched-
ules. 

In order to increase the rate of concurrency multi-level transactions (as a special 
form of nested transactions) have been introduced. They already occurred in Sys-
tem/R supporting both short-time locking on pages and locking on records [17]. A 
general theory of multi-level transactions has been developed in [1] and extended to 
a discussion of suitable protocols in [23, 24]. The basic idea of multi-level conflict-
serializability is that sequences of low-level, e.g. page-level, database operations 
represent application-dependent operations on higher levels, and there are usually 
less conflicts on higher levels. Consequently, some of the conflicts on lower levels 
may be ignored. We shall present the gist of the multi-level transaction model in 
Section 2. In this context we also extend some notions of basic serializability the-
ory to the case of multi-level transactions. These notions consider recoverability, 
cascade-freeness and strictness. 

In distributed databases multi-level transactions occur naturally [4, 19]. E.g., 
in distributed object bases we may think of a global level, a local logical object 
level, a local level of physical objects and a page level. This is the view adopted in 
the DOMOCC project currently under investigation at Clausthal. 

The general approach to concurrency control is the use of locking protocols, 
especially two-phase locking [20]. It will be shown how to generalize lock protocols 
to multi-level transactions. This will fill Section 3. The major problems with 
this approach are transaction throughput and the possibility of deadlocks due to 
transactions waiting for each other to release locks. There are several algorithms for 
deadlock detection in distributed databases with non-negligible complexity, e.g. [5, 
18]. In addition, in interactive systems or applications with long-term transactions, 
waiting for the release of any lock may be not acceptable. 

Therefore, alternatives to locking protocols dominate the research in concur-
rency control. The solutions comprise timestamp protocols [13, 14]. optimistic 
protocols [2, 7, 9, 12] and hybrid protocols [3, 10, 11] combining at least two of 
the other approaches. Unfortunately, none of the existing optimistic or hybrid 
concurrency control protocols has been generalized to multi-level transactions so 
far. For example, the optimistic dummy lock (ODL) protocol [11] is basically orga-
nized as an optimistic scheduler using read/write-labels instead of locking objects. 
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Then certification tests for the existence of these labels and the final write phase 
locks objects to be updated. Unfortunately, a direct generalization to multi-level 
transactions is not possible. 

In this paper we present a new hybrid protocol called FoPL (forward oriented 
concurrency control protocol with preordered locking), which is a provably correct 
protocol for multi-level transactions [21]. FoPL exploits that multi-level schedulers 
can be composed from schedulers for each of the involved levels [23, 24]. Then 
the ODL idea is refined such that access lists are defined for all such levels. More 
precisely, labels are kept in a list according to the time points when they have been 
set. Commit handling then requires the labels of a validating transaction to be 
shifted to the head of the list. In contrast to ODL the new FoPL protocol will use 
forward oriented validation. FoPL will be presented in detail in Section 4. 

When combined with queueing and deadlock detection, the protocol is not only 
sound, but also complete for multi-level serializable schedules. This is definitely an 
advantage of FoPL compared with locking protocols. The complexity of deadlock 
detection is not crucial, since waiting transactions do not hold locks on database 
objects. 

Given the basic FoPL protocol we are able to discuss several optimizations. 
These comprise a more optimistic locking strategy, the processing of earlier or 
partial rollbacks, and specific capabilities related to absorption. Section 5 is devoted 
to the discussion of these extensions. 

In this context we start with initial considerations concerning the comparison 
of FoPL with locking protocols. We focus on implementation costs and transaction 
throughput. This will be done in Section 6. 

Since the concurrency control protocol may force transactions to be aborted, 
it is necessary to support operation logging. For this the sophisticated ARIES 
algorithms [16, 22] are generally accepted as a good starting point. We show how 
to extend the algorithms to multi-level transactions, both for locking protocols and 
FoPL. This also solves the problem of rollback during normal processing and crash 
recovery. The extension called ARIES/ML [6] also enhances the work by Lomet 
[15]. The solution to recovery will be presented in Section 7. We conclude with a 
short summary. 

2 The Multi-Level Transaction Model 
A multi-level transaction is a special kind of an open nested transaction, where the 
leaves in the transaction tree have the same depth. Each node in the tree corre-
sponds to some operation implemented by its successors. The root is a transaction. 
The lowest level Lq corresponds to operations that access directly the physical 
database. Therefore, we first define the operations of a multi-level system. 

Definition 1 An n-level-system £ consists of n levels Li = Si) (i = 0 , . . . , n — 
1), where 2)j is a set of objects and Si a set of operators. An Li-operation is an 
element of Oi = Si x £>»• D 
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We write £ = ( L n - i , • • • ,Lo). The levels are numbered in a bottom-up manner. 

Example 1 In the D O M O C C project at Clausthal Technical University we inves-
tigate distributed object bases. For these it is imaginable to use a 4-level-system. 
The highest level L3 should correspond to global logical objects, the next lower level 
1/2 to local logical objects associated with a unique site, level L\ to local physical 
objects, i.e. records, and finally L0 should correspond to the page level. 

Then operations on L3 as defined before schema fragmentation will be imple-
mented by operations on L2, these again by operations on the record level L i t 

which finally give rise to reading and writing pages of the physical store. • 

2.1 Multi-Level Transactions 

An n-level transaction is defined next exploiting the notion of an index tree, which 
is a finite set of finite sequences over N — {0 } . We let (N — {0} )* denote the set of 
all such sequences. | a | denotes the length of q £ N*. Furthermore, we identify 
numbers with sequences of length 1 and denote the empty sequence by e. 

As a syntactic convention we shall use small Greek letters a, /3, /.¿, v,... for such 
number sequences and small. Latin letters i,j,k,t,... for the numbers in these 
sequences. 

Definition 2 An index tree of depth n is a finite subset I C (N — {0 } )* with 

•eel, 

• a(k + 1) G I =>• ak G I and 

• A£LA\A\<N<3>AL£L 

for all a e (N - {0 } )* and k G N. 

An n-level-transaetion Tj consists of 

• an index tree I of depth n, 

• a mapping which assigns to each a G I an L?l_|Q|-operation, denoted as Oja 

and 

• partial orders on each D ^ = {oja \ | a | + i = n } , such that Ojak 
Oj0( k < I holds. 

(1) (i) We call the L\ -precedence relation of the transaction Tj. • 

By abuse of notation we shall talk of the transaction Tj over the index-tree I . 
Furthermore, we write opja(x) for the operation Oja = (op,x). In order to have a 
uniform notation for all levels we also allow to write Oj for Tj. 
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f l l l W WlV2(x) r2u{x) №212(2:) î'221 (y) ™222 {y) rl21(y) W122 ill) 

Figure 1: Serializable multi-level schedule 

Since precedence relations are meant to express a necessary ordering of imple-
menting operations it is natural to require 

Ojc <\j) Ojp <£> ojak <\3\ Ojpe for all k and I, (1) 

whenever the involved operations exist. In this case, the transaction Tj is well-
defined. In the sequel we shall tacitly assume that all transactions are well-defined. 

Example 2 The trees rooted at Ti and T2 in Figure 1 define two 2-level-
transactions over the same index tree I = {e, 1,2,11,12,21,22}. Here w and r 
correspond to read- and write-operations, inc and dec to incrementation and decre-
mentation. Thus, we may assume to be defined by 

. n 11(2;) <oJ) №112(2:) and 7*121 (2/) <o1) w\22{y) 

and as being empty. 
Analogously, define <q2 ' by 

7-211(2:) <qX) №212(2;) and 7-221(2/) <0^ w222{y) 

and let < j •' be empty. 
However, if we claimed also №112(2;) Cg1' 7-121(2/) ~ i-e-; <0^ t o t a l ~ then the 

well-definedness condition (1) would imply inci\{A) dec\2(B). • 

The edges in a transaction tree represent the implementation of a Li-operation 
by a set of ¿¿_i-operations. If Oĵ k is an ¿¿-operation of a transaction Tj, then 
trans(ojfik) = Oj> (0 < i < n) is the ¿¿+i-operation that invokes In particular, 
for i = 71 — 1, i.e. n is empty, we get trans(ojk) = Tj. Conversely, act{ojv) = {ojvi \ 
vt 6 J} defines the set of ¿¿-l-operations implementing the Li-operation Oju. 

More generally, for i' > i we may define iteratively the ¿¿'-operation that indi-
rectly invokes an ¿¿-operation OjM by 

trans? (oj^) = trans1 ~1{ojll) . ( 2 ) 

Note that i' = i +1 leads to the direct predecessor in the transaction tree as defined 
by trans. 
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Figure 2: Non-serializable 1-level-schedule 

Conversely, for an ¿/¿-operation ô v let aci;_i (o^v) = act(oj„) and 

acti>{ojV)= [J actii{ojwk) fori — ¿ ' > 1 . (3) 
Ojvk^acti.Ojv) 

i.e. acti'{ojv) denotes the set of L^-operations implementing Oj„ indirectly through 
several levels. 

Example 3 Consider again transaction 7\ in Figure 1. Here we have 

act{T\) = act\(Ti) = {incu{A), decl2{B)} , 
acto(Ti) = {rm{x) ,wiu(x),r12i{y) .w122(y)} , 

act(incn(A)) = act0{incn(A)) - {rm(i),!Uii9(i)} 

and 

trans(incu(A)) = trans2(incu(A)) = T\ , 
trans (wn2(x)) = trans i (w i r2 {x)) = incu(A) , 

trans2{u>ii2(%)) = T\ 

• 

2.2 Multi-Level Schedules 
The execution of concurrent transactions is described by an n-level-schedule. These 
are illustrated by forests in Figures 1 and 2. 

D e f i n i t i o n 3 For a set D „ = { T i , . . . ,Tfc} of n-level-transactions let Oi = 
(J*=1 be the set of all ¿^-operations in these transactions (0 < i < n). Then 
an n-level-schedule on D n is given by a partial order <o on Do containing all L^-
precedence relations. • 

We write S = ( D „ , D n - • • •, Oo, <o) f° r s u c h a schedule defined on On. Then < 0 

induces a partial order < , on each level by 

oM <i+1 ov & VoMfc 6 act(olM).yo„( e act{o„). <t o„t . (4) 

Using this, we may define the level-by-level schedule Sij (j < i .< n) as the one-
level-schedule (Di,Oj, <j). 
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Example 4 The schedule in Figure 2 is the level-by-level schedule S2,o of the one 
in Figure 1. We dispense with a discussion of how to reorganize the underlying 
index-trees. • 

The well-definedness assumption for transactions implies two simple properties as 
shown in the next lemma. The first one was originally used in [24] to define the 
partial order <» on level Li. The second property is the plausible conformity-
condition from [21]. Informally, it states that whenever two operations in some 
transaction have to occur in a certain order, then they must do so in every schedule. 

Lemma 1 1. For any two Li-operations oM,o„ in a n-level-schedule S we have 

<i ov VoMe G aci 0 (oM ) .VoF ( T e act0(ou). oM(? <0 ova . (5) 

2. For each n-level-schedule S we have <^C<j for all i and j. 

Proof. For the proof of (i) we proceed by induction on i. For i — 1 the claimed 
equivalence in (5) is just the definition (4). For % > 1 we have 

On <i o„ O VoM)t £ acij_i(oM).Vo„f <E acti^i{pv). o^k <i-i ovt 

by definition (4) and 

<¿-1 ovi & Vo^kg G acio(oMfe).Vo^CT 6 act0(o„e). o^e <o ovia 

by the induction hypothesis. Taking both equivalences together, the claimed state-
ment (5) follows from the definition (3) of act0. 

For the proof of (ii) we also apply induction on i, the case i = 0 being captured 
by Definition 3. For i > 0 and OjU the well-definedness condition (1) implies 
Ojfik <i-1 Ojvt for all Oj^k G act{ojn), Oju( 6 act{ojU). By induction hypothesis we 
get Oj^k <i-i Oj„i. Hence, the claimed result o ^ <j Oj„ follows from the definition 
of <i in (4). • 

2.3 Partial Schedules 
The notion of n-level-schedule describes the interleaved execution of n-level-
transactions. Temporal precedence on level Li is expressed by the partial order 
<i. Since transactions are built at run-time, we are also interested in partial sched-
ules, where some of the later operations are omitted. These will be composed 
from n-level-prefixes of transactions in the same way, as (complete) schedules are 
composed from transactions. 

Definition 4 Let Tj be an n-level-transaction. An (n-level-)prefix of Tj consists 
of subsets «pP C D ^ (i = 0,...,n) such that 

• Oja <[j) ojf) A Ojp G =>• oja G and 
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Figure 3: Partial 2-level-schedule 

• Oja e => trans(Oja) £ 

hold, whenever the involved operations are defined. • 

Formally, a prefix is different from a transaction unless we have = Q\ j) for 
all i. On the other hand the selection of subsets for a prefix also defines an under-
lying subtree of the index-tree. Therefore, we may treat prefixes, as if they were 
(complete) transactions. In particular, we also have precedence relations on 
prefixes which result from restricting the corresponding relations associated with 
the transaction. 

Furthermore, we may define schedules on the basis of prefixes using Definition 
3. In this case we talk of a partial n-level-schedule and write . . . < o ) f° r 

this. Here tyn = { P i , . . . , P^} is a set of n-level-prefixes, ^ = |J and <o is a 

(i) 
partial order on containing all Lq -precedence relations restricted to iPo-

If all Pj are transactions, i.e. Pj = Tj, then we talk of a complete schedule. 
Example 5 Figure 3 shows a partial schedule, where the tree rooted at Tj is a 
prefix of the 2-level-transaction Tj in Figure 1 (j = 1,2). • 

It is easy to see that each partial schedule can always be extended to a complete 
schedule by simply extending < 0 in some way compatible with the required exten-
sion of the I/o-precedence relations. 

Conversely, given a complete schedule (D„, • • •, Do, <o)> we may choose a subset 
<Po C Do such that oa <o op with op £ implies oa £ Then iPo induces 
a canonical partial schedule . . . <o |<p0)- Such a partial schedule will be 
called a prefix of the given complete n-level-schedule. In this way partial schedules 
describe the interleaving of transactions in progress. 

2.4 Conflict Serializability 

The basic idea of multi-level concurrency control is to use the semantics of opera-
tions in level-specific, symmetric conflict relations CONi C OiXOi. Non-conflicting 
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operations should commute. In particular, it is natural to assume that conflicts can 
only occur on the same object, i.e. ( (opi,x ) , (op2,y)) G CONi =$> x = y. 

Same as with precedence relations the intention behind the conflict relations 
forces us to require the following conformity condition: If (0^,0,,) G CONi holds 
for some G D{, then there should exist o^k G aci(oM) and ovt G ac£(o„) with 
(Ofj.k,Ove) G CONi-i. The fundamental idea of multi-level transactions is that there 
may be low-level conflicts that do not stem from higher-level conflicts. Thus, the 
opposite of this condition need not to hold. In the sequel we shall tacitly assume 
that the conformity condition is satisfied by all schedules. 

Example 6 Increments and decrements commute with one another. Therefore, 
for the transactions in Figure 1 we would like to use 

((opi,x), (op2,y)) G CONi & (opi = upd V op2 = upd) A x —y 

assuming Ji = {inc,dec,upd}. Analogously, 

((opi, x), {op2,y)) G CON0 & (opi = w V op2 = w) A x = y 

assuming 3o = {T ,W} . Note that the Lo-conflict relation is the usual one used for 
flat transactions. 

Intuitively, the schedule in Figure 1 seems to be acceptable, but the level-by-level 
schedule S2io in Figure 2 is not. The reason is that by omitting the Li-operations 
we lost the information that the schedule is equivalent to the sequence T\\T2. Oth-
erwise said, there are no conflicts on level L\. Thus, multi-level transactions may be 
expected to increase concurrency, which will be made explicit in the following. • 

We have to extend the notion of conflict-serializability to multi-level transactions 
to make these arguments rigorous. First, an n-level-schedule with a total order < n 

is called serial. Then serializability means equivalence to a serial schedule in the 
following formal sense. 

Definition 5 Let (Dn , £> n _ i , . . . , D0, <o) be an n-level-schedule with induced par-
tial orders <i on level i. Let CONi (i = 0 , . . . ,n — 1) be conflict relations. Define 

Ojn Oj'u & j j' A (°J>) Oj'u) G CONi A Ojn <i Oj!V (6) 

for o„ G Dj. 
Then two n-level-schedules are called (conflict-)equivalent iff their associated 

relations —>i coincide for all i = 0 , . . . , n — 1. An n-level schedule which is conflict-
equivalent to a serial one, is called (n-level-)serializable. • 

From the early studies of multi-level transactions [1, 24] it is well known that n-
level-serializability can be detected from the level-by-level schedules £¿,¿-1. 
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Lemma 2 An n-level-schedule S is n-level-serializable iff all its level-by-level 
schedules (0 < i < n) are serializable. • 

It is opportune to add a remark on partial schedules here. We shall call a partial 
schedule serializable iff it can be extended to a complete serializable schedule. 

Example 7 Using the conflict relations from Example 6 it is easily verified that 
the schedule in Figure 1 is conflict serializable, whereas the one in Figure 2 is not. 
This was already stated above. 

The partial schedule in Figure 3 can be extended to the one in Figure 1, hence 
is also serializable. • 

Note that transactions in a serial schedule may leave the system and need not be 
considered any more. Serializability implies that transactions - not prefixes - may 
leave the system, if they can be brought into the first position in an equivalent 
serial schedule. 

2.5 Recoverable Schedules 
One desirable property of schedules for the flat transaction model was recoverability. 
Informally, this means that committed transactions should never be rolled back 
later. This can be expressed by the fact that if a transaction Tj reads from another 
transaction Ti, i.e. Wikl(x) —>o rjk2(x) holds for some Lo-object x and suitable 
indices ki, k2, then whenever Tj commits, Tj must do so, too. In order to guarantee 
this property the commit of Ti must occur before the commit of Tj. 

In order to generalize these notions to multi-level transactions, we first consider 
the read-from-relation. Wikx{x) —>o i'jk2(x) represents a strong conflict in the sense 
that an abort-dependency is implied: if Ti aborts, then Tj must do so, too. It is not 
sufficient to consider just the associated relations — F o r example, we could also 
have ran (x) —»o Wjk2 ( x ) without abort-dependency. Hence, Tj may commit before 
Tj. If accidentally Tj aborts later on, this will not influence Tj anymore. 

The difference between these two situations cannot be explained without re-
garding the "effects" of the operations. Roughly spoken, an object x on any level 
Li has a value, say a{x) before the execution of an ¿¿-operation opa{x) and a value 
r(X) after that execution. The effect of the operation can therefore be expressed 
by the set {—a(x) , +r(a;)} or by 0 in the case we have a{x) = T(X). 

Now note that in our motivating example Wi(x) —>o i'jk2 (x) for Lo-operations 
the effect of the sequence Wikx (x)\Tjk2 (%) differs from the effect of (x), whereas 
for rtkjix) - »o Wjk2{x) the effects of the sequence rikl{x)\Wjk2(x) and of Wjh2(x) 
coincide. We now take this observation as a cornerstone for the generalization of 
recoverability on level Li. 

Definition 6 Let £ = ((5)n_i, 5 n - i ) , • • •, (2>o, So)) be an n-level-system and as-
sume sets Vi of values for each level Li (i = 0 , . . . ,n — 1). A state of an Li-object 
x G Di is an element a(x) £ Vi. An effect on an ¿¿-object x e £); is either a set 
{— A(x), r(a;)}, where A{x) and T(X) are different states of x, or 0. • 
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Now, we may assume that each Li-operation opa{x) - more generally: each sequence 
of Li-operations on the same object x - has an effect on x. Of course, this effect 
depends on the content of the database. With these initial remarks we can now 
generalize the read-from-relation. 

Definition 7 Let Tj, Tj> be two n-level-transactions (j ^ j') and Oj>„(x) 
be two of their Li-operations. We say that Ojiu{x) strongly depends on x) 
(notation: o ; ( i (x) - » j Oj'V{x)) iff Oj)1(x) —Oj<v(x) holds and the effect of the 
sequence (:r); cy „ (x) differs from the effect of oyv{x). • 

Note that for the flat transaction model the chosen definition turns only write-read-
conflicts into strong dependencies - as desired. 

Example 8 Consider Li-operators upd for update, inc and dec for increment and 
decrement and a read-only operator fetch. Then again, we have updikl(A) - » i 
fetchjk2{A), but fetchikl(A) > i incjk2(A). • 

The second task is to generalize the abort-dependency resulting from Ojfl(x) - » j 
Ojtv{x). For this we may assume that each operation in a partial schedule may 
abort or commit. This can be expressed by marking the operations in a partial 
schedule by c or a, respectively. Let m(o) be the marking of the operation o. If 
we consider transactions in progress, it may happen that some operation which 
implements o has not yet been committed nor aborted. In this case we cannot 
assign a mark to o, which turns a marking m into a partial mapping. 

Furthermore, all operations that implement an operation o, i.e. all operations 
o' £ act(o), must commit before o can commit. Formally, this can be expressed 
by m{o) = c => m(o') = c. Analogously, all operations d that must preced o, 
expressed by the precedence relation d <f o, must commit before o. This leads 
to the following definition. 

Definition 8 Let S = OPm • • • i^Po, <o) be a partial schedule. A marking of S is 
n 

a partial mapping m : |J -/» {c, a} such that the following holds: 
¿=o 

1. If (o) C iPi_i holds for o E then m(o) must be defined. 

2. Whenever m(o) = c and d £ act(o) hold, m(o') is also defined with m(o') = c. 
Whenever m(o) = a holds, there must exist some o' £ act{o) with m(o') = a. 

3. Whenever d < j o holds, then m(o') = c must hold. 

A pair (S, m) with a partial schedule S and a marking m of S will be called a 
marked schedule. • 

The first condition simply restricts attention to marked schedules, in which all 
operations are marked if they can be marked. The second condition expresses the 
requirement that all operations that implement a committed operation must have 
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Figure 4: Marked multi-level schedule 

been committed, too. Secondly, this condition expresses the analogue that among 
the operations that implement an aborted operation there must be at least one 
which has been aborted, too. The third condition expresses that if an operation 
has been completed before another one, it must have committed. 

Example 9 Consider the marked schedule in Figure 4 with a boxed entry marking 
a committed operation and a crossed out operation marking an aborted one. The 
underlying schedule is the one from Figure 1. • 

The notion of a marked schedule now allows recoverability to be generalized to 
multi-level schedules. 

Definition 9 A schedule ( O n , . . . , Do, <o) is called recoverable on level Li iff for 
all prefixes 5, all markings m of S and all j j1 

Oĵ k -»¿-1 oyvl A m(ofv) = c => m(oj>) = c 

holds. • 

Note that in contrast to recoverability for flat schedules recoverability on level Li 
does not completely exclude committed operations from being rolled back later. 
However, the abort of a committed ¿¿-operation will only be triggered by the 
abort of trans (o^). We discuss recoverability together with the protocols presented 
in Sections 3 and 4. 

Finally, we may also generalize the stronger notions of cascade-freeness and 
strictness to multi-level schedules. 

Definition 10 Let S = ( D n , . . . ,O 0 , <o) be an n-level-schedule. 

1. 5 is called cascade-free on level Li iff for all prefixes S' of 5. all markings 
m of S' and all j ^ j' it is true that whenever oj^k -»¿-1 Ojvi holds, then 
mfajn) must be defined. 

2. S is called strict on level Li iff for all prefixes S' of S, all markings m of S' 
and all j ^ j' it is true that whenever Oĵ k —>«-1 holds, then m(oJM) 
must be defined. • 
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We shall discuss cascade-freeness and strictness together with the protocols pre-
sented in the next two sections. As a first result which is obvious from the defini-
tions we notice that strictness implies cascade-freeness. 

Example 10 Consider the schedule from Figure 1 with a total order <o- Then 
we have the strong dependencies №112(2;) -»0 ''211(2;) and №222(2/) ^121(2/) 011 

level Lq and no such dependencies on level Li. Obviously, in the marked schedule 
in Figure 4 the conditions for strictness, cascade-freeness and recoverability are 
satisfied for level L\. 

