46 research outputs found

    Modelling interdependencies between the electricity and information infrastructures

    Full text link
    The aim of this paper is to provide qualitative models characterizing interdependencies related failures of two critical infrastructures: the electricity infrastructure and the associated information infrastructure. The interdependencies of these two infrastructures are increasing due to a growing connection of the power grid networks to the global information infrastructure, as a consequence of market deregulation and opening. These interdependencies increase the risk of failures. We focus on cascading, escalating and common-cause failures, which correspond to the main causes of failures due to interdependencies. We address failures in the electricity infrastructure, in combination with accidental failures in the information infrastructure, then we show briefly how malicious attacks in the information infrastructure can be addressed

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    List of requirements on formalisms and selection of appropriate tools

    Get PDF
    This deliverable reports on the activities for the set-up of the modelling environments for the evaluation activities of WP5. To this objective, it reports on the identified modelling peculiarities of the electric power infrastructure and the information infrastructures and of their interdependencies, recalls the tools that have been considered and concentrates on the tools that are, and will be, used in the project: DrawNET, DEEM and EPSys which have been developed before and during the project by the partners, and M\uf6bius and PRISM, developed respectively at the University of Illinois at Urbana Champaign and at the University of Birmingham (and recently at the University of Oxford)

    Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review

    Get PDF
    YesSystem safety, reliability and risk analysis are important tasks that are performed throughout the system lifecycle to ensure the dependability of safety-critical systems. Probabilistic risk assessment (PRA) approaches are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to, Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). Growing complexity of modern systems and their capability of behaving dynamically make it challenging for classical PRA techniques to analyse such systems accurately. For a comprehensive and accurate analysis of complex systems, different characteristics such as functional dependencies among components, temporal behaviour of systems, multiple failure modes/states for components/systems, and uncertainty in system behaviour and failure data are needed to be considered. Unfortunately, classical approaches are not capable of accounting for these aspects. Bayesian networks (BNs) have gained popularity in risk assessment applications due to their flexible structure and capability of incorporating most of the above mentioned aspects during analysis. Furthermore, BNs have the ability to perform diagnostic analysis. Petri Nets are another formal graphical and mathematical tool capable of modelling and analysing dynamic behaviour of systems. They are also increasingly used for system safety, reliability and risk evaluation. This paper presents a review of the applications of Bayesian networks and Petri nets in system safety, reliability and risk assessments. The review highlights the potential usefulness of the BN and PN based approaches over other classical approaches, and relative strengths and weaknesses in different practical application scenarios.This work was funded by the DEIS H2020 project (Grant Agreement 732242)

    Software Perfomance Assessment at Architectural Level: A Methodology and its Application

    Get PDF
    Las arquitecturas software son una valiosa herramienta para la evaluación de las propiedades cualitativas y cuantitativas de los sistemas en sus primeras fases de desarrollo. Conseguir el diseño adecuado es crítico para asegurar la bondad de dichas propiedades. Tomar decisiones tempranas equivocadas puede implicar considerables y costosos cambios en un futuro. Dichas decisiones afectarían a muchas propiedades del sistema, tales como su rendimiento, seguridad, fiabilidad o facilidad de mantenimiento. Desde el punto de vista del rendimiento software, la ingeniería del rendimiento del software (SPE) es una disciplina de investigación madura y comúnmente aceptada que propone una evaluación basada en modelos en las primeras fases del ciclo de vida de desarrollo software. Un problema en este campo de investigación es que las metodologías hasta ahora propuestas no ofrecen una interpretación de los resultados obtenidos durante el análisis del rendimiento, ni utilizan dichos resultados para proponer alternativas para la mejora de la propia arquitectura software. Hasta la fecha, esta interpretación y mejora requiere de la experiencia y pericia de los ingenieros software, en especial de expertos en ingeniería de prestaciones. Además, a pesar del gran número de propuestas para evaluar el rendimiento de sistemas software, muy pocos de estos estudios teóricos son posteriormente aplicados a sistemas software reales. El objetivo de esta tesis es presentar una metodología para el asesoramiento de decisiones arquitecturales para la mejora, desde el punto de vista de las prestaciones, de las sistemas software. La metodología hace uso del Lenguaje Unificado de Modelado (UML) para representar las arquitecturas software y de métodos formales, concretamente redes de Petri, como modelo de prestaciones. El asesoramiento, basado en patrones y antipatrones, intenta detectar los principales problemas que afectan a las prestaciones del sistema y propone posibles mejoras para mejoras dichas prestaciones. Como primer paso, estudiamos y analizamos los resultados del rendimiento de diferentes estilos arquitectónicos. A continuación, sistematizamos los conocimientos previamente obtenidos para proponer una metodología y comprobamos su aplicabilidad asesorando un caso de estudio real, una arquitectura de interoperabilidad para adaptar interfaces a personas con discapacidad conforme a sus capacidades y preferencias. Finalmente, se presenta una herramienta para la evaluación del rendimiento como un producto derivado del propio ciclo de vida software