More generally, we can show that the schedule from Figure 1 is indeed recover-
able on level L\. If №112(2;), r2n(2;) and inc2i (A) with m(inc2i{A)) = c (or №222(y), 
i"i2i(y) and deci2(B) with m{deci2{B)) = c, respectively) occur in a marked prefix, 
then m(incn{A)) = c (or m{dec22{B)) = c, respectively) must hold by the third 
condition in Definition 8. 

We can also show that the schedule is cascade-free on level Li. If we consider a 
prefix, in which №112(2:) (or №222(2/), respectively) occurs, then by the first condition 
in Definition 8 m(incn(A)) (or m(dec22{B)), respectively) must be defined. 

The same argument applies, if we consider —>0, which gives 

r m ( x ) ->o №212(2:), №112(2;) -»0 7-211(2;), №112(2;) ->o №212(2;) 

and 

7-221(2/) №122(2/), W222(y) №121 (2/), №222(2/) w\22(y) • 

This shows that the schedule is even strict on level ¿1. • 

3 Locking Protocols 
Locking protocols for multi-level transactions have been investigated from the very 
beginning [24]. Therefore, we shall only describe very briefly the gist of these 
protocols. 

According to our assumption that only those operations give rise to conflicts, 
which access the same object, it is sufficient to concentrate on the operators. Thus, 
for each ¿¿-operator op G Si we define a specific lock lockop. Then, each ¿¿-
operation op^kix) may only be executed after setting a lock, namely lockop, on 
the object x. In addition we associate with this lock the index fi of the issuing 
operation oM = trans^^k)- After its commit, must release all its locks. 

Same as with read-locks for flat transactions, an ¿¿-object x may hold several 
locks at a time, provided the associated operations do not conflict with each other. 

Definition 11 Let lockopi and lockop2 be locks on object x G £>, issued by the 
¿¿-operations o^k and o^e, respectively. These locks are called incompatible iff 
oMfc out or out - » i O/ifc holds. • 
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Thus, an operation may only set a lock on x, if this is not incompatible with any-
existing lock on x. Otherwise, the operation has to be aborted or must wait until 
all incompatible locks on x are released. 

This basic idea underlying multi-level locking protocols can be extended in 
the usual way to define two-phase locking (2PL) as well as conservative or strict 
variants. In 2PL we have a growing phase, in which all locks are acquired, but 
none can be released, followed by a shrinking phase in which existing locks will be 
released, but no new lock can be acquired. In conservative 2PL (con-2PL) all locks 
are set before the operation actually starts. In strict 2PL (str-2PL) no lock will be 
released before commit or abort. 

Example 11 Consider the schedule in Figure 1 assuming a total order < 0 from 
left to right. On-level L$ we have the usual read- and write-locks, i.e. lockr and 
lockw using our current notation. Only two read-locks are compatible with each 
other. Thus, all locks on Lo-objects can be set and released by 2PL without any 
problems. 

On level Li we have locks lockinc, lockdec and lockupd for the increment-, 
decrement- and general update-operation. Only the update-lock is incompatible 
to all other locks. Then, also all locks on Li-objects can be set and released by 
2PL. Hence, the schedule will be accepted by 2PL. • 

The example indicates that schedules accepted by 2PL will be serializable. Such a 
result stating the correctness of 2PL for multi-level schedules is well-known from 
the early literature [24]. 

Theorem 1 A multi-level-schedule accepted by the use of 2PL on each level is 
always serializable. 

Proof. Suppose we have Oj^ — o y v t for j ^ j' on level Li. The conformity 
assumption for conflict relations implies (ojM, o.,•'„) £ CONi+\. The incompatibility 
of the corresponding locks and the 2PL-strategy to keep the first of these locks until 
OjM has committed implies OjM <¿+1 cy„ . 

Taken together, we obtain — o y u and by induction Tj <n Ty. 
If 2PL accepted a non-serializable schedule, we would also have oy —>»' OjV'v 

on some level L^. Hence, Ty < n Tj holds, too, which is impossible for a partial 
order. • 

Example 12 Now consider the schedule in Figure 5. Taking the same locks and 
incompatibility relations as before, T2 will not be able to set the update-lock on 
object A before the commit of Ti, because T\ holds an incompatible increment-lock 
on A. This implies that the shown interleaving in Figure 5 is not acceptable by 
2PL. 

Nevertheless, the shown schedule is serializable, which demonstrates that the 
converse of Theorem 1 does not hold. • 

As a straightforward result we show that strict 2PL leads to recoverable and strict 
schedules. 
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Figure 5: Serializable schedule, not acceptable by 2PL 

Proposition 1 If strict 2PL is used on level Li, then the resulting schedule is 
recoverable and strict on level Li. 

Proof. Assume -»¿_i Oj'„e(x) and rn(oj<v) = c. Then Oj'„ must have 
acquired a lock on x, which is only possible in the shrinking phase of OjM. According 
to the definition of str-2PL this happens after the commit of Hence rn(oJM) = c 
holds, i.e. the schedule is recoverable on level Li. 

Next assume Oj^k{x) ->¿-1 Ojt„i(x). According to the definition of str-2PL, 
Oj<„ can only appear in marked schedules with m(ojM) being defined. Hence the 
schedule is strict on level Li. • 

4 A Hybrid Concurrency Control Protocol 

We now present the FoPL (Forward oriented Concurrency Control with Preordered 
Locking) protocol, which ensures serializability by exploiting the level-by-level 
schedules S^i-1. Then we shall discuss its correctness and completeness with re-
spect to serializability and the issues of recoverability and strictness. 

4.1 The Basic FoPL Protocol 

The basic structure follows the idea of optimistic protocols or hybrid protocols such 
as ODL [11]. Thus, FoPL consists of three phases: the propagation, validation and 
commit-phase. In the propagation-phase the operations at the various levels Li 
are executed. In addition, some kind of control-structure consisting flaglists for 
the objects and access-lists for the operations is built up and will be used later to 
decide, whether on operation commits or aborts. 

The task of the validation-phase is to perform this decision. The flaglists are 
used to detect, whether the interleaved execution of the operations has lead to a 
situation that forces an abort or not. Finally, in the cornrnit-phase the commit or 
abort is executed. We shall see that the commit-case is the easier one: if in-place 
updates are used, then the only task is to remove flags from flaglists. The abort-
case requires additional efforts for rollback. This will be postponed to Section 7 on 
recovery. 
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4.1.1 Propagation 

In the propagation phase the operations of a schedule are executed according to 
some order < which extends <o- In practice this order is built dynamically accord-
ing to the invocation of transactions. In centralized systems < may be assumed 
to be total, but in distributed systems this is not necessary. In contrast to other 
optimistic or hybrid protocols changes to the database are made persistent imme-
diately. We shall also discuss what happens, if changes are only stored in private 
buffers made persistent in the commit phase if at all. 

Since an Li-operation oM is implemented by actfo^), we mark the objects in 
that are accessed by oM. If o^k 6 ac£(oM) is the operation (op, A), then we use 

the flag (op, fx) on A. We use a flaglist ZLa for each object A 6 Di-i (and each 
i = 1 , . . . , n), which is built dynamically extending < j_ i . 

In addition, we use access lists ASto keep track of the objects accessed by 
oM. In order to see not only the accessed objects but also the way they are accessed, 
we take ASju) = acti-i(oM), i.e. we use the implementing operations. 

Example 13 In Figure 1 the flaglists ZLa and ZLb on level L\ are constructed 
as ZLA = inc\inc2 and ZLB — dec2dec\. • 

When appending a flag to a flaglist an exclusive short-term-lock on the flaglist is 
used. This guarantees that the append-operation is atomic. In particular, con-
current access to the same flaglist can be executed without the risk to loose flags. 
Deadlocks are not possible, because an operation holds only one lock at a time. 
Flags will be removed again from flaglists during the commit-phase. 

In addition, we may assume that setting the flag is executed before the execution 
of the operation. For Lo-operations it is necessary to keep this short-term-lock until 
the operation itself is finished, because this guarantees that there is is no undesired 
interference with other Lo-operations. 

4.1.2 Validation 

If all operations in aci(oM) have been executed, oM initiates its validation. For this, 
FoPL has to test if all flags that stem from ac£(oM) are still set. As we shall see 
below in the paragraph on the commit-phase, flags may have been discarded from 
a flaglist by another operation. 

For the flaglists of all objects A 6 ® i - i , which were accessed by aci(oM) during 
the propagation phase, exclusive locks will be requested and kept until the end of 
the commit-phase. To avoid deadlocks the locks are requested in a total order, 
which justifies the naming of the protocol. It is not necessary to request locks on 
the Li_i-objects themselves, since only the flaglists are analyzed. In Section 5 we 
shall discuss an alternative strategy, which dispenses completely with locks. 

The involved objects can be recognized from the access list ASIn particular, 
A S ^ indicates all the flags that should still be set. 

If at least one flag is missing, the operation oM must abort. Otherwise, FoPL 
tests, whether oM was successful. This is the case, if none of the objects in £>¿-1 
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accessed by oM was accessed by some other operation o„ before. This can be detected 
from the flaglists. 

Definition 12 An ¿¿-operation oM is blocked on an object A £ £>¿-1 iff there are 
flags (opi, v) and (op2, /-0 in ZLa with v ^ fj, such that (opi, v) precedes (opo, n) 
and ({opuA),(op2,A)) £ CON^ holds. 

An ¿¿-operation oM is successful on an object A £ iff it is not blocked on 
A. An ¿¿-operation is successful iff it is successful on all objects accessed by 
aci(oM). • 

If the operation oM is successful, it can commit, otherwise it must abort. Both 
actions (commit/abort) are accomplished during the commit phase. 

4.1.3 Commit 

If an ¿¿-operation oM may commit, the flaglists of all objects A £ ©¿-1, which were 
accessed by ac£(oM) during the propagation phase, have to be updated. For this 
the locks requested in the validation-phase are kept. Then all flags from ac£(oM) 
have to be removed. After removing the flags, the locks will be released thereby 
terminating the commit-phase. 

If an ¿¿-operation oM must abort, all operations in act(oM) must abort. In this 
case the flags from o^k may still be set or not. In the first case, a compensation 
is executed, if possible. If not, the object updated by o^k has to be replaced by 
its before image. Finally, all remaining flags and all dependent flags have to be 
deleted. 

Definition 13 A flag 2 from o^ depends on another flag z' from o„, iff z' precedes 
z in ZLa and (0^,0^) £ CONi holds or 2 depends on z" and z" depends on z' for 
some flag z". • 

If a compensation operation is initiated to abort o^k, it must be applied to 
the before image of the first operation o„;, whose flag depends on the flag of o^k-
Because all operations which depend on oltk have to abort later on, it is also possible 
to abort those operations before aborting o^k- Therefore, a rollback recovery can 
be invoked. 

In the second case there is nothing to do, because an earlier abort from another 
operation has overwritten the update from o,tk or the operation was already aborted 
by the rollback-recovery. 

4.2 Lazy Aborts: The FoPL+ Protocol 
In order to minimize the number of aborts we may employ the alternative to force 
an operation to wait and to restart after some time period. We call this lazy abort. 
If FoPL is combined with lazy-abort, the resulting protocol is called FoPL+. 

Since conflicts on higher levels are assumed to occur not too often, we may hope 
that the preceding conflicting flag has been deleted in the meantime. Thus, aborts 
will only occur, if they are really unavoidable. 



436 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler 

As a disadvantage note that deadlocks may occur, if the (transitive closure of 
the) waiting-for-relation contains a cycle, e.g. an operation waits for ov and o„ 
waits for On- In this case the easiest solution is to abort both operations, because 
o„ has read from o^ and has read from o„. We shall discuss alternatives in the 
next section. Thus, phantom deadlocks cannot occur. If a deadlock is detected, it 
can be resolved by deleting one flag, which is involved in the deadlock. Deadlocks 
can be detected with known techniques [5, 18]. 

Note, however, that a waiting operation does not prevent any object from being 
accessed. Thus, the possibility of deadlocks is less critical compared with lock 
protocols. 

Example 14 First consider the schedule in Figure 1. Then the progress of the 
flaglists on Lo-objects x, y and Li-objects A, B is as follows: 

1 2 3 4 5 6 
ZLa 

ZLB 

inc\ inci inc\ inc2 inC\ inC2 inc 1 inC2 

dec2 

inc 1 inC2 
dec 2 

ZLX 

ZLy 

rn n 1 »11 r2i r21 W21 
r2 2 7*22 W22 

7 8 9 10 
inc\ inc 1 

deci 
inc i 
dec i 

ZLa 

ZLb 

ri2 H-2 Wi2 
ZLX 

ZLy 

Here we assume that the commit of mcn (A) occurs between columns 2 and 3, 
the commit of inc2i(A) between columns 4 and 5, the commit of dec22{B) and T2 

occur between columns 6 and 7, and finally, the commits of deci2{B) and T\ occur 
between columns 9 and 10. Thus, the schedule will be accepted. • 

Example 15 Consider the schedule in Figure 5, which was not acceptable for 
2PL. Looking only at flaglists on Lx-objects we obtain (with FoPL+) : 

1 2 3 4 
ZLA inci m c i upd2 inci upd2 upd2 
ZLB dec i 

with Ti committing between 3 and 4, T2 committing after 4 and T2 waiting from 
the beginning of 3 to the end of 4. 

Thus, FoPL+ will accept this schedule, but FoPL would abort since ZLA 
cannot be permuted. • 
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4.3 Private Buffers 
As an alternative to immediate in-place updates we may think of using private 
buffers as in other optimistic or hybrid protocols [11, 12]. Changes to the database 
objects are only stored in these private buffers during the propagation phase and 
made persistent in the commit phase if at all. 

Since higher-level operations are by assumption implemented by lower-level op-
erations, there is only a need for such buffers on the level LQ. Consequently, we 
may only expect changes to the protocol on that level. 

The crucial point is now that results of operations affecting the database are 
not visible to other Lo-operations, as long as the corresponding Li-operation has 
not finished its commit phase. Hence, after a successful commit of an Li-operation, 
all its flags and all dependent flags on level L0 have to be deleted. Furthermore, 
since the actual changes to the object are only performed at commit-time, it is 
insufficient to lock only flaglists. The referred objects must be locked, too. On the 
other side, the deletion of dependent flags is no longer necessary in the abort case. 

Example 16 Consider the development in Example 14, but now assume assume 
that incu(A) validates and commits after 7'2ii(a;) has been performed. In this case 
the flag i'2i in ZLX will be removed causing the later abort of inc2i(A). This is 
correct, since otherwise a wrong value might be used by inc2i(A) ("dirty read"), 
and the update by incn(A) will get lost ("lost update"). • 

Whether it is advantageous to apply FoPL with in-place updates or private buffers 
on level L0 depends on the probability of conflicts occurring on level L0. Note 
that it is even possible to mix both strategies, i.e. to let some transactions - or 
Li-operations - use private Lo-buffers, whereas others use in-place updates. As a 
rule of thumb, if it can be expected that Li-operations will commit, then choose 
in-place updates, because this will trigger less rollbacks. 

4.4 Correctness and Completeness 
Let us now investigate the correctness and completeness of the FoPL protocol with 
respect to serializability. In order to distinguish between the basic FoPL protocol 
and the optimization through lazy aborts we use FoPL+ to indicate the enhanced 
protocol. 

Theorem 2 Every n-level-schedule accepted by the FoPL protocol is n-level-
seriahzable. 

Proof. If a transaction Tj commits, this also applies to all operations defining 
it - at different levels. This is only possible, if all these operations are successful 
on all objects. These implies that ov -fti oM holds for all other operations o„ issued 
by different transactions, and the schedule is conflict-equivalent to a serial schedule 
with first transaction Tj. 

Proceeding inductively and exploiting the fact that flags from submitted trans-
actions will be removed, we obtain an equivalent serial schedule. • 
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Obviously, since commit for FoPL+ works in the same way as for FoPL, the cor-
rectness result carries over to the optimized version with lazy abort. 

Corollary 1 Every n-level-sehedule accepted by the FoPL+ protocol is n-level-
serializable. • 

In addition to this correctness result, we may also obtain a completeness result 
for FoPL+ , i.e. if we adopt the alternative waiting strategy discussed above. The 
central argument of the proof states that a deadlock in the waiting graph may only 
occur iff oM — o „ and ov —>i oM both hold. But this means that the schedule is 
not serializable. 

Lemma 3 A deadlock in FoPL+ occurs iff the corresponding partial schedule is 
not serializable. 

Proof. Suppose we have a deadlock between Li-operations indicated by flaglists 
ZLa = o^pv and ZLb = q^s^. For the corresponding -operations we obtain 
Ofxk(A) —Pvt{A) and qum{B) —>i-i s^B) for suitable indices k,l,m,n. This 
states that the level-by-level schedule S,,¿_i is not serializable. 

Conversely, assume a non-serializable level-by-level schedule Si, i - i , i.e. 
o^.k{A) 1 Pvt(A) and qvm(B) sm(B) holds for Li_i-objects A, B, Li-
operations oM, o„ and o^kiA), 6 aci(oM), p„i(A),qvm(B) e act{ou). This 
implies the flaglist to contain ZLa — o^p,, and ZLb — IvS^. Since no permutation 
is possible in ZLa nor ZLb , oM waits for o„ and vice versa. Hence, there is a dead-
lock. • 
From this lemma and the preceding remarks the claimed completeness result follows 
immediately. 

Theorem 3 Every n-level-serializable schedule will be accepted by the FoPL+ pro-
tocol. • 

4.5 Recoverability and Strictness 
Finally, we investigate recoverability and strictness. 

Proposition 2 If FoPL (or FoPL+) is used on level Li, then the resulting schedule 
is recoverable. 

Proof. Assume O j ^ i x ) Oj<„f and m(ojiv) = c. The first assumption implies 
that ZLX contains Pj^qj'^ with the corresponding Li_i-operators p, q. The second 
assumption implies that qj'v could be removed from ZLX. According to the defini-
tion of FoPL this is only possible, if pjM was removed earlier from ZLX, i.e. m(ojM) 
is defined. 

If we had m(ojM) = a, then the removal of p]IL would have triggered the removal 
of the dependent flag qj<v which contradicts the fact that Oj<„ committed. • 
However, in contrast to strict 2PL, FoPL (and FoPL+ ) cannot guarantee strictness, 
not even cascade-freeness as can be seen from the next example. This is reflected 
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Figure 6: Partial FoPL schedule with cascade 

in the protocol by the removal of dependent flags. Non-cascade-freeness is usual 
with optimistic or hybrid protocols. It is the price to be paid for the increase in 
transaction throughput resulting from the visibility of operation results before the 
final commit of a transaction. 

Example 17 Consider the schedule sketched in Figure 6. Omitting the dotted 
parts we obtain a partial schedule with incn(A) - » i set2\(A), but without m(T\) 
being defined. Hence, the schedule is not cascade-free on the top level L2 . • 

5 Optimization of the Basic FoPL Protocol 

We shall now discuss various optimizations of the basic FoPL protocol or the FoPL+ 

protocol with lazy aborts. First we ask, whether the exclusive locks in the validation 
and commit phase are really needed. This will lead to the debatable noPL-strategy. 

Next we shall handle rollbacks. The first optimization concerns the ability to 
detect necessary aborts before entering the validation phase. The second optimiza-
tion discusses the use of partial rollbacks. 

Finally, we consider the absorption of operations. If the effect of an operation 
does not depend on the execution of a preceding operation, this enables some 
rollbacks to be dispensed with or the enforcement of validation success. 

5.1 Optimistic Locking 

In principle, since validating operations only read flaglists, it is not necessary to 
lock these lists during validation. Furthermore, any other active operation may 
only add new flags at the end of the lists. Such new flags do not influence the 
validation result and consequently do not require locks either. 

As a further optimization related to optimistic locking [21] it is not even nec-
essary to keep the used exclusive locks during the whole commit-phase, but to 
release them immediately after changing the flaglist, since all other changes to the 
objects in question have been detected in the validation phase to commute. Thus, 
it is only necessary to guarantee the atomicity of the changes to the flaglists via 
short-term-locks. We shall talk of the noPL-strategy (no preordered locking). 
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Figure 7: Deadlock in a FoPL+ schedule 

However, in the case of an abort such an early release of locks may lead to 
the removal of flags from operations that are uncritical otherwise. For example, it 
might not be possible to execute the operation at all due to the locked flaglist. In 
this case the noPL-strategy may lead to unnecessary aborts. The same applies for 
the commit, if private buffers are used. 

On the other hand, with such an early release of locks we risk the removal of 
flags from operations that are uncritical otherwise, which may lead to unnecessary 
aborts. 

Example 18 Consider the development in Example 14. Since all operations will 
commit, there will be no change, if we adopt the noPL-strategy. 

However, things change, if we decide to abort incn (.4) and this decision is taken 
before the execution of r2u(x). With the noPL-strategy flaglists are not locked, so 
it would be possible to execute r2\\{x) before changing the flaglist ZLX. Then the 
flag T2i in ZLX would be removed causing the later abort of inc2\{A). Thus, with 
noPL we risk the unnecessary abort of T2. 

Similarly, consider the schedule in Example 15. With the noPL-strategy the 
commit of m c n ( A ) does not lead to a problem, but in the case of an abort the 
changes to the unlocked flaglist ZLX may occur after r2u(x). Then r 2 ] will be 
deleted from ZLX, which causes upd,2\{A) and T2 to abort. • 

It depends on the probability of concurrent access to the same object, whether the 
noPL-strategy is advisable or not. 

5.2 Early and Partial Rollback 

In the basic FoPL protocol the necessity to abort an operation and to trigger a 
rollback will be detected in the validation phase, if a corresponding flag is missing. 
As an alternative it is possible to inform an operation immediately, when one of its 
flags will be removed. This strategy of early rollbacks will probably prevent further 
operation from being executed, if we already know about their later abort. 

It depends on the duration of operations, whether the communication overhead 
caused by early rollbacks is small compared with the time waste for operations to 
be aborted later. In general, early rollback may be advantageous on higher levels. 
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No matter, whether early rollbacks are applied or not, it is not necessary to roll-
back operations completely. Since only dependent flags are deleted, it is sufficient 
to do a partial rollback to the earliest time point, where none of these flags were 
set. 

Partial rollbacks are also useful for removing deadlocks as seen in the next 
example. 

Example 19 Consider the partial schedule in Figure 7, which leads to a deadlock 
with the flaglist ZLX = r i i ^ i u ^ u ^ i . It is only necessary to partially rollback until 
we have ZLX = r n , and then to restart №112(0;) again. In this case T2 has been 
aborted, but not T\. • 

5.3 Absorption 
Consider the case of a conflict OjM(x) —^ Oj'V{x), where the second operation does 
not strongly depend on the first one. According to the definition of - » j this means 
that the second operation absorbs the first one. 

Definition 14 Let Tj, Tj> be two n-level-transactions (j j') and oJM(x), Ojiu(x) 
be two of their ¿¿-operations. Then Oj>v{x) absorbs Ojli(x) (notation: Ojft(x) 
Oj>v{x)) iff Oj^x) Oj'v{x) A Oj^x) Oj<v{x) holds. • 

Absorption Oj^kix) Oj'vt(x) allows a brute force strategy to be used when 
validating Oj<„. We simply remove the flag pj^ set by Oj^kix) in ZLX, if this makes 
Oji„ successful on i . Of course, the deletion of pj^, will cause o ^ to be aborted 
later. Furthermore, we delete all dependent flags which stem from operations that 
strongly depend on Oj^kix). 

This strategy immitates a schedule, where ¡¡{x) was not executed. The strat-
egy will be called commit enforcement strategy. 

Example 20 As an alternative to the processing in Example 19 we could have 
used the commit enforcement strategy with incn(A) which immediately gives 
ZLX — i02i. This will also cause T2 to abort, but without rolling back w m W - n 

6 Comparison of FoPL+ with Locking 
We start with a comparison of FoPL+ with strict two-phase locking (str-2PL). As 
a probabilistic model for multi-level transactions is still missing, this discussion 
will necessarily remain preliminary. Nevertheless, we discuss both protocols with 
respect to implementation costs and transaction throughput. 

6.1 Implementation Costs 

FoPL+ uses access lists to keep track of the objects accessed by the ¿¿-level > 
operation oM. If str-2PL is used, we must also keep track of the accessed objects to 



442 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler 

be able to request and release locks. So, with respect to the costs of implementing 
these access-lists there is no difference between the protocols. 

FoPL+ uses fiaglists for concurrency-control, and short-term-locks are always 
necessary when fiaglists are accessed. Similarly, str-2PL must support a lock-table 
to keep track of the locks. This could be arranged as a list of locks for each object. 

The first task for str-2PL is to check a locklist for conflicts each time a new lock 
is requested. This can be achieved by linear search. Even, if an Li-operation oM 

already holds a lock on an Lj_i-object x requested by some o^k, it is in general not 
possible to avoid conflict checking, when another operation wants to access the 
same object x. Let us illustrate this by a simple example. 

Example 21 Suppose Oja holds a fetch-lock on the Li-object A due to some 
operation fetchjak(A). Then it is possible, that another operation Oj'p also holds 
a fetch-lock on A due to some operation fetchj<0e(A). The two fetch-locks are 
compatible to one another. 

If Oja now requires another lock on A, say an ¿nc-lock due to inCjak '(A), this 
request must be rejected, as the required lock is incompatible with the fetch-lock 
held by Ojip. • ' • 

On the other hand, FoPL+ does not check anything on appending a flag to a 
flaglist. The check for conflicts is done in the validation-phase. For each operation 
opjak{x) 6 act(oja) the first entries in the flaglist preceding (op, ja) have to checked 
for conflicts. This again leads to linear search. 

Thus, for conflict-checking we may state that FoPL+ produces an overhead 
over str-2PL: fiaglists may be longer than locklists and they are accessed more 
frequently. However, this overhead seems not to be dramatic. In particular, the 
main parameter to validate this overhead is the number of different operations 
accessing the same object x within a short period of time. One major assumption 
for introducing multi-level transactions was that this number is rather small except 
for level Lo- So the only critical overhead could appear on level L0 , but here we 
usually have only short read-write sequences. 

After commit, str-2PL has to access the lock-table again to release locks. This 
can be realized by linear searching the locklists associated with the relevant objects. 
FoPL+ has to delete flags in the case of commit and abort. For abort - and also 
for Li-commit, if private buffers are used - dependent flags have to removed either. 
For this there is no significant difference concerning the implementation costs of 
str-2PL and FoPL+. 

Finally, we must look at the implementation costs for deadlock detection. For 
this str-2PL has to implement a waiting graph on Li-operations, which is updated 
each time a lock-request has been rejected and on commit and abort. The same 
applies to FoPL+ . In particular, the costs for deadlock detection are the same 
for both protocols. The major difference, however, is that with str-2PL locks are 
held on objects, whereas with FoPL+ the operations on the waiting graph are 
independent from the execution of the transactions. This may have an impact on 
transaction throughput, as we shall discuss next. 
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Figure 8: Non-serializable multi-level schedule with FoPL+-overhead 

As a first conclusion we may already state that there is no significant increase 
in implementation costs, when FoPL+ is used instead of str-2PL. In any case, an 
increase in transaction throughput would justify the implementation overhead. 

6.2 Transaction Throughput 
As to transaction throughput the discussion will be based on three examples. The 
first one is Example 15, where we could show that FoPL+ accepts the serializable 
schedule from Figure 5, whereas str-2PL would not. According to our completeness 
result (Theorem 3) for FoPL+ this is no longer astonishing. With str-2PL the 
operation upd2\(A) could first be started after the commit of T\. This causes an 
overhead of one Li-operation and two Lo-operation. In this case the advantages of 
FoPL+ are evident. 

Next we consider two other examples shown in Figures 8 and 9. The first of 
these examples shows an non-serializable schedule with an overhead for FoPL+ . 
The last example demonstrates the power of FoPL+ , when the optimizations with 
absorption on level L0 and early rollbacks are employed. 

Example 22 Consider the non-serializable schedule from Figure 8. In this case 
FoPL+ would produce the following flaglists on Li-objects: 

ZLA upd 1 inC2 
ZLB dec2 fetchs upd\ 
ZLC upd3 

Then FoPL+ would abort 022, because it removes the shortest cycle in the waiting 
graph, and consequently also 031, 032 and 012- A restart - 022 must be restarted 
later than 031 and 012 may lead to the flaglists 

ZLA updi i'iiC2 

ZLB fetchz upd 1 dec2 

ZLC upd3 

and all transactions would commit now. In this case four Li-operations composed 
from seven Lo-operations must be repeated. 

For str-2PL the schedule could not occur. Howeverr, due to the upd-lock on 
A held by T\ the operation 021 can only start after T\ has committed. Thus, the 
overhead of FoPL+ consists only of two Li-operations composed from three Lo-
operations. • 
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fetchu(A) incoi(B) 

rm(a;) r2n(y) wo}2{y) r121{ij) r 3 u ( z ) r22i(z) w222{z) r32i(x) w322(x) 

Figure 9: Non-serializable multi-level schedule with str-2PL-overhead 

Note that the overhead for FoPL+ occurring in Example 22 is only possible, if we 
have concurrent access to the same object. On the other hand, the overhead is 
not as large as expected. Again, the decisive parameter is the number of different 
operations accessing the same object x within a short period of time. 

Example 23 Now consider the schedule in Figure 9. Here str-2PL would request 
the following locks on Li-objects: 

A fetchi updz 
B inc2 fetchi 
C fetchi dec2 

Since all these pairs of locks are incompatible, the request for the second lock 
would be rejected. This leads to a deadlock, which can be resolved by aborting 
and restarting T3. In addition, fetchi2(B) and dec22(C) could first be started after 
this abort. This means that four Li-operations had to be repeated. These were 
composed from six Z/0-operations. 

If FoPL+ were taken instead, this would result in the following flaglists: 

ZLa fetchi updz 
ZLb inc2 fetchi 
ZLC fetchi dec2 

As in the previous example we have to abort and redo fetchsi(A), upd32{A) and 
dec22(A), i.e. three Li-operations composed from five Lo-operations. 

However, with could apply the absorption optimization to commit dec22(A) and 
hence T2 immediately. In addition, T\ would also commit. Since the flag fetchz 
would be removed, fetch3i(A), and upd32(A) still must be aborted and redone, but 
this causes only two L\-operations composed from three Lo-operations. 

Finally, since T2 validates before upd$2(A) started, we could even apply early 
rollback. This means that only fetchsi(A) would be repeated, i.e. one Li-operation 
composed from one Lo-operation. With these optimizations the overhead caused 
by str-2PL occurs to be even worse. • 

It is not yet possible to draw a general conclusion from these three examples in the 
sense that FoPL+ is preferable. We could only see, that FoPL+ had advantages, if 
no abort occurs or an abort occurs for both FoPL+ and str-2PL. Only the situation, 



Hybrid Concurrency Control and Recovery for Multi-Level Transactions 445 

where FoPL+ acted "too optimistically" lead to slight advantages for str-2PL. In 
order to base such investigations on solid theoretical grounds, a probabilistic model 
for multi-level transactions must be used. 

7 Recovery 
In our discussion of concurrency control protocols in the preceding three sections 
we always provided the necessicity of aborting operations or transactions. This 
means that we have to undo all the effects issued by such operations, which is a 
significant part of the recovery component. We usually talk of the rollback of an 
operation. 

One possible solution to this problem is to employ the principle of write-ahead-
logging (WAL), i.e. before updating the database rollback data are stored at some 
safe place, which is usually a log-file. A accepted good solution based on WAL 
is ARIES (Algorithm for Recovery and Isolation Exploiting Semantics) [16]. and 
we shall adopt ARIES to our purposes here. We start giving a short list of the 
fundamental features of ARIES: 

• Recording is not restricted to normal transaction processing, but also happens 
during rollback through so-called compensation log records (CLRs), which 
prevent UNDO-operations to be executed more than once. 

• The storage overhead - besides the logging data - is kept small. On each 
page only the number of the log record which marks the last change to that 
page has to be stored. 

• ARIES supports partial rollbacks through savepoints and fast crash recovery 
through checkpoints, at which information about buffered pages are stored. 

• ARIES uses only short-term-locks - so-called latches - to access pages, 
whereas long-term-locks as required by locking protocols are reserved for 
records. 

In [22] an extension ARIES/NT of ARIES to nested transactions has been pre-
sented. This extension is tighly coupled with locking protocols and does not em-
ploy inverse operations, which are possible in multi-level transactions. In particular, 
locks are not released after finishing operations that are not transactions. The alter-
native MLR discussed in [15] exploits inverse operations, but unfortunately assumes 
them to exist in any case. If they do not exist, the restrictions of ARIES/NT are 
kept. 

In the following we present the extension ARIES/ML for multi-level transactions 
[6]. ARIES/ML is rather close to MLR, but is not necessarily coupled with a 
locking protocol. Furthermore, we explicitly differentiate between operations for 
which there exists an inverse and those for which there exists none. 

The major features of ARIES will be preserved. We describe necessary exten-
sions to the data structures and their usage during normal processing and rollback. 
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The extension allows a coupling with a locking protocol and FoPL and provides the 
necessary extensions to FoPL with respect to operation aborts. In this way we are 
also able to support crash recovery. 

The data structures used in ARIES/ML comprise various types of log records 
stored in the log-file, an operation table and a dirty pages table. Each log record 
has a log serial number (LSN) and a field indicating its type, which is ULR, CLR, 
CCR, RCR, CR, SP or CP. Concretely, we distinguish update log records (ULRs), 
compensation log records (CLRs), committed child records (CCRs), reactivate child 
records (RCRs), commit records (CRs), savepoints (SPs) and checkpoints (CPs). 

Update log records are created during normal transaction processing. Com-
pensation log records record UNDO-operations corresponding to some operation. 
Committed child records are created, when an operation on a level Lj (i ^ n) has 
finished. Reactivate child records are created during rollback; they correspond to 
CCRs. Commit records are created, when a transaction commits. 

Savepoints are only used to support partial rollback. Thus, it is sufficient to 
provide their LSN and their type. Checkpoints are used to fasten crash recovery. 
They are created regularly. Besides LSN and type they contain the dirty pages 
table, the operation table and some additional data about the database files. The 
actual storage of buffered pages is left to the buffer manager. We dispense with an 
intensive discussion of savepoints and checkpoints. 

7.1 Log Records for Normal Processing 
In order to define the structure of these records for an ¿¿-operation o we assume a 
total order on D ^ that includes For simplicity assume that the indices 
are chosen in such a way that Ojpu E ^ °jpe k < i holds. 

Definition 15 Let o = opjak(x) be an ¿¿-operation (i ^ n) of the n-level-
transaction Tj. The update log record ulrjak corresponding to o has the form 

ulrjak = (lsnjak, ULR, ja, Isnjak-1, P, eff jak) 

with the log serial number lsnjak, the type ULR, the identifier j a of the parent 
operation trans(o), the log serial number lsrijak-\ of the previous operation in 
act(oja), a pointer p to the page containing the object x affected by o and the 
effect of o according to Definition 6. • 

In general, to refer to the components of a ULR, we write (LSN, type, Opld, 
PrevLSN, Pageld, data). If o is the first operation in act(o'), then PrevLSN is 
undefined, indicated by the null value ± . Pageld may also be left undefined, if the 
object is only virtual, i.e. realized by a set of other objects. Note that ULRs were 
already present in the basic ARIES algorithms. 

CCRs are created, when an ¿¿-operation o (0 < i < n) has finished. Same as 
ULRs they contain LSN, type, Opld and PrevLSN. Furthermore, they have a field 
LastLSN containing a pointer to the last log record created by some operation in 
act(o), a field Childld containing the identifier of o itself and a field Op containing 
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the operator of o to indicate, whether a compensation will be possible or not. Thus, 
we may write (LSN, type, Opld, LastLSN, Childld, LastLSN, Op). 

Definition 16 Let o = opjak(x) be an ¿¿-operation (0 < i < n) of the n-level-
transaction Tj. The committed child record ccrjak corresponding to o has the form 

ccrjak - (Isrija, CCR, ja, Isrijau, jak, lsnjak-1: op) 

with the log serial number lsrija, the type CCR, the identifier j a of the parent 
operation trans(o), the log serial number lsrijake corresponding to the last operation 
in act(ojak), the identifier jak of the operation itself, the log serial number lsrijak-1 
of the previous operation in act(oja) and the operator op. • 

Commit records are created, when a transaction Tj commits. They are described 
by LSN, type and Opld. Formally, a commit record for an n-level transaction Tj 
has the form crj = (Isrij, CR, j, lsrijk) with the meaning of these components as 
in Definition 15 before. 

7.2 Log Records for UNDO 

Since CLRs record UNDO-operations, they also contain LSN, type, Opld, PrevLSN, 
Pageld and a field containing the data which is necessary for REDO. This can 
be either a before image expressed by the effect as in ULRs or a compensation 
operation. In addition, CLRs have a field UNDOnextLSN containing the LSN of 
the log record for the next operation to be undone. Thus, we have the form (LSN, 
type, Opld, PrevLSN, UNDOnextLSN, Pageld, data) 

Definition 17 Let o = Ojak(x) be an ¿¿-operation (i n) of the n-level-
transaction Tj. A compensation log record clrjak corresponding to o has the form 

clrjak = {lsnfak, CLR, jak, lsnjak, Isnf^i, p, d) 

with the log serial number lsnc^k, the type CLR, the identifier jak of the rolled back 
operation, the log serial number lsnja k~i of the ULR for the previous operation in 
act(oja) the log serial number lsn^k_1 of the log record for the next operation to 
be undone and a pointer p to the page containing the object x affected by o. The 
last field d is either the effect effjak of o according to Definition 6 or a compensation 
operation o - 1 . • 

CLRs existed already in ARIES. The only difference here is that the data part of 
a CLR may now contain a compensation operation, unless o resides on level LQ. 

Reactivate child records are also created during rollback, when a finished ¿¿-
operation has to be reinstalled in the operation table. Besides LSN and type a 
RCR has fields Opld, PrevLSN, Childld, LastLSN and UNDOnextLSN with the 
same meaning as for the other kinds of log records. 
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7.3 Normal Transaction Processing 
During normal transaction processing the corresponding ULRs, CCRs, CRs, SPs 
and CPs are written into the log-file. In addition, each page will contain a field 
PageLSN, in which the LSN of the last entry writing to that page is recorded. For 
page access, latches are used also by ARIES/ML. 

Finally, ARIES/ML manages an operation table and a dirty pages table. The 
operation table contains information about active operations. Each record in this 
table contains 

• an operation identifier Opld, 

• the status of that operation, which may be 'propagate' (p), 'validate1 (v) -
not used with locking protocols - 'commit' (c) or 'abort' (a), 

• LastLSN and UNDOnextLSN. 

Whenever a CCR is created the corresponding operation does not need to be kept 
in the operation table. The same applies to CRs for top-level operations, i.e. 
transactions. 

The dirty pages table contains information about buffered pages. Each of its 
records contains a Pageld and a recovery LSN (RecLSN), which marks the first 
entry in the log file from which updates to that page were not yet made persistent. 

Example 24 Consider the schedule from Figure 1. Assume that x is stored on 
page p, y on page q and that p is made persistent by the buffer manager after 
finishing 021. Then the log records in the following list will be created. The list 
also indicates the dirty pages table (abbreviated as d.p.t.), the operation table and 
the pair of PageLSNs for p and q. 

log-entry operation table d.p.t. Page LSNs 
(1,ULR,11,-L,p, . • • ) ( l ,p ,L ,± ) (11,p,1,1) (-L.-L) 
(2,ULR,ll , l ,p, . 

• • ) ( l , p , ± , l ) ( l l ,p,2,2) (P.2) (2,JL) 
(3,CCR,1,-L,11,2 inc) (l,p,3,3) (P.2) (2,-L) 
(4,ULR,21,±,p, . • • ) (l,p,3,3) (2,p,L,L) (21,p,4,4) (P.2) (2,-L) 
(5,ULR,21,4,p, . 

• • ) (l,p,3,3) (2,p,L,L) (21,p,5,5) (P,2) (2,-L) 
(6, CCR, 2, _L, 21,5 inc) (l,p,3,3) (2,p,6,6) (J-.-L) 
(7,ULR,22,L,9, . 

• • ) (l,p,3,3) (2,p,6,6) (22,p,7,7) (q.7) (-L.7) 

Dots indicate some data which are left unspecified. • 

7.4 Rollback 
Rollback may be started at any time and can be executed until a specified savepoint 
is reached. Thus, to start a rollback we need a set OpIdSet of operation identifiers 
and a SaveLSN with SaveLSN = 0 corresponding to a complete rollback. 
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The first activity is to create a rollback list containing the LastLSN from all 
active operations with a parent in OpIdSet. For this the operation table has to be 
accessed. Then UNDO-operations will be processed by decreasing LSN following 
the PrevLSN-entries in log records. Only LSNs that are larger than the given 
SaveLSN will be considered. Rollback stops, when the rollback list becomes empty. 

Depending on the type and the content of the log record r with LSN in the 
rollback list different actions will be triggered: 

• In the case r.type = ULR an UNDO-operation will be performed and the 
PageLSN of the page affected by the operation underlying r will be reset. The 
necessary data are kept in the ULR. Furthermore, r.PrevLSN will be added 
to the rollback list and a CLR r' with r'.UNDOnextLSN = r.PrevLSN will be 
created. Finally, the fields LastLSN and UNDOnextLSN in the corresponding 
operation table record will be updated. In this case there is no difference to 
ARIES. 

• In the case r.type = CCR we have to distinguish two different subcases. 
If there exists a compensation operation, it will be executed. If we assume 
a locking protocol for concurrency control, there is a risk for deadlocks now. 
ARIES/ML circumvents this problem by allowing only one compensation op-
eration to be active. If it is involved in a deadlock, one of the other operations 
will be chosen for abort. Thus, in this subcase there is not a big difference to 
the ULR-case before. In particular, a single CLR will be created. 
Now assume that there is no compensation operation. In this subcase the 
child operation has to be reactivated and an RCR will be created. Both 
LastLSN and PrevLSN give rise to new entries in the rollback list. 

• The cases r.type = CLR and r.type = RCR can only occur, if a partial 
rollback has already been performed. In both cases there is nothing to do; 
just add PrevLSN to the rollback list. 

Example 25 Consider the following sequence of log records: 

(1,ULR,111,X, . . . ) (2,CCR,11,±,111,1, . . . ) (3,ULR,112,_L, . . . ) 
(4,CCR,11,2,112,3, . . . ) (5,CCR,1,_L,11,4, . . . ) (6,ULR, 121,X, . . . ) 
(7,ULR,121,6, . . . ) (8,CCR,12,X,121,7, . . . ) (9,ULR,122,X, . . . ) 
(10,CCR,12,8,122,9, . . . ) (11,ULR,123,X, . . . ) , 

where the underlined type CCR refers to a compensable operation and dots are 
used to indicate page identifiers and data entries we are not interested in in this 
example. A complete rollback of 0\ will start with the rollback list (11,10,5) and 
create the following continuation of the log sequence: 

(12,CLR,123,11,X,... ) (13,CLR,12,10,8,... ) (14,RCR,12,13,121,7,X) 
(15,CLR,121,7,6, . . . ) (16,CLR,121,15,X, . . . ) (17,CLR,1,5,X, . . . ) . 

Here the fifth field in CLRs contains the UNDOnextLSN. Fields in RCRs are listed 
in the order described above. • 
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7.5 Crash Recovery 
Crash recovery in ARIES/ML follows the same ground procedure as ARIES, i.e. 
we have three consecutive passes for analysis, REDO and UNDO. 

The analysis pass is based on log records starting from the last checkpoint. The 
goal is to discover where to start the REDO-pass and the set of operations to be 
undone. The last checkpoint allows an initial reconstruction of the operation table 
and the dirty pages table. Then log records r following the checkpoint entry are 
read one after the other. Depending on the type and content of r different actions 
will be triggered: 

• If r.OpId exists, then an entry for Opld must be added to the operation table 
unless a corresponding record exists. In both cases, the LastLSN will be set 
to r.LSN. 

• If r.type = ULR or r.type — CLR, then the dirty pages table may contain a 
wrong RecLSN entry for the page indicated by r.Pageld. If this is the case 
RecLSN will be set-to r.LSN. 

• If r.type = CCR, then the entry for r.Childld will be deleted in the operation 
table. 

• If r.type = RCR, then (r.Childld, p,r.LastLSN,r.LastLSN) has to be added 
to the operation table. 

• If r.type = CR, then the entry for r.OpId has to be removed from the opera-
tion table. 

After analysing these log records, the starting LSN for the REDO-pass will be 
set to the minimum of all RecLSNs in the dirty pages table. The set OpIdSet of 
operations to be undone contains all operation identifiers from the operation table 
which do not have the status 'commit'. 

For the REDO-pass there are no changes to ARIES, i.e. log records r starting 
from REDO-LSN as discovered in the analysis pass will be excuted again, if r.Pageld 
occurs in the dirty pages table and RecLSN < r.LSN A PageLSN < r.LSN holds. 

In the UNDO-pass ARIES/ML starts a complete rollback with OpIdSet from 
the analysis pass and SaveLSN = 0. 

8 Conclusion 
In this paper we investigated concurrency control and recovery for multi-level trans-
actions which occur naturally in distributed databases. The general idea is to 
exploit application semantics to reduce the number of conflicts. 

Two-phase locking (2PL) can be easily generalized to the multi-level case keep-
ing the advantages of locking protocols. All schedules accepted by 2PL will be 
serializable. Furthermore, strict 2PL leads to schedules that are recoverable and 
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strict on all levels. As with locking for flat transaction systems the major draw-
back results from the possibility of deadlocks with the well-known time-consuming 
detection algorithms. 

As an alternative we developed the hybrid FoPL protocol (Forward oriented 
Concurrency Control with Preordered Locking). Same as 2PL, FoPL only accepts 
serializable schedules. If combined with a waiting strategy for the case of not 
successful validation (lazy abort), the modified FoPL+ protocol will accept all se-
rializable schedules. Possible deadlocks in the waiting graph are not critical, since 
objects are not locked. Moreover, the accepted schedules will be recoverable on all 
levels. In contrast to 2PL the FoPL protocol is deadlock-free. However, as with 
other optimistic or hybrid protocols strictness nor cascade-freeness cannot be guar-
anteed. Finally, we were able to discuss several optimizations of the basic FoPL 
protocol. 

Which choice - strict 2PL or FoPL/FoPL+ - is the better one, depends on 
various factors. The most important one concerns the probability of conflicts. In 
general, it is assumed - and this is one of the major motivations behind multi-level 
transactions - that at least on higher levels the conflict rate will tremendously 
decrease, which is an argument favouring FoPL. We currently start to realize a test 
bed in order to compare transaction throughput for various multi-level protocols. 
We plan to extend these examinations also to generalizations of hybrid protocols 
that employ time-stamps [3, 10]. 

The basic idea underlying FoPL stems from the ODL (Optimistic Dummy Lock) 
protocol [11]. Therefore, it is worth to spend a few words on a comparison. Since 
ODL has been developed for flat transactions, we must base this comparison on 
this special case. ODL also uses flags - the so-called "dummy locks" - in the 
propagation phase. When a transaction Tj issues a read-operation on object x, a 
flag Fj is set on the object x. Fj can be deleted by Tj itself during its validation 
phase or by another transaction Tk, when Tk performs an actual write-operation 
on x. Validation basically consists in checking, whether flags are still set. 

Compared with FoPL (applied to 1-level-transactions) the major differences are 
that FoPL uses flaglists, whereas ODL uses a single flag, and that ODL employs 
a backward validation strategy. Thus, for each commit ODL will force all other 
operations accessing the same object to abort, no matter whether this is necessary 
or not. Furthermore, as shown in [21] the backward validation strategy makes a 
generalization of ODL to multi-level transactions nearly impossible. 