    Towards Quantifying Programmable Logic Controller Resilience Against Intentional Exploits

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems control and monitor services for the nation\u27s critical infrastructure. Recent cyber induced events (e.g., Stuxnet) provide an example of a targeted, covert cyber attack against a SCADA system that resulted in physical effects. Of particular note is how Stuxnet exploited the trust relationship between the human machine interface (HMI) and programmable logic controllers (PLCs). Current methods for validating system operating parameters rely on message exchange and network communications protocols, generally observed at the HMI. Although sufficient at the macro level, this method does not provide detection of malware that exhibits physical effects via covert manipulation of the PLC, as demonstrated by Stuxnet. In this research, an alternative method that leverages direct analysis of PLC input and output to derive the true state of SCADA end-devices is introduced. The behavioral input-output characteristics are modeled using Petri nets to derive metrics for quantifying resilient properties of systems against malicious exploits. The results yield metrics that are applicable towards quantifying resilience in PLCs and implementing real-time security solutions. These findings enable detecting programming changes that affect input and output relationships, identifying the degree of deviation from a baseline program, and minimizing performance losses against disruptive events

    A network-based system for assessment and management of infrastructure interdependency

    Get PDF
    Critical infrastructures (CIs) provide services that are essential to both the economy and well-being of nations and their citizens. Over the years, CIs are becoming more complex and interconnected, they are all interdependent in various ways, including logically, functionally, and geographically. The interconnection between CIs results in a very complex and dynamic system which increases their vulnerability to failures. In fact, when an infrastructure is experiencing failures, it can rapidly generate a cascade or domino effect to impact the other infrastructures. Thus, identifying, understanding and modeling infrastructure interdependency is a new field of research that deals with interrelationships between critical infrastructure sectors for disaster management. In the present research project, an integrated network-based analysis system with a user-friendly graphic user interface (GUI) was developed for risk analysis of complex critical infrastructure systems and their component interdependencies, called FCEPN (Fragility Curve and Extended Petri Net analysis). This approach combines: 1) Fragility Curve analysis of the vulnerability of the infrastructure, based on predefined "damage states" due to particular "hazards"; 2) Extended Petri Net analysis of the infrastructure system interdependency to determine the possible failure states and risk values. Two types of Extended Petri Net, Stochastic Petri Net and Fuzzy Petri Net were discussed in this study respectively. The FCEPN system was evaluated using the Bluestone Dam in West Virginia and Huai River Watershed in China as the case studies. Evaluation study results suggested that the FCEPN system provides a useful approach for analyzing dam system design, potential and actual vulnerability of dam networks to flood related impact, performance and reliability of existing dam systems, and appropriate maintenance and inspection work

    Resilience-Building Technologies: State of Knowledge -- ReSIST NoE Deliverable D12

    Get PDF
    This document is the first product of work package WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellenc
    corecore