As to recovery we adapted ARIES [16] to work both with multi-level locking 
protocols and FoPL. In the former case one crucial point was to avoid deadlocks 
during rollback. The extension ARIES/ML preserves the advantages of ARIES 
such as partial rollbacks, different locking granularities, small storage overhead and 
the avoidance of multiple UNDO. 
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A Note on Decidability of Reachability for 
Conditional Petri Nets 

Ferucio Laurentiiu TIPLEA * Cristina BADARAU * 

Abstract 

The aim of this note is to prove that the reachability problem for Petri 
nets controlled by finite automata, in the sense of [5], is decidable. 

1 Introduction and preliminaries 
In [5] a new restriction on the transition rule of Petri nets has been introduced by 
associating to each transition t a language Lt from a family £ of languages. Petri 
nets obtained in this way have been called C-conditional Petri Nets (C-cPN, for 
short). In an C-cPN 7 , a sequence w of transitions is a transition sequence of 7 if 
it is a transition sequence in the classical sense and additionally w\ G Lt for any 
decomposition w = witw2- In other words, the transition t is conditioned by the 
transition sequence previously applied. 

It has been proved in [6] that the reachability problem for C-cPN in the case 
that C contains the Dyck language and is closed under inverse homomorphisms 
and letter-disjoint shuffle product, is undecidable. The families of context-free, 
context-sensitive, recursive, recursively enumerable languages, and all the families 
of L-type Petri net languages satisfy the conditions above, but this is not the case 
of the family of regular languages; the reachability problem for C3-cPN, where £3 
is the family of regular languages, remained open. In this paper we give a positive 
answer to this problem. 

The set of non-negative integers is denoted by N. For an alphabet V (that 
is, a nonempty finite set), V* denotes the free monoid generated by V under the 
operation of concatenation and A denotes the unity of V*. The elements of V* are 
called words over V. A language over V is any subset of V*. Given a word w G V*, 
|ui| denotes the length of w. 

A finite deterministic automaton is a 5-tuple A = (Q,V,S,qo,Qf), where Q is 
the set of states, V is the set of input symbols, qo G Q is the initial state, Qj C Q 
is the set of final states and 6 is a function from Q x V into Q. The language 
accepted by A is defined by L(A) = {w G V*\S(q0,w) G Qf} (the extension of <5 to 
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V* x Q is defined as usual). The family of languages accepted by finite deterministic 
automata, called regular languages, is denoted by £3. 

A (finite) Petri net (with infinite capacities), abbreviated PN, is a 4-tuple 
E = (S,T, F,W), where 5 and T are two finite non-empty sets (of places and 
transitions, respectively), S n T = 0, F C (S x T) U (T x S) is the flow relation 
and W : (S x T) U (T x S ) - » N is the weight function of E verifying W(x,y) = 0 
iff (x ,y ) $ F. A marking of a PN E is a function M : S-*N. A marked PN, 
abbreviated mPN, is a pair 7 = (E,M0 ) , where E is a PN and Mo, the initial 
marking of 7 , is a marking of E. 

The behaviour of the net 7 is given by the so-called transition rule, which 
consists of: 

(a) the enabling rule: a transition t is enabled at a marking M (in 7 ) , abbreviated 
M[t)1, iff W(s,t) < M(s), for any place s; 

(b) the computing rule: if M[i ) 7 then t may occur yielding a new marking M', 
abbreviated M[ i ) 7 M' , defined by M'(s) = M(s) - W{s,t) + W{t,s), for any 
place s. 

The transition rule is extended usually to sequences of transitions by M[X)yM, and 
M[wt)7M' whenever there is a marking M" such that M [ w ) 7 M " and M " [ i ) 7 M ' , 
where M and M' are markings of 7 , w 6 T* and t £T. 

Let 7 = (E, Mo) be a marked Petri net. A word w 6 T* is called a transition 
sequence of 7 if there exists a marking M of 7 such that Mo[w)yM. Moreover, the 
marking M is called reachable in 7 . 

Let £ be an arbitrary family of languages. An C-conditional Petri net, abbre-
viated C-cPN, is a pair 7 = (E,<p) where E is a PN and tp, the C-conditioning 
function of 7 , is a function from T into V(T*) fl C. Marked conditional Petri nets 
are defined as marked Petri nets by changing "E" into "E, ¡p". 

The c-transition rule of a conditional net 7 consists of: 

(c) the c-enabling rule: let M be a marking of 7 and u £ T ' ; the transition t is 
enabled at ( M , u ) (in 7 ) , abbreviated (M,u)[t)JiC, iff W{s,t) < M(s) for any 
place s, and u € <p(t)\ 

(d) the c-computing rule: if (M, u)[i)7]C, then t may occur yielding a pair (M',v), 
abbreviated (M,u)[t)ytC(M',v), where M [ i ) 2 M ' and v = ut. 

As for Petri nets, it can be extended to sequences of transitions. 
Let 7 = (E,</3,Mo) be a marked conditional Petri net. A word w 6 T* is 

called a transition c-sequence of 7 if there exists a marking M of 7 such that 
(Mo, A ) [ w ) 7 , C ( M , W). Moreover, the marking M is called c-reachable in 7 . 

2 The main result 
The reachability problem for Petri nets asks whether, given a net 7 and a marking 
M of 7 , M is reachable in 7 . The submarking reachability problem for Petri nets 
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asks whether, given a net 7 , a subset S' of places and a marking M of 7 , there 
exists M' reachable in 7 such that M\s> = M'|s<. It is well-known that these two 
problems are equivalent 1 ([4]) and decidable ([3]). 

The reachability problem for conditional Petri nets can be defined in a similar 
way: given an ¿-conditional net 7 and a marking M of 7 , is M c-reachable in 7 ? As 
we have already mentioned in the first section, for £ being the family of context-free 
languages (context-sensitive, etc.) the reachability problem is undecidable, and the 
question is whether this problem is decidable for the case £ = £3. In what follows 
we shall give a positive answer to this problem by reducing it to the submarking 
reachability problem for Petri nets. 

Let 7 = ( £ , IP, MQ) be an C^-CPN. We may assume, without loss of generality, 
that at least a transition of 7 is c-enabled at Mo (otherwise, a marking M is c-
reachable in 7 iff M = Mo). Consider T ~ {ti,... ,tn}, n > 1, and let Ai = 
(Qi,T, 5i, QQ, QJ) be afinite deterministic automaton accepting the regular language 
<p(ti), for all i, 1 < i < n. We may assume that 

- Qi H Qj = 0, for all i ± j, and 

- ( S u T ) n u r = i Q i = 0, 

and let Si = £ Qi}, for all i. 
We transform now the net E into a new net E' by adding to the set 5 all the 

sets Si and replacing each transition ti by some "labelled copies" as follows: 

• for each sequence of states qi,q{ £ Qi,..., qn, q'n £ Qn such that qi £ <5} and 
S\{quU) = q[,..., 5n(qn, U) = q'n, consider a transition which' 
will be connected to places as follows: 

- tlVi q, qn is connected to places in 5 as ti is; 

- for any 1 < j < n, 

= L 

Let Mq be the marking given by 

- M'0{s) = M0(s) , for all s € 5; 

- = 1, for all 1 < i < n; 

- MQ(SQ) = 0, for all states q £ U " = 1 SI - |1 < i < n}, 

and let 7 ' = ( S ' , M q ) be the mPN such obtained (we have to remark that the 
set T' is non-empty because of the hypothesis). Consider next the homomorphism 
h : {T')*->T* given by 

^ 9 1 ) = tl> 
1A decision problem is a function A : I—>{0,1}, where I is a countable set whose elements are 

called instances of A. A decision problem A is reducible to a decision problem B if any instance 
i of A can be transformed into an instance j of B such that A(i) = 1 iff B(j) = 1. The problems 
A and B are equivalent if each of them can be reduce to the other one. 
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for any transition tx , , defined as above (the net E' together with the ho-
momorphism h is pictorially represented in Figure 2.1: the places are represented 
by circles, transitions by boxes, the flow relation by arcs, and the numbers W(f) 
will label the arcs / whenever W(f) > 1. The values of h are inserted into the 
boxes representing transitions). 

7 ' 

ài{qi,ti) = q[ 
Qi e Q) 

J ¿j{qj,U) = q'j 
\ 

Figure 2.1 

It is clear that for-any w € T* and marking M of 7 , {M0,X)[w)1{M,w) iff 
there is w' € (T1)* and a marking M' of 7 ' such that h(w') = w, MQ[W')YM', and 
M = M'\s- This shows us that a marking M is reachable in 7 iff there is a marking 
M' reachable in 7 ' such that M'\s = M. That is, the reachability problem for 
Cz-cPN can be reduced to the submarking reachability problem for Petri nets, and 
because this problem in decidable for Petri nets we obtain the next result. 

Theorem 2.1 The reachable problem for C^-cPN is decidable. 

S( , ) 
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We close this note by the remark that the reachability problem for Petri nets 
controlled by finite automata, in the sense of Burkhard ([1], [2]), is undecidable. Our 
approach to control Petri nets by finite automata ([5]) seams to be more adequate 
because the reachability problem is decidable and, on the other hand, the power of 
Petri nets is subtle increased (see [6]). 
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Unusual Algorithms for Lexicographical 
Enumeration* 

Pál Dömösi t 

Abstract 

Using well-known results, we consider algorithms for finding minimal 
words of given length n in regular and context-free languages. We also show 
algorithms enumerating the words of given length n of regular and context-
free languages in lexicographical order. 

1 Introduction 
E. Mákinen [8] described algorithms to find the lexicographically minimal words 
for regular and context-free grammars. Using well-known recent results in [1, 2, 3, 
6, 7, 9], we show similar algorithms. E. Mákinen [8] presents also an algorithm to 
enumerate the words of a regular language in lexicographical order. We give another 
algorithm for lexicographical enumeration of regular languages. In addition, using 
an extension of the well-known CYK-algorithm, we show an algorithm to enumerate 
the words of length n of a context-free language in lexicographical order. Using 
the well-known Valiant algorithm, see [11, 5], a little refinement of our solution is 
attainable. 

2 Preliminaries 
A word (over £ ) is a finite sequence of elements of some finite non-empty set £. We 
call the set E an alphabet, the elements of £ letters. If u and v are words over an 
alphabet E, then their catenation uv is also a word over E. Then we also say that 
u is a prefix of uv. In particular, for every word u over E, u A = \u = u, where A 
denotes the empty word. Given a word u, we define u° = A, « " = un~1ií, n > 0, 
u* = {un | n > 0} and u+ =u*\ {A}. In addition, we put E™ = {w G E | = n}. 

The length |iu| of a word w is the number of letters in w, where each letter is 
counted as many times as it occurs. Thus |A| = 0. By the free monoid E* generated 
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National Foundation for Scientific Research grants OTKA-T019392 and OTKA-T030140. 
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by £ we mean the set of all words (including the empty word, A) having catenation 
as multiplication. We set E + = £* \ {A}, where the subsernigroup E + of E* is said 
to be free semigroup generated by E. Subsets of E* are referred to as languages over 
E. Given a set E, let card(E) denote the cardinality of E. A language L C E* is 
said to be k-slender if card{w £ L | |u>| = n } < k, for every n > 0. A language is 
slender if it is ¿-slender for some positive integer k. A 1-slender language is called 
thin language. A language L is said to be a union of single loops (or, in short, USL) 
if for some positive integer k and words Ui,Vi,W{, 1 <i<k, 

k 
(*) L = (J UiV*Wi. 

i=1 

L is called a union of paired loops (or UPL, in short) if for some positive k and 
words Ui,Vi,Wi, Xi, yi, 1 <i < k, 

k 
(**) L = {Jiuivfwixfyi I n > 0}. 

¿=i 

For a USL (or UPL) language L the smallest k such that (*) (or (**)) holds is 
referred to as the USL-index (or UPL-index) of L. A USL language L is said to be 
a disjoint union of single loops (DUSL, in short) if the sets in the union (*) are 
pairwise disjoint. In this case the smallest k such that (*) holds and the k sets are 
pairwise disjoint is referred to as the DUSL-index of L. The notions of a disjoint 
union of paired loops (DUPL) and DUPL-index are defined analogously considering 
(**). We shall use the following well-known results. 

Theorem 2.1 [9] The next conditions, (i)-(iii), are equivalent for a language L. 
(i) L is regular and slender. 

(•ii) L is USL. 
{Hi) L is DUSL. 

• 

Theorem 2.2 J'[9] Every UPL language is DUPL, slender, linear and unambiguous. 

• 

Theorem 2.3 [6, 10] Every slender context-free language is UPL. • 

We will use the following extension of Theorem 2.3. 

Theorem 2.4 [7] A given slender context-free language can be effectively written 
as a disjoint union of (finitely many) paired loops. • 
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The next statement is a direct consequence of the constructive proof of Theorem 
2.1 in [9]. 

Theorem 2.5 A given slender regular language can be effectively written as a dis-
joint union of (finite many) single loops. • 

3 Finding minimal words of given length and enu-
meration of regular languages 

Given a total order -< on E, a lexicographical order on E* is defined as an extension of 
-< to E* such that for any pair u, v £ £*, u -< v if and only if either v = uu', u' £ £+ 

or u — wxu', v = wyv', x < y for some w, u', v' £ E* and x, y £ E. We will denote 
by first(E) the first element of E under -< . Moreover, for every u £ E* we put 
next(u) = min{i; | v £ E*,u -< i>}. In addition, we put Pref(L) = {i; | 3u £ 
L, v' £ E = vv'}. Thus Pref(L) denotes the set of all prefixes of words in L. 

Given a language L, the language Lmin is defined by taking from all words of 
L of the same length only the first one in lexicographic order. Of course, L m j „ is a 
thin language. We shall use the following results. 

Theorem 3.1 [1, 4] F°r every regular language L, the language Lmin is regular, 
and a regular grammar for it can be effectively constructed. • 

Theorem 3.2 [2] For every context-free language L, the language Lmin is context-
free. Moreover, given a context-free grammar generating L, a context-free grammar 
for Lmin co,n be effectively constructed. • 

Using Theorem 3.1 and Theorem 3.2, together with Theorem 2.5 and Theorem 
2.4, the following algorithms can be constructed. 

Algorithm regmin 
Input: A regular grammar G = (V, E, P, S) and a total order -< on E. 
Output: A finite language LG = {ui,Vi,w1}... ,un(G),vn(G),wn(G)} having 

n(G) 

Lmin = (J {UiV?Wi | n > 0}. 
»=l 

End of algorithm regmin 

Algorithm cfmin 
Input: A context-free grammar G — (V, E, P, S) and a total order on E. 
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Output: A finite language LG = {ui,vuwuxi,yi,... ,un(G),vn{G),w.n{G).,xn{G). 
Vn(G)} having 

n(G) 

Lmin - ( J {UiViWiXiVi I Tl > 0 } . 
¿=1 

End of algorithm cfmin 

On the basis of the above observations, we now show how to construct the 
following algorithms. 

Algorithm R E G M I N 
Input: A regular grammar G = (V, E,P, S), a total order -< on E and a positive 
integer n. 
Output: A finite language LG = {u i ,u i , iu i , . . . ,un(G),vn(G),wn(G)} (having 
Lmin = U t G i ] { ^ > i I « > 0}) and 

• a pair k, I of positive integers such that 1 < k < n(G) if the word of length n 
of Lmin exists and it has the form UkVekWk\ 

• an error message if Lmin has no word of length n. 

Method: Apply the algorithm regmin; k,i 0; 
for i 1 . . .n (G) do 

if the equation \uiWi \ + \vi\a = n has a positive integer solution for a 
then k i\I a; 

od 
Output: 

• k,e,ifk> 0; 

• an error message if k = 0; 

End of algorithm R E G M I N 

Algorithm CFMIN 
Input: A context-free grammar G = (V, E , P , S ) , a total order -< on E and a 
positive integer n. 
Output: A finite language La = {m, vi, wi, xx, ,..., un(G], u n ( G ) , wn{G), xn{G), 
Vn(G)} (having Lmiri = U i l ^ { u i v f w i x f y i | n > 0}) and 

• a pair k, I of positive integers such that 1 < k < n(G) if the word of length n 
of Lmin exists and it has the form UkV^w^x^yk] 

• an error message if Lmin has no word of length n. 

Method: 
Apply the algorithm cfmin; k,i 0; 
for % 4— 1. . ,n(G) do 
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if the equation \uiWiyi\ + \v{Xi\a = n has a positive integer solution for a 
then k i\ I <r- a; 

od 
Output: 

• k,e,ifk> 0; 

• an error message if k = 0; 

End of algorithm CFMIN 

It is well-known that for every pair of regular grammars G\, G2, a regular gram-
mar G having L(G) = L(G\) \ L(G2) can be effectively constructed. Therefore, by 
Theorem 3.1 and Theorem 2.5, we can consider the following idea for enumerating 
the words of length n in L(G) in lexicographical order having a regular gram-
mar G. Assume that, using REGMIN, we just get either the word of length n 
of (L(G))min or an error message that there exists no such a word in (L(G) ) m i n . 
Having the error message, we are ready. Otherwise, construct a regular grammar 
G' with L(G') = (L(G) \ (L(G))min, consider G' instead of G and use the above 
procedure again. 

In more details, we consider the following algorithm. 

Algorithm reg-enumerate 
Input: A regular grammar G = (V, £, P, S), a total order -< on E ¿nd a positive 
integer n. 
Output: 

• Lcj = {ujA,vjA,wjA ... 3 = 
(having m = card{p £ L(G) | \p\ = n} , Lj = U"!?^ uj,ivj,iwj,i> j = l,...,m 
with L0 = L(G), Li = Lmin, Lk = Lk~2 \ ¿¿t-i , k = 2 , . . . ,m, such that 

1 < kj < 
N(GJ), \Uj,kiV^k.Wjtk] | = n, j = 1 , . . . , m , U-I^y^Wi^ < U2MV2Mw2M 
- < . . . < Um,kmv l^kmwmtkm) if L(G) has a word of length n; 

• an error message otherwise. 

Method: 
P = ' no'; 
while R E G M I N has no error message do 
P =' yes'; 
Apply the algorithm REGMIN; 

Construct a regular grammar G1 having L(G') = (L(G) \ (L(G))min\ G G'\ 
od 

if P =' no' then Output: an error message; 
End of algorithm reg-enumerate 
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4 Enumeration of context-free languages 
In [8] it is conjectured that there exists no efficient enumeration algorithm for 
the lexicographic enumeration of context-free languages. We can provide an algo-
rithm for enumeration of context-free languages, running in polynomial time and 
space. First we consider the following modified version of CYI< algorithm to decide 
whether a word is a prefix of a word of given length of the language. 

Algorithm M C Y K 
Input: A context-free grammar G = ( K E , P , S ) given in Chomsky normal form, 
a word u = £>i ... bm £ (bi,... ,bm 6 E), and a positive integer n. 
Output: a variable P having the value 

• P — 'yes', if u is a prefix of an n-length word in L(G)\ 

• P ='no', otherwise. 

Method: 
if m > n then P ='no' else do 
for i <- l . . . n do 

if i < m 
then Viti <— {A | A -4 bi is a production } 
else Viti <— {A | 3a € S such that A a is a production } 

od 
for j 2 . . . n do 

for i •<— 1 . . . n — j + 1 do 
V i j < - 0; 

for k <- 1 . . . j — 1 do 
V^ Vij U {̂ 4 | A —> BC is a production, B is in V^t and C is in Vi+k,j-k} 
od 

od 
od 

if 5 6 VUn then P ='yes' 
else P ='no !; 

od 
Output: P; 

End of algorithm M C Y K 

Now we construct an algorithm to enumerate the words of length n in context-
free languages. We consider the following idea for such an algorithm. Assume we 
just output u = aia,2 • • -an and are looking for the next word in lexicographical 
order of length n in L(G). This word, when it exists, has the form 

v = ax a? • • • a,ibi+ibi+2 • • • bn, 

for some 0 < i < n — l ,a{+i -< Clearly, when v exists, we have 

i = max{ j | 0 < j < n — 1, aia2 • • -aj is the prefix of a word w 6 L(G) such that 
|uj| = n and the (j + l )si letter of u; is bigger than aj+1}, 
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bi+i = min{6 G E | ai+i -< b and a^a2 • • • aib G Pref(L(G) D £")}, 

and, for any 2 < j < n — i, 

bi+j = min{6 G E | a\a2 • • • aibi+\bi+2 • • • bi+j-\b G Pref(L(G) fl £")}. 

Now, the algorithm should be clear; find first i and bi+i and then, in order, bi+2, 
bi+3, ..., bn. Notice that v exists iff i exists and, when both do, we look for each 
bj knowing that there must be one. 

Algorithm cf-enumerate 
Input: A context-free grammar G = (V, E,P, 5) , a total order -< on E and a 
positive integer n. 
Output: 

• The words of length n in L(G) in lexicographical order if L(G) has a word of 
length n; 

• an error message otherwise. 

Method: 
Determine the minimal word pmin(G,n) of length n in L(G), if such a word 

exists (apply either methods in [8] having 0(n2) time complexity or the algorithm 
CFMIN); 
if there exists no word of length n in L{G) then P ='no'; 
Output: an error message; 
else do ai . . . an f - pmin(G,n)', P ='yes' od 
while P ='yes' do 

Output: ai . . . an ; 
P = W ; TO n + 1; 

while P ='no' and m > 1 do 
TO 4— to — 1; b <— am\ 

while P = 'no ' and next(b) G E do 
b next(b)\ bm b; 

if TO > 1 then apply M C Y K for the inputs a^ . . . am_i&m and n; 
else apply M C Y K for the inputs bi and n; 

od 
od 
if P ='yes' then do 

if m > 1 then 6i . . . 6m_i 4— ai . . . aTO_i; 
while m < n do 

TO TO + 1 
b <- first(Ti); bm 4- b\ 
Apply M C Y K for the inputs bx... bm and n; 

while P = 'no ' and next(b) G E do 
b 4— next{b)\ bm <— 6; 

Apply M C Y K for the inputs b\ ... bm and n; 
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od 
od 

ai . . . a„ 61 . . . bn \ 
od 

od 
End of algorithm cf-enumerate 
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Inferring pure context-free languages from positive 
data 

Takeshi Koshiba * Erkki Makinen t Yuji Takada * 

Abstract 

We study the possibilities to infer pure context-free languages from posi-
tive data. W e can show that while the whole class of pure context-free lan-
guages is not inferable from positive data, it has interesting subclasses which 
have the desired inference property. W e study uniform pure languages, i.e., 
languages generated by pure grammars obeying restrictions on the length of 
the right hand sides of their productions, and pure languages generated by 
deterministic pure grammars. 

1 Introduction 
In pure grammars, no distinction is made between terminals and nonterminals. It 
follows that the generative capacity of pure grammars is much weaker than that 
of corresponding Chomsky type grammars. It is argued [5, 14] that the custom of 
dividing the alphabet of a grammar originates from the linguistic background of 
formal language theory and in fact, it would be more natural to study rewriting 
systems that do not make difference between terminals and nonterminals. 

In this paper we study the possibilities to infer pure languages from posivite 
data. The well-known negative result by Gold [9] says that regular languages 
cannot be inferred from positive data only. This negative result has initiated a 
search for language classes having the desirable inference property. The found 
subclasses include, among others, 1-variable pattern languages [1], paranthesis lan-
guages [6], locally testable languages [8], deterministic even linear languages [12], 
and k-reversible languages [3]. Even more closely related to the present paper is 
Yokomori's [18] result concerning the inferability of PDOL languages from posi-
tive data and especially Tanida and Yokomori's [16] results on the inferability of 
monogenic pure languages. 
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We show here that while the whole class of pure context-free languages is not 
inferable from positive data, it has interesting subclasses which have the desired 
inference property. The subclasses are defined by restricting the length of the 
right hand sides in the productions (uniform pure languages) or the number of 
productions (deterministic pure grammars). 

The fact that the whole class of pure context-free languages is not inferable 
from positive data only is earlier shown by Tanida and Yokomori [16]. 

2 Preliminaries 

We assume a familiarity with the basics of formal language theory and grammatical 
inference as given e.g. in [11] and [4], respectively. As inference criterion we use 
"identification in the limit" [9, 4]. 

If not otherwise stated we follow the notations and definitions of [11]. The length 
of a string w is denoted by lg(w). A production in a (Chomsky-type) context-free 
grammar is said to be terminating if the right hand side contains no nonterminals. 
Otherwise, a production is said to be continuing. 

We now define pure grammars and languages. A pure context-free grammar is 
a system G = (£, P, s), where £ is a finite alphabet, P is a finite set of productions 
of the form a —» where a is in £ and /3 is a word over E. For the sake of 
simplicity we assume that the empty word A is not allowed as a right hand side 
of any production. Contrary to most earlier articles on pure grammars (cf. e.g. 
[7, 14]), we suppose that the axiom s is a single word over E. Relation => (yields 
directly) and its reflexive transive closure =»* are defined in £* as usual. The 
language generated by a system G = (£, P, s) is defined as 

L(G) = {w | s «;} . 

A language is a pure context-free language if it can be generated by a pure 
context-free grammar. The class of pure context-free languages is denoted by V. 
Note that V and the class of regular languages are incomparable. 

We consider here pure context-free grammars and languages only. We hereafter 
omit the phrase "context-free", and simply talk about pure grammars and pure 
languages. 

A pure grammar G is monogenic if, whenever w is in L{G) and w => u>', then 
there are unique words wi and w2 such that w = w\xw2, w' = w\yu>2, and x —» y 
is a production. 

A pure grammar G is deterministic if, for each symbol a, there is at most 
one production with a on the left hand side. A pure language is deterministic if 
there exists a deterministic pure grammar generating it. We denote the class of 
deterministic pure languages by V. 

A pure grammar G is reduced if every symbol appear in some word of L(G). If 
a reduced pure grammar is monogenic then it is also deterministic. On the other 
hand, a deterministic pure grammar is not necessarily monogenic [14]. 
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An indexed family of nonempty recursive languages is an infinite sequence 
Li, L2, L3,..., where each Li is a nonempty language with decidable membership 
problem. The following two well-known results by Angluin [2] are essential for our 
further discussion. 

Theorem 2.1 ([2]) If an indexed family of nonempty recursive languages is in-
ferable from positive data, then there exists, on any input i,i > 1, a finite set of 
strings Ti such that 

1. Ti C Li, and 

2. for all j > 1, ifTi C Lj, then Lj is not a proper subset of L^. 

Let £. be an indexed family of nonempty recursive languages. We say that C has 
finite thickness, if for each nonempty finite set 5 C S ' , the set C(S) = {L | S C L 
and L = Li for some i } is of finite cardinality. 

Theorem 2.2 ([2]) If an indexed family of nonempty recursive languages has finite 
thickness, then it is inferable from positive data only. 

Note that thickness is not defined in terms of the number of representations 
(generating systems), but in terms of the number of languages. 

3 A negative result 
As the class of languages inferable from positive data only is known to be quite 
restricted, it is to be expected that V in not inferable from positive data. To prove 
this we can follow Yokomori's corresponding proof [18](Thm. 3) for propagating 
OL-systems. A different proof is given in [16]. 

Theorem 3.1 V is not inferable from positive data only. 

Proof We derive a contradiction with Theorem 2.1. 
Consider the language L = {6} U {an | n > 2}. L is in V, since it can be 

generated from axiom b with productions b —» aa and a —> aa. 
Let T be any nonempty finite subset of L, and let T' = T \ {6}. Further, let 

T' = {a™1 , . . . , a"» } . 
Consider a pure grammar H with axiom b and with productions 

{b — a " 1 ,...,£>—> anp}. 

We have T C L{H) C L contradicting Theorem 2.1. • 

Remark 3.1 The proof of Theorem 3.1 shows why we do not allow an arbitrary 
set of axioms but a single axiom string. If an arbitrary set of strings were possible 
as an axiom, then Theorem 3.1 would hold also for all reasonable defined subclasses 
of pure grammars. Namely, we could choose T as the axiom set, and we would not 
even need any productions to show that the condition of Theorem 2.1 does not hold. 
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4 fc-uniform pure grammars 

We say that a pure grammar G = (E,P,s) is k-uniform, k > 1, if each production 
a —> P in P has lg(P) = k. A pure language L is ¿-uniform if there exists a 
¿-uniform pure grammar generating L. The class of ¿-uniform pure languages is 
denoted by V{k). 

The property of a pure grammar being ¿-uniform has its implications to the 
length set of the language generated. (The length set of a language L is defined by 
LS(L) = {lg{w) | w 6 Lj.) Namely, the length of the axiom and the constant k 
together uniquely defines the length set. 

It also follows directly that V(i) and V(j), i i1 j, cannot have any infinite 
language in common. Moreover, the union ^-uniform pure languages 
is clearly a proper subset of V. These remarks show that the classes of ¿-uniform 
pure languages are quite restricted. On the other hand, each of the classes V(i), 
i > 2, contains non-regular languages. A simple example in the case ¿ = 3, is 

G\ = ({a, b, c} , {c—» acb},abc) 

with £ ( G i ) = {ancbn | n > 1}. 
Hagauer [10] has shown that also V(2) contains non-regular languages. Namely, 

he has shown that 

Gi = ({a, b, c } , {a —» ab, b -> bc,c —>• ca}, a) 

produces a non-regular language. 

Theorem 4.1 V[k), k > 2, is inferable from positive data only. 

Proof We show that V(k) has finite thickness, and hence, by Theorem 2.2 is 
inferable from positive data only. 

Given any set S, the length of the shortest word in S gives an upper bound to 
the length of the axiom. Similarly, the cardinality of S (the alphabet considered) 
gives an upper bound for the number of productions having exactly k symbols in 
their right hand sides. Thus, V(k) has finite thickness. • 

By letting Q(n) = V(2)U V(3) U . . . U V(n), where n is any natural number, we 
can clearly prove also the following 

Theorem 4.2 Q(n) is inferable from positive data only. 

We can continue further to this direction, and define a pure grammar G to be 
length-bounded if there exists a natural number k such that the length of any right 
hand side in G's productions is at most k. A pure language L is length-bounded if 
there exists a length-bounded pure grammar G such that L(G) = L. 

Theorem 4.3 Length-bounded pure languages are inferable from positive data only. 
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Proof Analogously to the proof of Theorem 4.1. • 

The class V{2) is somewhat related to the class of uniquely terminating regular 
languages which is known to be inferable from positive data [13]. 

A (Chomsky type) regular grammar G = (V,S,P,S) is uniquely terminating if 
the productions in P fulfil the following conditions for each nonterminal A in G: 

1. A aB and A aC imply B = C; 

2. A has a unique terminating production; i.e. each nonterminal has exactly one 
terminating production. The terminals appearing in the right hand sides of 
terminating productions are all different. 

A regular language L is uniquely terminating if there exists a uniquely terminating 
regular grammar generating L. Uniquely terminating languages are inferable from 
positive data [13]. 

Each uniquely terminating regular language is a member of P(2) provided that 
there are no terminals appearing both in terminating and in continuing productions. 
Let G = (V, S, P, S) be a uniquely terminating regular grammar. The corresponding 
2-uniform pure grammar H can be generated as follows. If S —» a is the unique 
terminating production for the start symbol S of G, then a is the axiom of H. If 
A —> bB is a continuing productions in G and the unique terminating productions 
for A and B are A c and B —» d. Then H has the production c - » bd. Other 
productions are not needed. 

The additional requirement that no terminal can appear in productions of both 
type characterizes well the difference between Chomsky type grammars and pure 
grammars. If the requirement does not hold, then the above construction ends 
up with a pure 2-uniform grammar which may produce words not in the original 
Chomsky language. 

5 Inferring deterministic pure languages 

Tanida and Yokomori [16] have shown that monogenic pure languages are inferable 
from positive data only. Their inference algorithm updates its conjectures in time 
0(N3) where N is the total length of the positive samples presented. 

We shall now study the inferability of deterministic pure languages. Recall that 
reduced monogenic pure grammars are always deterministic, but deterministic pure 
grammars are not necessarily monogenic. 

In order to prove that deterministic pure languages are inferable from positive 
data, we need the concept of finite elasticity from [17, 15]. 

A class C of languages has infinite elasticity if and only if there is an infinite se-
quence Wo, u>\, wo, . . . of strings and an infinite sequence L\, L2, L3 , . . . of languages 
from C such that for all n > 1, { w o , w i , . . . , w n _ i } C Ln but wn £ Ln. If a class C 
does not have infinite elasticity, then it has finite elasticity. 



474 Takeshi Koshiba, Erkki Makinen, Yuji Takada 

Notice that in the above definition both the languages L1.L2.L3, . . . and the 
strings WQ, ivi, 1V2, - • • are pairwise disjoint, i.e. each language (resp. string) appears 
at most once in the sequence L\, Lo, L3, . . . (resp. u>o, wi, wo, • • •) • 

Theorem 5.1 [17, 15] If a class C of languages has finite elasticity, then C is 
inferable from positive data only. 

We can now show that T> has finite elasticity, and hence, it is inferable from 
positive data only. 

Theorem 5.2 V is inferable from positive data only. 

Proof To derive a contradiction suppose that V has infinite elasticity. Let 
wq,w\,vj2, • • • be a sequence of strings required in the definition of finite elasticity, 
and let L\, L2, L3,... be the corresponding sequence of deterministic pure lan-
guages. 

Consider, for some n > 1, the subset = {uio, wi, • • •, w n _ i } and the 
language Ln such that 1 C Ln and wn $ Ln. Let Gn = ( E , P „ , s n ) be a 
deterministic pure grammar generating Ln. Since we do not allow productions of 
the form a —> A, the length of sn is bounded by the minimum length of strings 
in W n _ i . Hence, there are only a finite number of possible axioms in grammars 
Gi,G2,Gs,.... 

For at least one axiom s there exist an infinite number of grammars using this 
axiom. These grammars have a (growing) subset of common strings. On the other 
hand, the number of productions in each Gi is bounded by the cardinality of E 
since we consider deterministic pure languages. Clearly, such an infinite sequence 
of deterministic pure grammars (and languages) with a bounded number of pro-
ductions cannot exist. Thus, V cannot have infinite elasticity, and it is inferable 
from positive data only. • 

We end this section by discussing pure grammars and languages which are both 
deterministic and ¿-uniform. The class of such languages is denoted by V{k), k > 2. 

Given k and the alphabet E, there are only a finite number of possible pro-
duction sets for a fc-uniform, deterministic pure grammar. Let | E | stand for the 
cardinality of E. For each o in E, there is at most one production with a in the left 
hand side. The number of possible right hand sides is | E Hence, there are only 
(| E +l ) l £ l — 1 possible sets of productions. Here k and | E | can be considered 
as constants. This leaves us with the problem of finding the proper axiom. 

The "proper" axiom is, of course, the longest word over £ having the prop-
erty that .all sample words so far received can be generated from it by using the 
production set in question. Since the number of possible production sets is indeed 
a constant, we can suppose that we know the correct production set. Repeating 
the procedure of searching the axiom for each possible production set naturally 
increases the constant coefficient of the time complexity, but it does not effect to 
the asymptotic growth rate. 

Suppose now that the sample contains two words a\a,2 • • • am and 6162 • • • bn. 
Given the set of productions, what is the longest axiom from which the two words 
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can be generated? A straightforward approach is to step backwards from the words 
according to the given productions until a common predecessor is found. Hence, 
we find out all the matches of the right hand sides of the given productions in 
a\a2 •.. a m and b\b2.. ,bn, replace the occurrences of the right hand sides with the 
corresponding left hand sides, and store the words so obtained in data structures 
Ta and Tb, respectively. This is repeated until Ta and T(, contain a common word, 
the longest possible axiom. 

A concise data structure for representing Ta is an automaton which accepts the 
possible axioms. Such an automaton A can be defined as A = (Q,(0,0),F,S), where 
Q = {(i,j) | i = 0,...,n,j = 0, ...,n — 1} is the set of states, (0,0) is the initial 
state, F = {(n,j) | j = 0 , . . . , n - 1} is the set of final states, and the transition 
relation 6 is recursively defined as follows: 

1. for each i = 0,..., n — 1 and for each j = 0,..., n — 1, S((i,j),a,j+1) 3 (i, j + 1) 

2. if 5((i,j),a) 3 (i'J'), 6((i',j'),b) 3 (i",f), j" < n - 1 and c -»• ab is a 
production, then S((i,j),c) 3 (i",j" + 1). 

Note that the time needed for constructing this automaton representation is 
bounded by a polynomial in n. 

The longest possible axiom is not necessarily unique. When a new sample word 
is received and the conjecture is to be updated, we represent the old sample words 
by the set of all possible axioms, and repeat the above procedure for finding the 
new axiom. 

As an example, consider (ab)nc as the input word. Let a —> ba, b —> ab, c ab 
be productions. It is easy to see that each word in {b, c}nc is a possible axiom. 
Hence, the number of possible axioms can be exponential in n. 

We pose it as an open problem whether or not there exists a polynomial time 
inference algorithm for V(k) using positive data only. On the spirit of the previous 
discussion, the polynomial time inference algorithm would need an efficient method 
for constructing the intersection of two languages acceptable by automata of the 
type defined above. 

However, we have an affirmative answer in a special case. Namely, if the length 
of the axiom is bounded by a constant, then deterministic, k-uniform pure languages 
are polynomial time inferable from positive data only. 

Moreover, if the length of the axiom is bounded, then we even have the following 
stronger result. Let d be a fixed integer and T>d(k) be the class of languages 
generated by pure deterministic /c-uniform grammars whose axioms are of length 
at most d. We set V = 

Theorem 5.3 T>d is polynomial time inferable from positive data only. 

Proof We know that T>d{k) is inferable from positive data only for any fixed k. 
We need only to infer the value of k. For each L in T)^, there exist integers c\ and 
c2 < d such that LS(L) = {ci - n + c2 \ n > 0}. To infer the value of k, we need only 
to calculate the minimum absolute value of lg(u>i) — lg(vu2) over any two words of 
different length presented so far. Moreover, k is at most 0(logA''), where N is the 
total length of the positive samples presented. • 
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6 Concluding remarks 
Pure (context-free) languages are not inferable from positive data. However, natu-
ral subclasses of pure languages obtained by restricting the length of the right hand 
sides in the productions or the number of productions are inferable from positive 
data or the number of productions. We have shown the existence of such infer-
ence algorithms for ¿-uniform pure languages and for deterministic pure languages. 
Moreover, we have posed open whether there exists a polynomial time inference 
algorithm for deterministic, ¿-uniform pure languages using positive data only. 
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On inferring zero-reversible languages 

Erkki Makinen * 

Abstract 
W e use a language-theoretic result for zero-reversible languages to show 

that there exists a linear time inference method for this class of languages 
using positive data only. 

1 Introduction 
Regular languages cannot be inferred from positive data only [3]. This negative 
result has initiated a search for subclasses of regular languages having the desir-
able inference property. Several subclasses of regular languages allow inference 
algorithms based on merging nonterminals (or states in finite automata); such al-
gorithms are surveyed in [5]. In this paper we consider zero-reversible languages, a 
well-known subclass of regular languages inferable from positive data only by using 
a merging algorithm. 

We assume a familiarity with the basics of formal language theory and gram-
matical inference as given e.g. in [4] and [2], respectively. As inference criterion we 
use "identification in the limit" [3, 2]. 

If not otherwise stated we follow the notations and definitions of [4]. The 
empty word is denoted by A, the reverse of a string w = w\ui-2 • • -wn by wR (= 
wnwn-i .. -Wi), and the left-quotient of L and w by Ti{w) = {v \ wv E L}. 

We consider here regular languages and grammars only. We also suppose that 
grammars are reduced [4], i.e. each terminal and nonterminal appears at least in 
one derivation from the start symbol to a terminal word. A production of the form 
A —> b, where b is a terminal, is said to be terminating. A continuing production 
has the form A —» bB, where b is a terminal and B is a nonterminal. Other forms 
of productions are not allowed (except S —» A, where S is the start symbol). A 
production with a nonteminal A on the left hand side is said to be an A-production. 

2 Zero-reversible languages 
Recall that a finite automaton A is zero-reversible if the following conditions hold 
№ 
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1. A is deterministic. 

2. A is reset-free, i.e. for no two distinct states q\ and q2 do there exist an input 
symbol b and a state q3 such that 5(qi,b) = q3 = 6(q2,b), where 5 is the 
transition function of A. 

3. A has at most one final state. 

A regular language L is zero-reversible if there exists a zero-reversible finite au-
tomaton accepting L. We denote the class of zero-reversible languages as 1Z(G). 

Angluin's inference algorithm [1] for 1Z(0) starts with a prefix tree automaton 
and proceeds by merging states as long as the conditions (i) - (iii) are not satisfied. 
It follows that the time complexity for outputting the next conjecture is not linear, 
but it has a small nonlinear factor. 

The following purely language-theoretic characterization is also useful. 

Proposition 2.1 [1] A regular language L is zero-reversible if and only if whenever 
U\V and u2v are in L, then TI(ui) = TL(u2)• 

A regular grammar G = {V,T,,P,S) is said to be deterministic if, for each 
nonterminal A, the right hand sides of A-productions start with unique terminals. 
Given a nonterminal A and a sequence w of terminal symbols in a deterministic 
grammar, A wB is possible for at most one symbol B in (V \ £ ) U {A} . The 
concept of backward determinism is related to a somewhat opposite situation. 

G is said to be backward deterministic, if A =>+ w and B w, where w € 
always implies A = B. Hence, in a backward deterministic grammar each terminal 
string is possible to generate from at most one nonterminal. Notice that a backward 
deterministic grammar is not necessarily deterministic. 

A language L is backward deterministic if there exists a backward deterministic 
grammar generating L. The class of backward deterministic languages is denoted 
by B. 

Notice that in backward deterministic grammars terminating productions have 
unique right hand sides. Namely, if we have A => a and B => a, where a 6 S, then 
we have A = B. Similarly, if we have 

. A = Ao aiAi =>...=> ai... an-\An-i ... an_ian 

and 
B = Bo => aiBi => . . . => di . . . a„_ i .B n _i => ai . . . a „ _ i a n , 

then we have A{ = Bi, for i = 0 , . . . , n — 1. 
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Theorem 2.1 71(0) C B. 

Proof Let L be zero-reversible. Suppose that A w and B =>+ w are possible 
in a regular grammar G generating L. Let S U\A and S u2B be derivations 
in G. We have u\w and u2w in L, and since L is zero-reversible, X l ( m i ) = Tl{U2). 
In other words, everything derivable from A is also derivable from B, and vice 
versa. Thus, we can replace all appearances of B in G by A without changing the 
language generated. This can be repeated with all pairs of nonterminals generating 
a common terminal string. Hence, there is a backward deterministic grammar for 
L. • 

The inclusion in Theorem 2.1 is proper since there are nondeterministic lan-
guages in B. However, all deterministic languages in B are zero-reversible. Namely, 
if we have U\V and u2v in a deterministic language L in B, in the corresponding 
backward deterministic grammar we have 

S =>+ U\ A =>+ uiv 

and 
S u2B =>+ u2v, 

for some nonterminals A and B. Now A =>+ v and B =>+ v must imply A = B. 
And further, since L is deterministic, TL(U{) = TI{u2). Hence, L is zero-reversible 
by Proposition 2.1. We have proved the following theorem. 

Theorem 2.2 If a deterministic language L is in B, then L is zero-reversible. 

3 The new algorithm 
Our new algorithm is based on Theorem 2.1. Contrary to Angluin's algorithm [1], 
we start with a suffix automaton (a trie containing the suffixes), since we consider 
terminal strings derivable from nonterminals. In a reduced regular grammar such 
strings are always suffixes. 

As an example, consider a sample { 0, 00, 11, 1100 } (cf. [1, Example 29]). We 
have the following derivations: 

S=> 0 

S => 0Ai => 00 

S => 1A2 11 

S => 1A3 => l l A i =!> 1104.5 => 1100. 

The corresponding trie is shown in Figure 1. Nodes with at least one ending word 
are drawn as squares. Each node (except the root) has a set of nonterminals 
associated with it. 

The nonterminals associated with the same node are merged. The nonterminal 
with the smallest subscript is chosen to be the canonical element, i.e. the one used 
as the representative of the merged nonterminals. We assume that S = AQ. 
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S \ 

s 

Figure 1: The trie for the sample { 0, 00, 11, 1100 }. 

The productions of the resulting grammar can be read by traversing the edges 
from the leaves to the root. We obtain the productions 

Notice that we do not merge nonterminals A2 and A3, although we have pro-
ductions S —> IA2 and S —> IA3. The corresponding states in the resulting finite 
automaton are merged in Angluin's algorithm [1]. 

Figure 2 shows the trie after reading the next sample 101. The corresponding 
derivation is 

We merge A2 and A7. Notice that merging A2, A3, and Ay would imply a further 
merge (S and A2), a finally, a grammar equivalent with the finite automaton shown ' 
in Figure 5(d) of [1]. 

We can formulate our algorithm as follows. 

Algorithm 3.1 (BZR) Input: A non-empty sample T = {wi,w2,... ,wn}. 
Output: A backward deterministic grammar G. 

1. Insert the strings wp, w2,..., w^ to an initially empty string. 

2. Associate the nonterminals from the derivations corresponding to the sample 
words to the nodes of the trie. 

3. Merge the nonterminals appearing in each node. Choose the nonterminal with 
the smallest subscript as the the canoninal nonterminal (where S = Ao). 

4- Read the resulting productions from the trie by traversing the edges from the 
leaves to the root. If a node is associated with Ai, its parent is associated 
with Aj, and the edge between the two nodes is labelled with a, the production 

S 1^3, ¿3 IS, S 05 ,5 0, S -> 1A2, A2 1. 

S => 1A6 => lOAj => 101. 
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S 

Figure 2: The trie after reading the next input word 101. 

obtained is Ai -> aAj. If a child of the root is associated with A and the 
edge between the nodes is labelled with a, we obtain a terminating production 
A a. 

5. If A is in T, then insert the production S —> A to G. 

If the input sample contains words uqd and u2v, the algorithm guarantees that 
in the output grammar G, v is derivable from a single nonterminal only. Hence, 
G is backward deterministic. Moreover, by Proposition 2.1 and by the fact that 
sample words are from a zero-reversible language, L(G) is zero-reversible. It is clear 
that L(G) is the smallest zero-reversible language containing the sample. Hence, 
L(G) coincides with the language produced by Angluin's inference algorithm [1] for 
zero-reversible languages. 

Notice that the grammar outputted by BZR is not necessarily deterministic. 
However, a corresponding deterministic grammar must exist since the language 
generated is in 1Z(0). We have simply left some of the merges of Angluin's algorithm 
undone. 

BZR runs in time 0(n), where n is the sum of the lengths of the input words. 
Hence, we have the following theorem. 

Theorem 3.1 7 ,̂(0) is inferable in linear time from positive data only. 

The space complexity of BZR is also linear. The trie contains less than n nodes, 
and it is sufficient to maintain one nonterminal (the canonical one) associated with 
a node. 

Grammars obtained by BZR are bigger (have more productions) than those 
corresponding the finite automata produced by Angluin's algorithm. The bigger 
size of the resulting grammar seems to be the cost of dropping the nonlinear factor 
from the time complexity. 
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4 k-reversible languages 
Proposition 2.1 has the following generalization in the case k > 0: 

Proposition 4.1 [1] A regular language L is k-reversible if and only if whenever 
u\vw and u2vw are in L and lg(v) = k, then T^(uiv) = Ti(u2v). 

It is possible to apply the approach of the previous section also to the case k > 0. 
However, the simplicity of the algorithm is lost in this case. Namely, we should 
maintain links between the derivations corresponding to the sample words and the 
nonterminals associated with the nodes in the trie, since merging is possible only 
when the condition of Proposition 4.1 is fulfilled. 

Acknowledgements. This work was supported by the Academy of Finland 
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F codes 

Marek Michalik * 

Abstract 
The notion of an F code is introduced as a generalization of the notion 

of an L code. All interrelations between ordinary codes of bounded delay, L 
codes of bounded delay and F codes are established. Attention is also focused 
on unary morphisms. Many of them are F codes. 

1 Introduction 
Consider a nonerasing morphism h : A* —• A*, where A is a finite alphabet. 
We emphasise that all morphisms discussed in this paper are nonerasing, that 
is, h(a) 1 (the empty word) for every a 6 A. A morphism h is a code if h is 
injective. We will denote by C the class of all codes. A morphism h is an L code 
if the function h given by 

h{a\a2...an) = /i(ai)/i2(a2).../in(an) 

(aj 6 A and hl(ai) is the i-th iterate of the morphism h) is injective. For a positive 
integer k and a word w, we denote by prefi.(it>) the prefix (initial subword) of w of 
length k. If a word w is shorter then k, then preffc(w) = w. The first letter of the 
word w, we denote by first(w). A morphism h is of bounded delay k if, for all words 
u and w, the equation 

prefk(h(u)) = prefk(h(w)) 

implies the equation first(u) = first(w). A morphism h is of bounded delay if it is 
of bounded delay k, for some k. A morphism h is of weakly bounded delay k if, for 
all words u and w, the equation 

pref k(h{u)) = preik(h(w)) 

implies the equation first(u) = first(w). If for all i > 0, the equation 

pref fc(^/i(w)) =pref k{ti-h{w)) 

implies the equation first(u) = first(w), then h is of strongly bounded delay k. In 
general, h is of weakly or strongly bounded delay if it is so for some k. A morphism 
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h is of medium bounded delay if. for some recursive function / and all i >0, u and 
w, the equation 

pref f { i )(h*h(u)) = Pref/(i) [hlh(iu)) 

implies the equation first(u) = first(?u). Morphism h is a prefix code if for every dif-
ferent words u, w h(u) is not a prefix of h(w). We will denote by L, B, W, S, M, P 
the corresponding classes of the morphisms. 

The next diagram due to [1] shows all inclusion between the classes introduced. 
The arrow stands for strict inclusion. 

2 F codes 
From now on, / , g denote functions N —¥ N. We say that f < g if there exists 
n0 £ N such that f(n) = g(n) for n < no and / (no ) < g{no)-

We will use the symbol hj to denote function hj : A* A* given by 

/¿/(moa-on) = h^l\a1)hi^{a2)...h^n\an) 

(at £ A,h^l](ai) is the / ( i ) -th iterate of the morphism h) We call the morphism 
h an F code if there exists a minimal function / : N —» N such that hf is injective. 
We will denote by F the class of all F codes. It is easy to see that every L code is 
an F code. 

If function h is injective then there exists a minimal function / such that h := hf 
is injective. Thus we conclude that every L code is an F code. We show that 
F-L^D. . 

Lemma 2.1 Let A = { a i , . . . , an},h : A* —• A*, 
mink:= min{||/ifc(ai)| - |/ifc(aj)||J|/i'!(ai)| : i ^ j\i,3 e {1 , . . . , n } } , 
maxfc := max{|/ifc(oj)| : i £ { 1 , . . . , n } } . 
If for each n € N there exists k, such that minfc > n then we can define the function 
f as follows 
/ ( 1 ) = min{fc : mm*, > 0}, := maxy^j, 
Vi £N f(i + 1) := min{fc : min^ > di}, dj+i := m a + d i 
The function hf is injective. 

Proof. It suffices to prove that different words have different length. The proof of 
this is by induction on word length. By the definition of / (1 ) we have ||/i/(aj)| — 
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¡Ma, )|| > 0 for all a¿,aj G A,i ^ j. Let w = ai...ak,u = a[ ... a'ka'k+1. It is 
clear that \hf(u)\ > |h/(*+1)(a'fc+1)| > dk > 1^/(^)1- The proof is completed by 
showing that for all u, w G A, |w| = |w;| = k +1, it holds that ||/i/(u)| — |/i/(w)|| > 0. 
Consider w = a\ ... ak+i,u = a[... a'k+1 and a¿ + i ^ a'k+i- We see at once that 
ll/i^+^K+OI - \h«k+1Ha'k+l)\\ > dk,\hf(ai...ak)\ < dk,\hf(a'1:..a'k)\ < dk] 

thus \\hf(ai .. .a f c + 1 )| - \hf(a[.. ,a'fc+1)|| > 0 and finally ||/i/(u)| - \hf(w)\\ > 0. • 
Lemma 2.2 Let A = { a i , . . . ,an},h : A* A*, 
min f c := min{||/i'!(o¿)| - 1 ^ ( ^ ) 1 1 , 1 ^ ( ^ ) 1 : i ¿ j\i,j G { l , . . . , n } } . 
If the sequence min¿ is not bounded then morphism h is an F code. 

Proof. Let / be defined as in lemma 2.1. There exists a minimal function g such 
that hg is injective, thus h G F. • 

Theorem 2.3 The class L is strictly included in the class F. 

Proof. Every L code is an F code. Let h:{a, b}* —> {a, 6}* be given by h(a) = a 2 , 
h(b) = a6. Morphism h is not an L code (h(aa) = h(b)). We have min^ = 2k, hence 
by lemma 2.2, h G F. • 

Remark 2.4 For the morphism h:{a, &}* —> {a, b}* given by h(a) = a2 , h(b) = a6 

the function f(i) = 2i — lisa minimal function such that hf is injective. 

Proof. To prove this, we observe that for every function p(i) = nt such that hp is 
an injective function we have V¿ ^ j (n¿ ^ n¿) A (|n¿ — nj\ ^ 1) ( as a consequence 
of hn(ab) = hn(ba) and hn(a)hn+1(a) = hn{b)), hence p is minimal. • 

It is easy to check that if h : A* —> A* is an F code then h\A : A —> A* is 
injective. The reverse implication is not true. Let A = {a, b, c, d} and h be given 
by h(a) = b, h(b) = a, h(c) = bd: h(d) = d. Function h\A is injective. For every 
/ : TV TV, hf(ad) = / i / ( c ) , hence h i F. 

Similarly to L codes we have 

Remark 2.5 The composition of two F codes is not necessarily an F code. 

Proof. Consider the morphisms g and h defined by g(a) = ab,g(b) = ba,h(a) — 
a2,h(b) = a. Clearly g is a code and, hence, an F code, h is an L code. However, 
the composition h o g = a3 is not an F code. • 

Theorem 2.6 Classes F and W are incomparable. 

Proof. It suffices to show that W £ F. Consider a morphism h given by h(a) = 
edb, h(b) = b2,h(c) = deb,h(d) = a,h(e) = a3, then h G W (see [1]). For all 
i > 2, hl(a) = hl(c) and h(ddd) = h(e), hence h # F. From this we conclude that 
W and F are incomparable. • 
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Now we can redraw the diagram as follows: 

C L « - F 

If we restrict our considerations to the class of morphisms h : {a, 6}* —¥ {a, 6}* 
we obtain 

Theorem 2.7 B = C = M = W and 

L -

Prooj. Let h(a) = ba, h(b) =b2. he P\S (see [1]). Morphism h(a) = a, h(b) = ab 
is a code but not a prefix code. Morphism h(a) = a2, h(b) = a is an element of 
L — C. From theorem 2.3 we obtain F \ L 0. To complete the proof it suffices to 
show that C C B and W C C. 
(C C B) Every prefix code is of bounded delay. Let h(a) — x, h(b) = xy, x,y £ 
A+,x^y. Morphism h is of bounded delay k = 2\x\ + |j/|. 
(W C C) Let h i C, then there exist n,m £ N such that h(a) = xm, h(b) = xn 

thus h $ W . • 

3 F codes and the unary morphism 
Theorem 3.1 Let A = { a i , . . . , an}, a £ A, h : A* {a}* , 
minfc := min{||/ifc(ai)| - 1^(^)11,\hk{ai)\ : i ± j-i,j £ { l , . . . , n } } . 
The unary morphism h is an F code if and only if the sequence min^ is not bounded. 

Proof. If sequence min^ is not bounded then from lemma 2.1 h e F. 
Consider h£ F. Suppose that there exists M £ N such that for all A: 6 N min^ < M. 
The morphism h is a nonerasing morphism, thus for all ai £ A and n £ N we have 
jhn(ai)| < |/in+1(ai)l- I f minfc < M then 3n0 £ NVi > n0Vi £ {1 , . , . , n } 1^(^)1 = 
|/ii+1(ai)|. We have a? = hl{ai) = ht+l{ai) = / j ^ K ) ) = Hap) for some p £ N. 
This implies h(a) = a and finally h(ai) = h(a\h^) which contradicts h £ F. • 

Remark 3.2 The last theorem is not true for arbitrary morphism. 

Proof. Let h(a) = a, h(b) = ab, h(c) = b. For every w, ui, u2, u3 £ {a, b, c}* 
h(wbui) ^ h(wcu2), h(wbui) h{wauz), h(wcu2) ^ h(wauz). To show this we 
observe that Vu3,v,w £ A* Vk £ N 
pref f c {ahH+ 1 ( / i ( i i3)) } £ {aM + 1 6u, a^bv}. Thus h is an L code, but mim = 0 and 
Vfc > 1 minfc = 1. • 
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Corollary 3.3 It is decidable whether the unary morphism is an F code. 

The morphism h is an almost L code if and only if h is not an L code and 
3t G NVffi,u G A*, first(w) ^ first(u) (h(w) = h\u) (\w\ = t V |u| = t)) 

Remark 3.4 F \ almost L ^ 0. 

Proof. Let h(a) = a3, h{b) = a6, h{c) = a2, then hn(a) = a 3" , hn{b) = a6 '3""1 , 
hn{c) = a2 '3" , minn = 3 n _ 1 . From lemma 2.2 we obtain h G F. For every w G A* 
h(aaw) = h(bcw), thus h $ almost!/ . • 

Let U be the class of all unary morphisms h : {a, b} —• {a}* such that h(a) = an , 
h{b) = ar, n ^ r, n > 2. 

Theorem 3.5 F D U = (L U almost L) D U 

Proof. It is clear that if n = r or n = 1 then h is neither an F code nor an almost L 
code. If n ^ r and n > 2 then the sequence min* = min{|nfc— r-nk~x\, nk, r -n f c _ 1 } 
is not bounded. This implies h G F. Every unary morphism such that h(a) = an, 
h(b) = ar, n ^ r, n > 2 is either an L code or an almost L code (see [3]). • 
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Note on the Cardinality of some Sets of Clones 

, Jovanka Pantovic * Dusan Vojvodic * 

Abstract 

All minimal clones containing a three-element grupoid have been deter-
mined in [3]. In this paper we solve the problem of the cardinality of the set 
of clones which contain some of these clones. 

1 Notation and Preliminaries 
Denote by N the set { 1 , 2 , . . . } of positive integers and for k,n G N, set = 
{ 0 , 1 , . . . , k — 1}. We say that / is an i-th projection of arity n (1 < i < n) if 
/ E Pj.n' and / satisfies the identity f ( x . . . , xn) « Xi. 

For n,m > 1 , / G Pj.n^ and gi,...,gn € Pkm\ the superposition of f and 
Sn, denoted by f{gi,...,gn), is defined by f(gi,...,gn)(ai,...,am) = 

fÍ9iiai,••• > ) 5 • • • j 9n ( a i , . . . , a m ) ) for all ( a i , . . . , a m ) G E™. A set 
A set C of operations on is called a clone if it contains all the projections 

and is closed under superposition. 
For an arbitrary set F of operations on Ek there exists the least clone containing 

F. This clone is called the clone generated by F, and will be denoted by (F)cl-
Instead of ( { / } ) c l we will write simply ( / ) c l - For a clone C and n > 1 we denote 
by Cthe set of n-ary operations from C. 

The clones on Ek form an algebraic lattice Lat(Ek) whose least element is the 
clone of all projections and whose greatest element is the clone of all operations on 
Ek. The atoms (dual atoms) of Lat(Ek) are called minimal (maximal) clones. 

A full description of all clones for k = 2 was given by Post, for k = 3 a complete 
list of all maximal clones was found by Iablonskii and all minimal clones were 
determined by Csákány. 

Let h, be a positive integer. A subset p of Ek (i.e. a set of /i-tuples over Ek) 
is an h-ary relation on Ek- An n-ary operation f on Ek preserves p if for every 
h x n matrix X = [xij] over Ek whose columns are all /i-tuples from p we have 
(/(¡roo, • • •, zo(n-i)), • • •, f i x (ii-i)o, • * • j X( / l_i) ( n_1))) G p. The set of all operations 
on Ek preserving a given relation p is denoted Polp. 
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Let k = 3 and let 0 be a permutation of E3. To each n-ary function / we 
assign /0 , called conjugate of / , defined by f^{x0,... , £ n - i ) = <j>(f(<j>~1(x0), • • •, 

(xn_i)). The map / —> carries each clone C onto the clone C^; in par-
ticular (f)+L = (f+)cL, and g G (/)CL implies g^ G We can permute 
the variables of / as well: for a permutation ifr of i?n put f^(x0, • • • , x n - i ) = 
f{x,l>(0), - • • ,x$(n-\)))- Remark that always = Note also that ( f a ) C l = 
( / ) c l for any V . The conjugations and permutations of variables generate £? per-
mutation group Tn of order 3n! on the set of all n-ary functions on E3. 

A binary idempotent function with Cayley table 

0 1 2 
0 0 n 5 TI4 
1 n3 1 n2 

2 «1 Tl0 2 

is denoted by bn, where n = n0 + 3ni 4- 32n2 + 33n3 + 34n4 -I- 35n5. 
It is proved in [3] that every minimal clone on E3 containing an essential binary 

operation is a conjugate of exactly one of the following twelve clones: ( 6 Î ) C L with 
i G {0,8,10,11,16,17,26,33,35,68,178,624}. The following table shows the binary 
functions on E3 which generate minimal clones. 

xy -» 00 01 02 10 11 12 20 21 22 
bo 0 0 0 0 1 0 0 0 2 
bs 0 0 0 0 1 0 2 2 2 
bio 0 0 0 0 1 1 0 1 2 
b 11 0 0 0 0 1 1 0 2 2 
£>i6 0 0 0 0 1 1 2 1 2 
b 17 0 0 0 0 1 1 2 2 2 
¿>26 0 0 0 0 1 2 2 2 2 
£>33 0 0 0 1 1 0 2 0 2 
£>35 0 0 0 1 1 0 2 2 2 
£>68 0 0 0 2 1 1 1 2 2 
£>178 0 0 2 0 1 1 2 1 2 
£>624 0 2 1 2 1 0 1 0 2 

2 Results 
Theorem 2.1 The cardinality of the set of clones on E3 containing a conjugate of 
(bj)ch,j G {0,8,11,17,33,35} is continuum. 

Proof. The proof is based on the operations of Janov-Mucnik. 
We shall define a countable set of operations F and an operation g so that for 

all / 6 F, f 0 ({F \ { / } ) U {ff})cL- This implies that for each G,H C F, from 
G ^ H it follows (G U {( / } )c l / ( f fU {ff})cL- In this way we get a set of distinct 
clones of a continuum cardinality. 
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For i = 1 , . . . , m denote by ei the m-tuples ( 1 , . . . , 1 , 2 ,1 , . . . , 1) with 2, at the 
i-th place. Let Am = { e i , . . . , e m } . 

For m > 2, consider the m-ary operation fm (Janov-Mucnik,[5]) which takes 
the value 1 on Am and 0 otherwise. 

Modifying an idea which is attributed to Ronyai in [1], we define the relations 
Pm C Ef on E3 for m > 2 : pm = Am U Bm, where Bm = {(blt..., bm)\bj = 0 for 
some j, 1 < j <n} . 

In what follows we prove that for each i 7= m and j G {0,8,11,17,33,35}, fi 
and bj preserve pm while fm does not. 

Let X = [xij] be the m x m matrix with i n = . . . xmm = 2 and Xij = 1 
otherwise.The i-th column of X is ê  G pm(i = 1 , . . . , m) while the values of fm on 
the rows of X form ( / m ( e 1 ) , . . . , fm(em))T = ( 1 , . . . , 1)T £ p. Hence, fm g Polpm. 

Suppose to the contrary that fi doesn't preserve pm for some i ^ m. Then 
there is an to x i matrix X with all columns in pm and with rows a i , . . . , a.m such 
that b := (fi(a1),...Ji(am))T g p. Since imfo = {0 ,1} and Bm C pm clearly 
b = ( 1 , . . . , 1)T. By the definition of fi there exist 1 < ji, • • •, jm < i such that 
ak = ejk for all k = 1 , . . . , m . If jk = ji for some 1 < k < I < m then the 
jk-th column of X contains at least two 2s and so does not belong to pm. As 
i m we can choose k G {1, . •., i} \ {ji,..., jm}- Clearly, the fc-th column of X is 
( 1 , . . . , 1 ) T i p m -

If bj,j G {0,8,11,17,33,35} does not preserve p then there exist a ,b G p such 
that (bj(ai,bi),..., b j v&m 5 Vm )) £ p, i.e. (6 j (a i ,6 i ) , . . . , bj(am,bm)) G { l , 2 } m \ A m . 
It follows that ((bj(ai,bi),... ,bj(am,bm)) = a since bj(ai,bi) = 1 implies a/ = 1 
and bj(ai,bi) = 2 implies a/ = 2. So, we get a contradiction. 

The set of clones of the form (Gu{6 0 , b8> bn, &17, &33, ^3s})cl, G C { /2, /3, - • •} 
has a continuum cardinality. • 

Theorem 2.2 The cardinality of the set of clones on E3 containing a conjugate of 
(bj)CL, j E {10,16,26,68} is at least No-

Proof. 
Let {0 ,1 ,2 } = { p , q , r } , and for i = 1 , . . . , m denote by ej the m-tuples 

(p,... ,p, r,p,... ,p) with r at the i-th place. Let Am — { e i , . . . , eTO}. 
For TO > 2, consider the m-ary operation fm (similar to the Janov-Mucnik 

operations : 
f (x-) = < ^ ^f x ^ '̂m> \ Q otherwise 

Define the following relations pm C E™ on E3 for TO > 2 : pm = E™ \ 
{(P,•••,?)}• 

In what follows we prove that fi preserves pm if and only if i > TO. 
Suppose to the contrary that fi doesn't preserve pm for some i > m. Then 

there is an m x i matrix X with all columns in pm and with rows a i , . . . , a m such 
that b := ( / , ( a i ) , . . . , / ¿ ( a m ) ) T ^ p, i.e. b = (p,... ,p)T. By the definition of fi: 
ak = ejk, 1 < Jjt < for all k = 1,..., TO. Since i > m, i — m + 1 column has to be 
equal (p,...,p), which gives a contradiction. 
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Let i < m and X = [xij] be the mxi matrix with xij — p if l j and Xjj = r for 
j e {l,...,i - 1},/ 6 {1, • • • ,m},xu = ... = Xfi-^i = p and x„ = ... = xmi = r. 
The values of fi on the rows of X form (p,... ,p) p. 

We shall prove that 610 and ¿16 preserve pm with r = \,p = 2 and <7 = 0; 626 
preserves pm with p = 1, q = 0, and r = 2; and bes preserves pm with p = 0, q = 2, 
and r = 1. 

Suppose to the contrary that bj,j 6 {10,16,26,68} does not preserve pm. Then, 
there is an m x 2 matrix with both columns in pm such that (bj(x\, j / i ) , . . . , 
bj(xm,ym)) = (p,...,p). Therefore by the definition of bj clearly xi = p, I € 
{ 1 , . . . , m } for each j e {10,16,26,68}. Thus, the first column of X is (p,... ,p)r 

^ p, a contradiction. 
So, we proved that for each j e {10,16,26,68}, the set {\Jm>2 fm] satisfies 

< U { /m}U{fy}>CL D ( U { / m } U { i » ; } ) c L 3 ( (J {fm} U {6>}>CL •••, proving 
i>m i>m-\-1 i>m+2 

that there are at least K0 clones containing (bj)cL- n 

It is still an open problem to determine a cardinality of the set of clones that 
contain a clone generated by 6178 and &624-
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A Note on the Equivalence of the Set Covering and 
Process Network Synthesis Problems* 

B. Imreh1 J. Fülöpi F. Friedler^ 

Abstract 

In this paper, combining and completing some earlier results presented in 
this journal, it is proved that the Process Network Synthesis problem (PNS 
problem for short) is equivalent to the set covering problem. 

Keywords: combinatorial optimization, network design, complexity. 

1 Introduction 
The foundations of PNS and the background of the combinatorial model studied 
here can be found in [6], [8], and [9]. Since the present work is based on the results of 
the papers [3], [7] published in this journal, we recall here only the main definitions 
briefly. 

By structural model oi PNS we mean a triplet (P, R, O) where P, R, 0 are finite 
sets, 0 / P is the set of desired products, R is the set of raw materials, 0 ^ 0 
is the set of available operating units, furthermore O C p'(M) x p ' ( M ) where M 
is the set of materials involved in the investigation and p'(M) denotes the set of 
all nonempty subsets of M. It is assumed that P fl R = 0 and M fl O = 0. An 
operating unit, u = (a,/?) G O, can be interpreted such that a and /3 contain the 
input and output materials of u, respectively. Pair (M, O) determines a directed 
graph called process graph. The set of vertices of this graph is M U O, and the set 
of arcs is A = Ai.U A2 where Ax = {{X,Y) : Y = (a,(3) G O and X G a] and 
A2 = {(Y,X) : Y = (a,P) G O and X £ ¡3}. If there exist vertices XUX2, ...,Xn, 
such that (Xi,X2), (X2,X3),..., (Xn-i,Xn) are arcs of process graph (M, O), then 
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the path determined by these arcs is denoted by [Xi,A'„]. Obviously, for any-
suitable pair (m,o), one can consider the corresponding process graph. 

Let process graphs (m, o) and (M, O) be given, (m, o) is defined to be a subgraph 
of (M, О), if m Ç M and о С О. 

For structural model ( P , R , 0 ) , process graph ( M , 0 ) with M D U{aU|3 : 
(a,/?) £ О} presents the interconnections among the operating units of O. Fur-
thermore, every feasible process network, producing the given set P of products 
from the given set R of raw materials using operating units from 0, corresponds 
to a subgraph of (M,0). Therefore, examining the corresponding subgraphs of 
( M , 0 ) , we can determine the feasible process networks. If there is no further 
constraints such as material balance, then the subgraphs of (M, О) which can be 
assigned to the feasible process networks have the following common combinatorial 
properties (cf. [8]). 

Subgraph (m,o) of ( M , 0 ) is called a solution-structure of ( P , R , 0 ) if: 

(51) P Cm, 

(52) VX Е т , Х е й § 1 is a source in (m, o), 

(53) VY0 e o,3 path {Y0,Yn} with Yn £ P, 

(54) VX G m, 3(aJ) £ о such that X £a{J(3. 

Let S(P,R,0) denote the set of solution-structures of (P,R,0). It can be easily 
seen that any solution-structure (m,o) is uniquely determined by set o. By this 
observation, S(P, R, 0) can be considered as a family of subsets of 0. 

PNS problem with weigths 

Let a PNS problems be given. Let us suppose that its every operating unit has 
a positive weight. Then, the following optimization problem can be studied: 

We are to find, a feasible process network with the minimal weight where by 
weight of a process network we mean the sum of the weights of the operating units 
belonging to the process network under consideration. 

Each feasible process network in such a PNS problem is determined uniquely 
from the corresponding solution-structure and vice versa. Thus, the problem can 
be formalized as follows: 

Let a structural model of PNS problem (P, R, O) be given. Moreover, let w be 
a positive real-valued function defined on 0, the weight function. Then, the basic 
model is 

(1) m i n { ] T w(u) : (m, o) € S(P, R,0)}. 
ибо 

In what follows, the elements of S(P, R, 0) are called feasible solutions and by PNS 
problem we mean a PNS problem with weights. 
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2 Relationship between the PNS and the set cov-
ering problems 

We recall (cf. [3]) that any set covering problem can be transformed into an equiv-
alent PNS problem. On the other hand, it is proved in [7] that every cycle free 
PNS problem can be transformed into a suitable set covering problem. Now, using 
a similar argument as in [7], we extend this statement to an arbitrary PNS problem 
which results in the equivalence of the two problems considered. 

This extension is proved in more steps. 
First, let us observe that S(P, R, 0) is closed under the finite union. This results 

in the existence of a greatest feasible solution, U{(m, o) : (m,o) € S(P,R,0)}, 
which is called maximal structure of the problem provided that S(P, R, O) ^ 0. 
The existence of the maximal structure makes possible a reduction of PNS problem 
under consideration in the following way. Let a PNS problem be given by (P, R, O) 
and let us denote ( M , 0 ) the process graph belonging to it. Furthermore, let us 
suppose that S(P,R,0) ^ 0, and let denote ( M , 0 ) the corresponding maximal 
structure. Then, we can construct a new model given by (P, R fl M,0). Since 
( M , 0 ) contains every feasible solution from S{P,R,0), S(P,R,0) = S(P,RD 
M,0). This new model is called the reduced model of problem considered. By the 
basis of the common set of feasible solutions, we obtain that problem 

(2) m i n { ^ w ( u ) : (m, o) & S(P,RnM,0)}. 
uEo 

is equivalent to problem (1) provided that S(P,R,0) / 0. 
Now, if S(P,R,0) = 0, then the set covering problem consisting of set P and 

a nonempty proper subset of P with an arbitrary weight is equivalent to the PNS 
problem under consideration, since both problems have no feasible solution. On 
the other hand, S(P,R,0) = 0 can be decided in polynomial time by using the 
algorithm presented in [9] for generating the maximal structure of ( P , R , 0 ) . 

If S(P, R, O) ^ 0, then instead of (1) we can consider (2) where the process 
graph of the problem is its maximal structure ( M , 0 ) . In this case, a conjuctive 
normal form (CNF) exists for describing the feasible solutions. Description of the 
feasible solutions by (CNF) was originally initiated in [4] and this description is 
also used in [7]. Here, taking the maximal structure into account, a simplest and 
more precise description is given. The basis of this approach is the observation that 
a faesible solution is determined by o uniquely. This observation makes possible to 
the reformulation of properties (51) through (54). 

To do this, let O = { ( a i , / ? i ) , . . . , (a/,/?/)}, and J = { 1 , . . . ,1]. Then, for any 
subgraph (to, O) of (M, 0), an ¿-vector of logical values YI, i € J, can be associated 
with such that ŷ  is true if and only if ( ) £ o. It is easy to see that this 
is a one-to-one mapping between the subgraphs of ( M , 0 ) fulfilling (54) and the 
/-vectors of logical values. For logical /-vector y, subgraph (to ,o) associated with 
y is determined by to = UiGT(y) a i u & anc^ 0 = i £ ^(y)} where 
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T(y) = {i :i £ J & yi is true}. Obviously, for an arbitrary logical /-vector, y, the 
subgraph associated with y is not necessarily a feasible solution. Procedure below 
provides such a CNF, that a logical /-vector, y, satisfies $ if and only if the 
subgraph associated with y is a feasible solution. 

Algorithm for CNF Generation 

• Step 1. Set $ 0 = A V Vi-
X€P 'iJ •V60; 

• Step 2. Let ^ = A (~>Vi V V Vh)-

• Step 3. Set $ 2 = A ( - W V v Vh). 
i€J 

• Sfep Let $ = f 0 A $ i A $ 2 . 

Now, we show that an /-vector y of logical values satisfies $ if and only if process 
graph associated with y is a feasible solution. To do this, let (m,o) be an arbitrary 
feasible solution in ( M , 0 ) , and let us denote by y the /-vector of logical values 
associated with (m,o). Then, (Si ) implies $o(y) = t and (S2) implies $ i ( y ) = f . 
Regarding $ 2 , let i E J and P n ft = 0. Then, ->yi \J yh is a member of 

hej 

If yi =4-, then the considered disjunction is true. If y; = f , then Ui 6 o, but in this 
case, (53) implies that there is an operating unit Uh 6 o such that ft fl ah ^ 0. 
This yields that yh = t for some h 6 J, and thus, the considered member is also 
true. Idea presented above is valid for every member of $2j and hence, $2(y) =T-
Consequently, y satisfies 

Conversely, let us suppose that the logical vector y satisfies Let (m , o) denote 
the subgaph of ( M , O) associated with y. We prove that (m, o) is a feasible solution, 
i.e., properties (SI) through (S4) hold for (m,o). 

Property (S4) follows directly from the definition of (m, o). 
Since $o(y) = t , there exists an operating unit in o which produces X directly, 

for every X £ P. Consequently, (S i ) is valid as well. 
To prove (52), let X £ m and X £ R. Since o C O and there is no operating 

unit in O producing raw material, there is no (1', AT) arc in (m,o). Now, let us 
suppose that X £ m and there is no (Y, X) arc in (m,o) . Then, we show that 
X £ R. Contrary, let us assume that X $ R. Since X £ m, there exists an 
operating unit, Uj = (a i , f t ) £ o such that X £ ai which implies jj; = t - On the 
other hand, since ( M , 0 ) is a feasible solution, there are operation units Uh £ O 
such that X £ ft,, and therefore, contains a member of the form ->j/i \J yh-

hej -V6/3h 

Since $ i ( y ) = t , this member is also true on y, and hence, there is an ho such that 
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Uh0 G o and X 6 Ph0. This yields that there exists (Y, X) arc in (rh,o) which is a 
contradiction. Therefore, X G R, and thus, (52) is valid. 

For proving (53), let us suppose that Uj G o. If /3j CI P ^ 0, then we are ready, 
there is a path from u, into P. In the opposite case, using again that ( M , 0 ) 
is a feasible solution, there is a path from Ui into P in (M ,0), i.e., there is an 
operating unit Uh G O such that ftna/, ^ 0. Then, $2 contains a member of form 
^Vi V Vh, a n d in a similar way as above, we obtain that Uh G o for some h. 

he j 
Repeating this procedure, in a finite number of steps, we obtain a path from u» 
into P in (m,o), and therefore, (53) is valid. 

By the strong relationship between the PNS problem and the corresponding 
CNF given above, the following problem is equivalent to problem (2). 

(3) min{ w i ' - y f u l l f i l s 

jer( y) 
where Wj = w(uj), j = 1 , . . . ,1. 

For every i G J, introducing two 0-1 variables, zf and z~, such that zf = 1 
if and only if yi is true, and z~ = 1 — zf, problem (3) can be transcribed into 
an equivalent binary programming problem by introducing some appropriate new 
constraints. It is easy to see that this binary problem is a set covering/partitioning 
problem. On the other hand, using the well-known trick of converting set parti-
tioning constraints into set covering ones (c/. e.g. [10]), we obtain an equivalent 
set covering problem. The corresponding binary and set covering problems can be 
found in [7]. 

Summarizing, we obtained that the solution of a PNS problem can be traced 
back to the solution of a suitable set covering problem. Combining this statement 
by the observation that any set covering problem can be given as a special PNS 
problem, we obtain the following statement. 

Proposition 1. The PNS problem is equivalent to the set covering problem. 

Equivalence proved above enables the sophisticated techniques developed for 
solving set covering problems (see, e.g., [2, 5, 10] and the references therein) also 
to be applied for solving PNS problems. Regarding this solution technique, it is an 
open problem whether a more economical transformation of the PNS problem into 
a set covering problem exists. 

It is worth noting that Proposition 1, by the well-known fact that the set cov-
ering problem is NP-complete (see [1] and [11]), implies immediately the following 
observation. 

Corollary 1. The PNS problem is NP-complete. 



502 B. Imreh, J. Füiöp, F. Friedkr 

References 
[1] A. V. Aho, J. E. Hopcroft, J. D. Ullinari, The Design and Analysis of Computer 

Algorithms, Addison-Wesley, Reading Mass, 1974. 

[2] E. Balas, M. C. Carrera, A Dynamic Subgradient- Based Branch-and-Bound 
Procedure for Set Covering, Operations Research 44 (1996), 875-890. 

[3] Z. Blázsik, B. Imreh, A Note on Connection between PNS and Set Covering 
Problems, Acta Cybernetica 12 (1996), 309-312. 

[4] M. H. Brendel, F. Friedler and L.T. Fan, Combinatorial Foundation for Logical 
Formulation in Total Flowsheet Synthesis, Computers chem. Engng., submit-
ted for publication. 

[5] M. L. Fisher, P. Keida, Optimal Solution of Set Covering/Partitioning Prob-
lems Using Dual Heuristics, Management Science 36 (1990), 674-688. 

[6] F. Friedler, L. T. Fan, B. Imreh, Process Network Synthesis: Problem Defini-
tion, Networks 28 (1998), 119-124. 

[7] J. Fülöp, B. Imreh, F. Friedler, On the reformulation of some classes of PNS 
problems as set covering problems, Acta Cybernetica 13 (1998), 329-337. 

[8] F. Friedler, IC. Tarján, Y. W. Huang, and L. T. Fan, Graph-Theoretic Ap-
proach to Process Synthesis: Axioms and Theorems, Chem. Eng. Sci. 47(8) 
(1992), 1973-1988. 

[9] F. Friedler, K. Tarján, Y. W. Huang, and L. T. Fan, Graph-Theoretic Ap-
proach to Process Synthesis: Polynomial Algorithm for Maximal Structure 
Generation, Computers chem. Engng. 17(9) (1993), 929-942. 

[10] R. S. Garfinkel, G. L. Nemhauser, Integer Programming, Wiley, New York, 
1972. 

[11] R. M. Karp, Reducibility among Combinatorial Problems, in Complexity of 
Computer Computations, R. E. Miller and T. W. Thatcher, eds., Plenum 
Press, New York, 1972. 

Received October, 1999 



Acta Cybernetica 14 (2000) 503-50G. 

Note on the Work Function Algorithm 

Béla Csaba *tt 

A b s t r a c t 

We prove that the work function algorithm is (n - l)-campetitive for the 
fc-snrver problem, where n is the number of points in the metric space. This 
gives improved upper bounds when k + 3 < n < 2k - 1; in particular, it shows 
that the work function algorithm is optimal for k = n — 1. Recently this result 
was proved independently by Koutsoupias in [K], 

1 Introduct ion 
We give a short introduction to the deterministic ¿-server problem ([ST], [MMS]). 
There is a metric space M with a distance function d(.,.) on it. Let us denote \M\ 
by 7i. There are k (1 < k < n) mobile servers initially residing on the pointset I , no 
two on the same point. Repeatedly requests are generated by an off-line adversary, 
and we have to satisfy them in an on-line fashion. Satisfying a request is putting 
a server on the requested point of the metric space. When moving a server, a cost 
occurs which is the distance of the previous and the present position of the server 
which is moved. While the adversary has the advantage that it satisfies the request 
sequence at the end thus it can satisfy them optimally paying the least, an on-line 
algorithm pays after every request. In competitivity analysis we compare the on-
line cost with the optimal (off-line) cost, we are looking for an algorithm with the 
best competitive ratio. In [MMS] it is proved that no on-line algorithm can have 
competitive ratio less than k. They also gave optimal on-line algorithm for two 
special cases: when k = 2 and when k = n — 1. They conjectured that in every case 
there is an optimal, k- competitive on-line algorithm. There are other cases with 
optimal on-line algorithms: when the metric space is tree-like ([CL]), when every 
distance is the same (paging problem, [ST]), or for the weighted cache problem 
([CKPV]). So far the best general on-line algorithm is given by Koutsoupias and 
Papadimitriou ([KP1]). They proved tha t the work function algorithm is (2k - 1)-
competitive. In another paper ([KP2]) they also showed that the work function 
algorithm is fc-competitive if k + 2 = n. In this paper we give a proof that their 
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algorithm is (n — l)-competitive as well, hence for k + 3<n<2k— 1 this gives 
the best known upper bounds, and for k = n — 1 it proves that the work function 
algorithm is optimal. In [K] Koutsoupias proved this result by considering the 
so called weak adversaries for the k-server problem. Our paper gives a simple 
alternative proof. 

The outline of this note is as follows: in the next chapter we present a brief 
description of the work function algorithm, and state some relevant properties of 
it, without proofs. Then in the third chapter we prove our result. 

2 Work Function Algorithm 
Let M, I and the request sequence g is given. Then the work function wB maps 
configurations to nonnegative real numbers: we(X) is the optimal cost of servicing 
Q starting at I and ending at X. For a work function wg the resulting work function 
after the request r is wgr. The following proves to be very useful: 

Fact 2.1 For all X wer(X) > we(X). 

Let us now define the algorithm itself. 

Definition 2.2 (Work Function Algorithm) Let g be a request sequence and, A 
be the configuration of the servers after satisfying g. The work function algorithm 
services the new request at r by moving one of the servers to the configuration 
B = A — a + r (i.e.,the server moves from a to r), where wgr(B) + d(a,r) is 
minimal. 

The so called extended cost of a move, m a x x { « v ( X ) — ' n some way 
encapsulates the optimal and the on-line costs. 

Fact 2.3 If the sum of the extended costs is bounded above by c -f- 1 times the 
optimal cost plus a constant, then the work function algorithm is c-competitive. 

The notion of minimizer configurations is also an important one. 

Definition 2.4 A configuration A is called a minimizer with respect to the point 
a with respect to we if 

we(A) - ^ d(a,x) - min{ii)e ( X ) - £ d ( a , a ; ) } . (1) 
XEA ' z£X 

We finish decribing the relevant definitions and facts by the following lemma, 
the Duality Lemma. 

Lemma 2.5 (Duality Lemma) Let we be a work function, and let wgr be the 
resulting work function after request r. Then any minimizer A of r with respect to 
we is also a minimizer of r with respect to wgr, and the extended cost of servicing 
the request r is wgr(A) — we(A). 
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3 Proof of the (n — l)-competitivity 
Let g be the request sequence, and let the next request be r. Denote the min-
imizer configuration of a; with respect to u>e, and Bx the minimizer configuration 
of x with respect to weT. Let us define a potential-function Pe: 

Analoguosly, we can define Pgr. Denoting the empty request sequence by 0 one 
may observe, that Pq>, the initial potential function is a constant. In the sequel by 
opt(g) we will denote the optimal cost of satisfaction of the request sequence g. 

Lemma 3.1 (1) Per — Pe > extended cost of the move from g to gr and 
(2) Pe — n • opt(g) < constant. 

Proof. For proving (1) observe that Ar is a minimizer of r with respect to 
we and wer. Thus, wer(Ar) — Yla£Ard(r>a) is ais° a minimal expression, and 
wer(Ar) — we(Ar)= extended cost. Let now v be another point of M, then 
we(Av) ~ EaeA, a) ^ wq(bv) ~ d(v,b) < wer{Bv) - Y,beB„ d(v,b). 
This proves (1). For proving the second part of the statement, observe that Pe is 
the sum of optimal costs plus a constant. • 

Theorem 3.2 The work function algorithm is (n — 1)-competitive. 

Proof. Summing up the potential function values over all requests we can see from 
Lemma 3.1 that this sum is at least the sum of the extended costs plus a constant. 
By Fact 2.3 we can conclude the statement of the theorem. • 
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Modular Reinforcement Learning: A Case Study in 
a Robot Domain 

Zsolt Kalmár * Csaba Szepesvári * András Lőrincz * 

Abstract 

T h e behaviour of reinforcement learning (RL) algorithms is best under-
stood in completely observable, finite state- and action-space, discrete-time 
controlled Markov-chains. Robot-learning domains, on the other hand, are 
inherently infinite both in time and space, and moreover they are only par-
tially observable. In this article we suggest a systematic design method whose 
motivation comes from the desire to transform the task-to-be-solved into a 
finite-state, discrete-time, "approximately" Markovian task, which is com-
pletely observable, too. The key idea is to break up the problem into subtasks 
and design controllers for each of the subtasks. Then operating conditions 
are attached to the controllers (together the controllers and their operating 
conditions which are called modules) and possible additional features are de-
signed to facilitate observability. A new discrete time-counter is introduced 
at the "module-level" that clicks only when a change in the value of one of 
the features is observed. The approach was tried out on a real-life robot. 
Several RL algorithms were compared and it was found that a model-based 
approach worked best. The learnt switching strategy performed equally well 
as a handcrafted version. Moreover, the learnt strategy seemed to exploit 
certain properties of the environment which could not have been seen in ad-
vance, which predicted the promising possibility that a learnt controller might 
overperform a handcrafted switching strategy in the future. 

1 Introduction 
Reinforcement learning (RL) is the process of learning the coordination of con-
current behaviours and their timing. A few years ago Markovian Decision Prob-
lems (MDPs) were proposed as the model for the analysis of RL [17] and since 
then a mathematically well-founded theory has been constructed for a large class 
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of RL algorithms. These algorithms are based on modifications of the two ba-
sic dynamic-programming algorithms used to solve MDPs. namely the value- and 
policy-iteration algorithms [25, 5, 10, 23, 18]. The RL algorithms learn via experi-
ence, gradually building an estimate of the optimal value-function, which is known 
to encompass all the knowledge needed to behave in an optimal way according to 
a fixed criterion, usually the expected total discounted-cost criterion. The basic 
limitations of all of the early theoretical results of these algorithms was that they 
assumed finite state- and action-spaces, and discrete-time models in which the state 
information too was assumed to be available for measurement. In a real-life prob-
lem however, the state- and action-spaces are infinite, usually non-discrete, time is 
continuous and the system's state is not measurable (i.e., with the latter property 
the process is only partially observable as opposed to being completely observable). 
Recognizing the serious drawbacks of the simple theoretical case, researchers have 
begun looking at the more interesting yet theoretically more difficult cases (see e.g. 
[11, 16]). To date, however, no complete and theoretically sound solution has been 
found to deal with such involved problems. In fact the above-mentioned learning 
problem is indeed, intractable owing to partial-observability. This result follows 
from a theorem of Littman [9]. 

In this paper an attempt is made to show that RL can be applied to learn real-life 
tasks when a priori knowledge is combined in some suitable way. The key to our 
proposed method lies in the use of high-level modules along with a specification 
of the operating conditions for the modules and other "features", to transform the 
task into a finite-state and action, completely-observable task. Of course, the de-
sign of the modules and features requires a fair amount of a priori knowledge, but 
this knowledge is usually readily available. In addition to this, there may be several 
possible ways of breaking up the task into smaller subtasks but it may be far from 
trivial to identify the best decomposition scheme. If all the possible decompositions 
are simultaneously available then RL can be used to find the best combination. Here 
we propose design principles and theoretical tools for the analysis of learning and 
demonstrate the success of this approach via real-life examples. A detailed com-
parison of several RL methods, such as Adaptive Dynamic Programming (ADP), 
Adaptive Real-Time Dynamic Programming (ARTDP) and Q-learning is provided, 
having been combined with different exploration strategies. 

The article is organized in the following way. In Section 2 we introduce our proposed 
method and discuss the motivations behind it. The notion of "approximately" sta-
tionary MDPs is also introduced as a useful tool for the analysis of "module-level" 
learning. Then, in Section 3 the outcome of certain experiments using a mobile 
robot are presented. The relationship of our work to that of others is contrasted in 
Section 4. Finally our conclusions and possible directions for further research are 
given in Section 5. Some details were left out from this article, but these can be 
found in [8]. 
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2 Module-based Reinforcement Learning 
First of all, we will briefly run through Markovian Decision Problems (MDPs), a 
value-function approximation-based RL algorithm to learn solutions for MDPs and 
their associated theory. Next, the concept of recursive-features and time discretiza-
tion based on these features are elaborated upon. This is then followed by a sensible 
definition and principles of module-design together with a brief explanation of why 
the modular approach can prove successful in practice. 

2.1 Markovian Decision Problems 
RL is the process by which an agent improves its behaviour from observing its own 
interactions with the environment. One particularly well-studied RL scenario is 
that of a single agent minimizing the expected-discounted total cost in a discrete-
time finite-state, finite-action environment, when the theory of MDPs can be used 
as the underlying mathematical model. A finite MDP is defined by the 4-tuple 
(S, A,p, c), where 5 is a finite set of states, A is a finite set of actions, p : S x 
A x S —> [0,1] is a transition probability function satisfying J2S 'esP(-s>a>s ') = ^ 
for all (s,o) £ S x A pairs and c : 5 x A —> is the so-called immediate cost-
function. The ultimate target of learning is to identify an optimal policy. A policy 
is some function that tells the agent which set of actions should be chosen under 
which circumstances. A policy n is optimal under the expected discounted total cost 
criterion if, with respect to the space of all possible policies, ir results in a minimum 
expected discounted total cost for all states. The optimal policy can be found by 
identifying the optimal value-function, defined recursively by 

for all states s £ S, where c (s ,a) is the immediate cost for taking action a from 
state s, 7 is the discount factor, and p(s,a,s') is the probability that state s' is 
reached from state s when action a is chosen. U (s) is the set of admissible actions 
in state s. The policy which for each state selects the action that minimizes the 
right-hand-side of the above fixed-point equation constitutes an optimal policy. 
This yields the result that to identify an optimal policy it is sufficient just to find 
the optimal value-function v*. The above simultaneous non-linear equations (non-
linear because of the presence of the minimization operator), also known as the 
Bellman equations [3], can be solved by various dynamic programming methods 
such as the value- or policy-iteration methods [15]. 

RL algorithms are generalizations of the DP methods to the case when the tran-
sition probabilities and immediate costs are unknown. The class of RL algorithms 
of interest here can be viewed as variants of the value-iteration method: these al-
gorithms gradually improve an estimate of the optimal value-function via learning 
from interactions with the environment. There are two possible ways to learn the 
optimal value-function. One is to estimate the model (i.e., the transition probabil-
ities and immediate costs) while the other is to estimate the optimal action-values 
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Initialization: Let t = 0, and initialize the utilized model (Mo) and the Q-function (Qo) 
Repeat Forever 
1. Observe the next state st+i and reinforcement signal ct . 
2. Incorporate the new experience ( s t , a t , s t + i , c t ) into the model and into the estimate 
of the optimal Q-function: (M t+i,Qt+i) = Ft(Mt,Qt,(st,at,st+i,ct)). 
3. Choose the next action to be executed based on (Mt+¡,Qt+¡): a í + i = 
St(Mt+i,Qt+i,st+i) and execute the selected action. 
4. t :=t + 1. 

Table 1: The structure of value-function-approximation based RL algo-
rithms. 

directly. The optimal action-value of an action a given a state s is defined as the 
total expected discounted cost of executing the action from the given state and 
proceeding in an optimal fashion afterwards: 

Q'(s, a) = c(s, a) + 7 £ p(s, a, s')v*(s'). (1) 
s' 

The general structure of value-function-approximation based RL algorithms is 
given in Table 1. 

In the RL algorithms various models are utilized along with an update rule Ft 

and action-selection rule St. 
In the case of the Adaptive Real-Time Dynamic Programming (ARTDP) algo-

rithm the model consists (M t ) of the estimates of the transition probabilities and 
costs, the update-rule Ft being implemented, e.g., as an averaging process. In-
stead of the optimal Q-function, the optimal value-function is estimated and stored 
to spare storage space, and the Q-values are then computed by replacing the true 
transition probabilities, costs and the optimal value-function in Equation 1 by their 
estimates. An update of the estimate for the optimal value-function is implemented 
by an asynchronous dynamic programming algorithm using an inner-loop in Step 
2 of the algorithm. 

Another popular RL algorithm is Q-learning, which does not employ a model 
but instead the Q-values are updated directly according to the iteration procedure 
[25] 

Qi+i(st, at) = (1 - at(st,at))Qt(st,at) + 

Oit(st, at){ct + 7 min Qt{st+i, a)), a 

where at(st,at) > 0, and satisfies the usual Robbins-Monro type of conditions. 
For example, one might set at(s,a) = n i(51a)+1 where nt{s,a) is the number of 
time the state-action pair (s,a) was visited before time t. But often in practice 
a.t(s,a) = const is employed which while yielding increased adaptivities no longer 
ensures convergence. 

Both algorithms mentioned previously are guaranteed to converge to the op-
timal value-/Q-function if each state-action pair is updated infinitely often. The 
action selection procedure St should be carefully chosen so that it fits the dynamics 
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of the controlled process in a way that the condition is met. For example, the 
execution of random actions meets this "sufficient-exploration" condition when the 
MDP is ergodic. However, if on-line performance is important then more sophis-
ticated exploration is needed which, in addition to ensuring sufficient exploratory 
behaviour, exploits accumulated knowledge. For more details the interested reader 
is referred to [8]. 

2.2 The modular architecture 

In case of a real-life robot-learning task the dynamics cannot be formulated exactly 
as a finite MDP, nor is the state information available for measurement. This 
latter restriction is modelled by Partially-Observable MDPs (POMDPs) where (in 
the simplest case) one extends an MDP with an observation function h which maps 
the set of states S into a set X, called the observation set (which is usually non-
countable, just like S). The defining assumption of a POMDP is that the full state s 
can be observed only through the observation function, i.e., only h(s) is available as 
input and this information alone is usually insufficient for efficient control since h is 
usually a non-injection (i.e., h may map different states to the same observations). 

The dynamics of the controlled system is defined by P{st+1 = s'|st = s,at = 
a) = p(s,a,s') and Xt = h(st). The first part of the controller is the feature ex-
traction part. The designer needs to design a feature space F together with a 
feature-extraction function R mapping X x A x Fk to F, where k is another de-
sign parameter. The feature extraction function R transforms observation-action 
pairs into features in a recursive way: the feature ft at time t is defined by 
ft = R(xt,at, /(_!,..., ft-k), t > 0, where ft-i, • • • ,ft-k are other design pa-
rameters. The rest of the system is composed of a finite number of controllers, 

where M « = : x F - » {0 ,1} x A x Z^. The 
ith controller stores an internal "state" z ^ which develops in time according to 

t ft) determines whether the ¿th controller is available 
for control in time step t: If ( z [ l \ f t ) = 1 then the controller is available, other-
wise it is not available. Each controller should be thought of as a "local" controller 
that is able to carry out a particular subtask of the whole problem. The control 
problem then is to design a switching strategy that switches between the appro-
priate modules (local controllers) such that the controlled system will eventually 
show a behavior consistent with the ultimate goal of control. This is formulated 
as follows: we further restrict the switching function to be a memoryless mapping 
S : F' x {0, l } n {1 ,2 , . . . , n } . Here F' is another design set that comes to-
gether with a mapping IR : F —> F'. IT maps computed features to "monitored" 
features. The purpose of IT is to bring in some more flexibility in the design pro-
cedure. The role of ir will be clear soon once the control equations are given. In 
order to arrive at the definition of control, let use first define the sequence to, T\ , . . . 
as follows. Let To = 0 and let t i , be defined by rs+i = min{ t > TS : 
5i\z[l\ft) ^ S[l) ft-.x) for some i or tt (/¿) ^ ^{ft-i) }• A switching function 
S : F' x {0,1}™ —>• (1,2,... ,n} is called admissible if from S(f, Ci,..., cn) = i it 
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follows that a = 1 (i.e. only controllers which are available for control are chosen by 
the switching function). Given an admissible switching function 5 the control works 
as follows: at any given time instant t there is only one module active. The index 
of this module is denoted by MT and satisfies m i + 1 = MT if t G {to, . . . , TS, ...}, oth-
erwise mt+1 = S(ix(ft), 1). it),... ,<5|n'(2fn\ ft)). The control is then given 
by at = (4m'\ft). 

Assume a goal oriented task, i.e. a POMDP where the success of a controller is 
measured in terms of if the system state can be driven to a particular set of goal 
states. Then the goal of the design procedure is to set up the modules and the 
additional features in such a way that there exists an admissible switching function 
S that for any given history results in a closed-loop behaviour which fulfills the 
"goal" of control. It can be extremely hard to prove even the existence of such a 
valid switching function. One approach is to use a so-called accessibility decision 
problem which is a discrete graph with its node set being F' x { 0 , 1 } " and the 
edges connect features which can be observed in succession. Then, standard DP 
techniques can be used to decide the existence of a proper switching function [8]. 

Of course, since the definitions of the modules and features depend on the de-
signer, it is reasonable to assume that by clever design a satisfactory decomposition 
and controllers could be found even if only qualitative properties of the controlled 
object were known. RL could then be used for two purposes: either to find the best 
switching function assuming that at least two proper switching functions exist, or 
to decide empirically whether a valid switching controller exists at all. The first 
kind of application of RL arises as result of the desire to guarantee the existence of 
a proper switching function through the introduction of more modules and features 
than is minimally needed. But then, good switching which exploits the capabilities 
of all the available modules could well become complicated to find manually. 

If the accessibility decision problem were extendible with transition-probabilities 
to turn it to an MDP 1 , then RL could be rightly applied to find the best switching 
function. For example, if one uses a fixed (maybe stochastic) stationary switching 
policy and provided that the system dynamics can be formulated as an MDP then 
there is a theoretically well-founded way of introducing transition-probabilities (see 
[16]). Unfortunately, the resulting probabilities may well depend on the switching 
policy which can prevent the convergence of the RL algorithms. However, the 
following "stability" theorem shows that the difference of the cost of optimal policies 
corresponding to different transition probabilities is proportional to the extent the 
transition probabilities differ, so we may expect that a slight change in the transition 
probabilities does not result in completely different optimal switching policies and 
hence, as will be explained shortly after the theorem, we may expect RL to work 
properly, after all. 

Theorem 2.1 Assume that two MDPs differ only in their transition-probability 
matrices, and let these two matrices be denoted by p\ and po. Let the corresponding 

1 Note that as the original control problem is deterministic it is not immediate when the in-
troduction of probabilities can be justified. One idea is to refer to the ergodicity of the control 
problem. 
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optimal cost-functions be vf and v2 • Then, 

nC\\pi -p2\\ 
K - 11 < 7" ( 1 - 7 ) 2 

where C = ||c|| is the maximum of the immediate costs, ||-|| denotes the supremum-
norm and n is the size of the state-space. 

Proof: Let Ti be the optimal-cost operator corresponding to the transition-
probability matrix pi, i.e., 

(:Tiv){s) = min c ( s , « ) + 7 V pi(s,a,s')v(s') , a e U { x ) V s^tx J 
v : S 5R, i = 1, 2. 

Proceeding with standard fixpoint and contraction arguments (see e.g. [19]) we 
get that — «III < - T1V2W + \\T\vl - T2v2\\ and since Ti is a contraction 
with index 7 , and the inequality ||Tii; — T2v|| < 7||pi — p2\\ ^yeX |v(?/)| we obtain 
6 = |K < "fS + 7||pi — p2\\\X\C/— 7 ) , where |K*|| < C / ( l - 7 ) has been 
employed [15]. Rearranging the inequality in terms of 5 then yields Theorem 2.1. 
Q.E.D. 

Motivated by the previous theorem we define e-stationary MDPs as the quadru-
ple (S,A,p ,c ) , where S,A and c are as before but p, the transition probability 
matrix, may vary in time but with ||pt — p*|| < e holding for all t > 0. Our expec-
tations are that although the transitions cannot be modelled with a fixed transition 
probability matrix (i.e., stationary MDP), they can be modelled by an e-stationary 
one even if the switching functions are arbitrarily varied and we conjecture that RL 
methods would then result in oscillating estimates of the optimal value-function, but 
with the oscillation being asymptotically proportional to e. Note that e-stationarity 
was clearly observed in our experiments which we will describe now. 

3 Experiments 
The validity of the proposed method was checked with actual experiments carried 
out using a Khepera-robot. The robot, the experimental setup, general specifica-
tions of the modules and the results are all presented in this section. 

3.1 The Robot and its Environment 
The mobile robot employed in the experiments is shown in Figure 1. 

It is a Khepera2 robot equipped with eight IR-sensors, six in the front and 
two at the back, the IR-sensors measuring the proximity of objects in the range 

2The Khepera was designed and built at Laboratory of Microcomputing, Swiss Federal Institute 
of Technology, Lausanne, Switzerland. 
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Figure 1: The Khepera and the experimental environment. The task was 
to grasp a ball and hit the stick with it. 

0-5 cm. The robot has two wheels driven by two independent DC-motors and a 
gripper which has two degrees of freedom and is equipped with a resistivity sensor 
and an object-presence sensor. The vision turret is mounted on the top of the 
robot as shown. It is an image-sensor giving a linear-image of the horizontal view 
of the environment with a resolution of 64 pixels and 256 levels of grey. The 
horizontal viewing-angle is limited to about 36 degrees. This sensor is designed to 
detect objects in front of the robot situated at a distance spanning 5 to 50 cm. 
The image sensor has no tilt-angle, so the robot observes only those things whose 
height exceeds 5 cm. 

The learning task was defined as follows: find a ball in an arena, bring it to 
one of the corners marked by a stick and hit the stick with the ball. The robot's 
environment is shown in Figure 1. The size of the arena was 50 cm x 50 cm with a 
black coloured floor and white coloured walls. The stick was black and 7 cm long, 
while three white-coloured balls with diameter 3.5 cm were scattered about in the 
arena. The task can be argued to have been biologically inspired because it can be 
considered as the abstraction of certain foraging tasks or a "basketball game". The 
environment is highly chaotic because the balls move in an unpredictable manner 
and so the outcome of certain actions is not completely predictable, e.g., a grasped 
ball may easily slip out from the gripper. 

3.2 The Modules 

3.2.1 Subtask decomposition 

Firstly, the task was decomposed into subtasks. The following subtasks were natu-
rally: (T l ) to find a ball, (T2) grasp it, (T3) bring it to the stick, and (T4) hit the 
stick with the grasped ball. Subtask (T3) was further broken into two subtasks, 
that of (T3.1) 'safe wandering' and (T3.2) 'go to the stick', since the robot cannot 
see the stick from every position and direction. Similarly, because of the robot's 
limited sensing capabilities, subtask (Tl ) was replaced by safe-wandering and sub-
task (T2) was refined to 'when an object nearby is sensed examine it and grasp it 
if it is a ball'. Notice that subtask 'safe wandering' is used for two purposes (to 
find a ball or the stick). The operating conditions of the corresponding controllers 
arose naturally as (T2) - an object should be nearby, (T3.2) - the stick should 
be detected, (T4) - the stick should be in front of the robot, and (T1,T3.1) - no 
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condition. Since the behaviour of the robot must differ before and after locating 
a ball, an additional feature indicating when a ball was held was supplied. As the 
robot's gripper is equipped with an 'object-presence' sensor the 'the ball is held" 
feature was easy to implement. If there had not been such a sensor then this feature 
still could have been implemented as a switching-feature: the value of the feature 
would be ' on ' if the robot used the grasping behaviour, and hence not the hitting 
behaviour. An 'unstuck' subtask and corresponding controller were also included 
since the robot sometimes got stuck. Of course yet another feature is included for 
the detection of "goal-states". The corresponding feature indicates when the stick 
was hit by the ball. This feature's value is ' on ' iff the gripper is half-closed but 
the object presence sensor does not give a signal. Because of the implementation 
of the grasping module (the gripper was closed only after the grasping module was 
executed) this implementation of the "stick has been hit by the ball" feature was 
satisfactory for our purposes, although sometimes the ball slipped out from the 
gripper in which case the feature turned 'on' even though the robot did not actu-
ally reach the goal. Fortunately this situation did not happen too often and thus 
did not affect learning. 

The resulting list of modules and features is shown in Table 2. The controllers 
work as intended, some fine details are discussed here (for more complete description 
see [8]). For example, the observation process was switched off until the controller 
of Module 3 was working so as the complexity of the module-level decision problem 
is reduced. The dynamics of the controller associated with Module 1 were based 
on the maximization of a function which depended on the proximity of objects and 
the speed of both motors3. If there were no obstacles near the robot this module 
made the robot go forward. This controller could thus serve as one for exploring the 
environment. Module 2 was applicable only if the stick was in the viewing-angle of 
the robot, which could be detected in an unambiguous way because the only black 
thing that could get into the view of the robot was the stick. The range of allowed 
behaviour associated with this module was implemented as a proportional controller 
which drove the robot in such a way that the angle difference between the direction 
of motion and line of sight to the stick was reduced. The behaviour associated 
with Module 3 was applicable only if there was an object next to the robot, which 
was defined as a function of the immediate values of IR-sensors. The associated 
behaviour was the following: the robot turned to a direction which brought it to 
point directly at the object then the gripper was lowered. The "hit the stick" 
module (Module 4) lowers the gripper which under appropriate conditions result 
in that the ball jumps out of the gripper resulting in the goal state. Module 5 was 
created to handle stuck situations. This module lets the robot go backward and 
is applicable if the robot has not been able to move the wheels into the desired 
position for a while. This condition is a typical time-window based feature. 

Simple case-analysis shows that there is no switching controller that would 
reach the goal with complete certainty (in the worst-case, the robot could return 
accidentally to state "10000000" from any state when the goal feature was ' o f f ' ) , 

3Modules are numbered by the identification number of their features. 
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F N o W B e h a v i o u r 

1 a l w a y s e x p l o r e w h i l e 
a v o i d i n g o b s t a c l e s 

2 if t h e a t i c k is in 
the v i e w i n g a n g l e g o t o t h e s t i c k 

3 if an o b j e c t 
is n e a r 

e x a m i n e t h e o b j e c t 
g r a s p it if it is a b a l l 

4 if t h e s t i c k 
is near hit t h e s t i c k 

S if t h e r o b o t 
is s t u c k g o b a c k w a r d 

6 if t h e b a l l 
is g r a s p e d -

7 if t h e s t i c k is hit 
w i t h t h e ba l l -

Table 2: Description of the features and the modules. 'FNo.' means 'Feature 
No.', in the column labelled by 'on3 the conditions under which the respective 
feature's value is 'on 'are listed. 

so that an almost-sure switching strategy should always exist. On the other hand, 
it is clear that a switching strategy which eventually attains the target does exist. 

3.3 Details of learning 

A dense cost-structure was applied: the cost of using each behaviour was one except 
when the goal was reached, whose cost was set to zero. Costs were discounted at 
a rate of 7 = 0.99. Note that from time to time the robot by chance became stuck 
(the robot's 'stuck feature' was ' o n ' ) , and the robot tried to execute a module 
which could not change the value of the feature-vector. This meant that the robot 
did not have a second option to try another module since by definition the robot 
could only make decisions if the feature-representation changed. As a result the 
robot could sometimes get stuck in a "perpetual" or so-called "jammed" state. 
To prevent this happening we built in an additional rule which was to stop and 
reinitialize the robot when it got stuck and could not unjam itself after 50 sensory 
measurements. A cost equivalent to the cost of never reaching the goal, i.e., a cost 
of (= 100) was then communicated to the robot, which mimicked in effect that 
such actions virtually last forever. 

Experiments were fully automated and organized in trials. Each trial run lasted 
until the robot reached the goal or the number of decisions exceeded 150 (a number 
that was determined experimentally), or until the robot became jammed. The 
'stick was hit' event was registered by checking the state of the gripper (see also 
the description of Feature 7). 

During learning the Boltzmann-exploration strategy was employed where the 
temperature was reduced by T t + 1 = 0.999 Tt uniformly for all states [2]. During 
the experiments the cumulative number of successful trials were measured and 
compared to the total number of trials done so far, together with the average 
number of decisions made in a trial. 



Modular Reinforcement Learning: A Case Study in a Robot Domain 517 

5 0.6 
<A 
•"o 0.4 'd 

•c 

0. 
0 2 

0.8 

0 25 I ' • ' • » • 
10 20 30 40 50 60 70 80 90 100 

Number of Trials 

10 20 30 40 50 60 70 80 90 100 
Number of Trials 

Figure 2: Learning curves. In the first graph the percentage of successful trials 
out of ten are shown as a function of the number of trials. In the second graph 
the number of decisions taken by the robot and averaged over ten trials are both 
shown, as well as a function of the number of learning trials. 

3.4 Results 

Two sets of experiments were conducted. The first set was performed to check the 
validity of the module based approach, while the second was carried out to compare 
different RL algorithms. In the first set the starting exploration parameter To was 
set to 100 and the experiment lasted for 100 trials. These values were chosen in 
such a way that the robot could learn a good switching policy, the results of these 
experiments being shown in Figure 2. 

One might conclude from the left subgraph which shows the percentage of task 
completions in different stages of learning that the robot could solve the task af-
ter 50 trials fairly well. Late fluctuations were attributable to unsuccessful ball 
searches: as the robot could not see the balls if they were far from it, the robot 
had to explore to find one and the exploration sometimes took more than 150 de-
cisions, yielding trials which were categorized as being failures. The evaluation of 
behaviour-coordination is also observed in the second subgraph, which shows the 
number of decisions per trial as a function of time. The reason for later fluctuations 
is again due to a ticklish ball search. The performance of a handcrafted switching 
policy is shown on the graphs as well. As can be seen the differences between 
the respective performances of the handcrafted and learnt switching functions are 
eventually negligible. In order, to get a more precise evaluation of the differences 
the average number of steps to reach the goal were computed for both switchings 
over 300 trials, together with their standard deviations. The averages were 46.61 
and 48.37 for the learnt and the handcrafted switching functions, respectively, with 
nearly equal std-s of 34.78 and 34.82, respectively. 

Theoretically, the total number of states is 27 = 128, but as learning concen-
trates on feature-configurations that really occur this number transpires to be just 
25 here. It was observed that the learnt policy was always consistent with a set of 
handcrafted rules, but in certain cases the learnt rules are more refined than their 
handcrafted counterparts. For example, the robot learnt to exploit the fact that 
the arena was not completely level and as a result balls were biased towards the 
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M e t h o d T0 = 100 T 0 = 50 T 0 = 25 T 0 = 0 

A D P ( 6 1 ; 1 9 ; 6 ) ( 5 2 ; 2 0 ; 4 ) ( 4 5 ; 1 2 ; 5 ) (ii:lG:i) 

A R T D P 36 29 50 24 

R T Q L - 1 53 69 4 7 6 6 

R T Q L - 2 71 65 63 73 

R T Q L - 3 ( 8 3 ; 1 ;2 ) ( 7 9 : 2 6 : 3 ) ( 6 5 ; 2 4 ; 4 ) (ÍI.-M.-8) 

Table 3: Regret. The table shows the number of unsuccessful trials among the 
first 100 trials. The entries with three number in them show cases when more than 
one experiment was run. In those entries the first number shows the average of the 
number of unsuccessful trials, the second is the standard deviation while the third 
is the number of experiments run. 

stick and as a result if the robot did not hold a ball but could see the stick it moved 
towards the stick. 

In the rest of the experiments we compared two versions of ARTDP and three 
versions of real-time Q-learning (RTQL). The two variants of ARTDP which we call 
ADP, and "ARTDP", corresponding to the cases when in the inner loop of ARTDP 
the optimal value function associated with the actual estimated model (transition 
probabilities and immediate cost) is computed and when only the estimate of the 
value of the actual state is updated. Note that due to the small number of states 
and module-based time discretization even ADP could be run in real-time. But 
variants of RTQL differ in the choice of the learning-rate's time-dependence. RTQL-
1 refers to the choice of the so-called search-then-converge method, where (s, a) = 
ioo+n°(5 a)' n f c (s> being the number of times the event (s, a) = (s t ,a t ) happened 
before time k plus one (the parameters 50 and 100 were determined experimentally 
as being the best choices). In the other two cases (the corresponding algorithms 
were denoted by RTQL-2 and RTQL-3 respectively) constant learning rates (0.1 
and 0.25, respectively) were utilized. 

The online performances of the algorithms were measured as the cumulative 
number of unsuccessful trials, i.e., the regret. The regret Rt at time t is the differ-
ence between the performance of an optimal agent (robot) and that of the learning 
agent accumulated up to trial t, i.e., it is the price of learning up to time t. A 
comparison of the different algorithms with different exploration ratios is given in 
Table 3. All algorithms were examined with all the four different exploration pa-
rameters since the same exploration rate may well result in different regrets for 
different algorithms, as was also confirmed in the experiments. 

First note that in order to evaluate statistically the differences observed for dif-
ferent exploration strategies much more experiments would be needed but running 
these experiments would require an enormous amount of time (approximately 40 
days) and have not been performed yet. Thus we performed the following proce-
dure: Based on the first runs with every exploration-parameter and algorithm the 
algorithms that seemed to perform the best were selected (these were the ADP and 
the RTQL-3 algorithms) and some more experiments were carried out with these. 
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The results of these experiments (15 more for the ADP and 7 more for the RTQL-3) 
indicated that the difference between the performances of the RTQL-3 and ADP is 
significant at the level p = 0.05 (Student's t-test was applied for testing this). 

We have also tested another exploration strategy which Thrun found the best 
among several undirected methods4 [21]. These runs reinforced our previous find-
ings that estimating a model (i.e., running ADP or ARTDP instead of Q-learning) 
could reduce the regret rate by as much as 40%. 

4 Related Work 
There are two main research-tracks that influenced our work. The first was the 
introduction of features in RL. Learning while using features were studied by Tsit-
siklis and Van Roy to deal with large finite state spaces, and also to deal with 
infinite state spaces [22]. Issues of learning in partially observable environments 
have been discussed by Singh et al. [16]. 

The work of Connell and Mahadevan complements ours in that they set-up 
subtasks to be learned by RL and fixed the switching controller [13]. 

Asada et al. considered many aspects of mobile robot learning. They applied 
a vision-based state-estimation approach and defined "macro-actions" similar to 
our controllers [1]. In one of their papers they describe a goal-shooting problem 
in which a mobile robot shot a goal while avoiding another robot [24]. First the 
robot learned two behaviours separately: the "shot" and "avoid" behaviours. Then, 
the two behaviours were synthetised by a handcrafted rule and later this rule was 
refined via RL. The learnt action-values of the two behaviours were reused in the 
learning process while the combination of rules took place at the level of state 
variables. 

Mataric considered a multi-robot learning task where each robot had the same 
set of behaviours and features [14]. Just as in our case, her goal was to learn a 
good switching function by RL. She considered the case when each of the robots 
learned separately and the ultimate goal was that learning should lead to a good 
collective behaviour, i.e., she concentrated mainly on the more involved multi-agent 
perspective of learning. In contrast to her work, we followed a more engineer-like 
approach when we suggested designing the modules based on well-articulated and 
simple principles and contrary to her findings it was discovered that RL can indeed 
work well at the modular level. 

In the Al community there is an interesting approach to mobile robot control 
called Behaviour-Based Artificial Intelligence in which "competence" modules or 
behaviours have been proposed as the building blocks of "creatures" [12, 4]. The 
decision-making procedure is, on the other hand, usually quite different from ours. 

The technique proposed here was also motivated by our earlier experiences with 
a value-estimation based algorithm given in the form of "activation spreading" [20]. 
In this work activation spread out along the edges of a dynamically varying graph, 

4 An exploration strategy is called undirected when the exploration does not depend on the 
number of visits to the state-action pairs. 
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where the nodes represented state transitions called triplets. Later the algorithm 
was extended so that useful subgoals could be found by learning [6, 7]. In the 
future we plan to extend the present module-based learning system with this kind 
of generalization capability. Such an extension may in turn allow the learning of a 
hierarchical organization of modules. 

5 Summary and Conclusions 
In this article module-based reinforcement learning was proposed to solve the co-
ordination of multiple "behaviours" or controllers. The extended features served 
as the basis of time- and space discretization as well as the operating conditions 
of the modules. The construction principles of the modules were: decompose the 
problem into subtasks; for each subtask design controllers and the controllers' op-
erating conditions; check if the problem could be solved by the controllers under 
the operating and observability conditions, add additional features or modules if 
necessary, set-up the reinforcement function and learn a switching function from 
experience. 

The idea of our approach was that a partially observable decision problem could 
be usually transformed into a completely observable one if appropriate features 
(filters) and controllers were employed. Of course, some a priori knowledge of 
the task and robot is always required to find those features and controllers. It 
was argued that RL could work well even if the resulting problem was only an 
e-stationary Markovian. The design principles were applied to a real-life robot 
learning problem and several RL-algorithms were compared in practice. We found 
that estimating the model and solving the optimality equation at each step (which 
could be done owing to the economic, feature-based tinre-discretization) yielded the 
best results. The robot learned the task after 700 decisions, which usually took less 
than 15 minutes in real-time. We conjecture that using a rough initial model good 
initial solutions could be computed off-line which could further decrease the time 
required to learn the optimal solution for the task. 

The main difference between earlier works and our approach here is that we have 
established principles for the design modules and found that our subsequent design 
and simple RL worked spendidly. Plans for future research include extending the 
method via module learning and also the theoretical investigation of e-stationary 
Markovian decision problems using the techniques developed in [10]. 
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