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Abstract 

Supervisory Control and Data Acquisition (SCADA) systems control and monitor 

services for the nation’s critical infrastructure. Recent cyber induced events (e.g., 

Stuxnet) provide an example of a targeted, covert cyber attack against a SCADA system 

that resulted in physical effects. Of particular note is how Stuxnet exploited the trust 

relationship between the human machine interface (HMI) and programmable logic 

controllers (PLCs).  Current methods for validating system operating parameters rely on 

message exchange and network communications protocols, generally observed at the 

HMI. Although sufficient at the macro level, this method does not provide detection of 

malware that exhibits physical effects via covert manipulation of the PLC, as 

demonstrated by Stuxnet. In this research, an alternative method that leverages direct 

analysis of PLC input and output to derive the true state of SCADA end-devices is 

introduced.  The behavioral input-output characteristics are modeled using Petri nets to 

derive metrics for quantifying resilient properties of systems against malicious exploits.  

The results yield metrics that are applicable towards quantifying resilience in PLCs and 

implementing real-time security solutions.  These findings enable detecting programming 

changes that affect input and output relationships, identifying the degree of deviation 

from a baseline program, and minimizing performance losses against disruptive events.      
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TOWARDS QUANTIFYING PROGRAMMABLE LOGIC CONTROLLER 

RESILIENCE AGAINST INTENTIONAL EXPLOITS 

 I.  Introduction 

This chapter provides an overview of this research.  Section 1.1 introduces the 

motivation; Section 1.2 provides the research goals; Section 1.3 describes an overview of 

the research approach; Section 1.4 lists key assumptions and limitations; and Section 1.5 

outlines the thesis organization.   

1.1 Motivation 

Supervisory Control and Data Acquisition (SCADA) systems provide automated 

control and monitoring for the nation’s critical infrastructure.  Implemented in many 

industry sectors as early as the 1960’s, security was not initially a priority for SCADA 

design and development; however, recent intentional and unintentional events have 

highlighted concerns associated with SCADA security (Stouffer, 2008).  Non-intentional 

events have traditionally been addressed with redundant and fault tolerant architectures.   

However, current solutions for intentional malicious actions are not sufficient for 

addressing the threat.   

A primary risk factor associated with intentional malicious events is the trend to 

incorporate business enterprise networks for cost saving purposes.  Indeed, 

interconnecting critical systems via LAN and WAN technologies enables entry points for 

attacks via the Internet, internal workstations, or communication links between the 

control center and field sites (Stouffer, 2008).  As demonstrated by Stuxnet, an attack can 
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propagate via the enterprise network to execute code on field devices that results in 

physical damage to the underlying system (Falliere, 2011).   

Stuxnet is a recent example of an intentional malicious cyber event.  Stuxnet 

targeted a specific programmable logic controller (PLC) manufacturer and configuration.  

PLCs control physical end-devices (e.g., sensors, pumps, motors, valves) at the edge of 

SCADA systems.  Stuxnet functionally alters the PLC’s parameters such that specific 

drive motors were driven beyond nominal specifications (Falliere, 2011).  Additionally, 

Stuxnet masks modification of the PLCs functions from the SCADA system operator.  

Stuxnet demonstrates a novel threat to SCADA security since it both altered physical 

parameters to the system and concealed the modifications. 

The Stuxnet example demonstrates SCADA systems are vulnerable to rootkit-like 

exploits.  Current methods of validating the functional parameters of a PLC primarily 

consider the message exchange and network communications protocols, generally 

observed at the human machine interface (HMI).  Although sufficient at the macro level, 

this method does not provide detection of malware which exhibits physical effects and 

masks the operations from the HMI or communication channel.   

Establishing a resilient SCADA system can help mitigate risks associated with 

malicious exploits.  Resiliency requires that a system be self-aware, robust and adaptive 

(National Infrastructure Advisory Council, 2009).  Additionally, determining the 

resilience of a system requires that a system’s susceptibility to degradation and capability 

to recover be quantifiable.  Establishing a quantifiable measure of resilience for SCADA 

systems is key to protecting critical infrastructure assets. 
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1.2 Research Statement 

The goal of this research is to provide a method to quantify the identification and 

absorption of malicious alterations by monitoring and characterizing field device inputs 

and outputs to PLCs.  By focusing on the field device at the micro level, intentional 

malicious actions can be observed that otherwise would mask effects at the HMI, as was 

the case in Stuxnet.  This research investigates metrics that align with characteristics of 

resilience.  Traits such as self-awareness are a foundational characteristic of resilience 

and may provide a basis for tangible mechanisms to maintain the integrity of a PLC’s 

nominal functions in the presence of malicious events. 

1.3 Research Approach 

Establishing a metric to assess a PLC’s resilience requires both data that reflects 

nominal PLC functionality and a definition of resilience which makes the metric 

applicable.  The data used for this research is derived from PLC simulations executed on 

LogixPro® 500 software.  The definition for resilience is taken from the National 

Infrastructure Advisory Council (2009). 

The PLC simulations consist of various programs that emulate instances of a 

PLC.  Each PLC instance is subjected to malicious exploit test cases.  The simulated PLC 

programs are then observed for input-output behavior.  The behavior is characterized into 

formal Petri nets to facilitate analysis of the data and to allow for graphical and 

mathematical analysis of defined system events (Zurawski, 1994).   

This research establishes four program types for each instance.  The first two 

types of programs form two baselines for a PLC instance.  The first baseline establishes 
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the nominal ladder logic to execute a defined set of system processes.  The second 

baseline alters the original baseline’s ladder logic to protect against a known malicious 

exploit.  The second pair of programs is formed when attacks alter the logic of the first 

two baselines.  The formation of these four PLC programs forms the basis from which 

equivalent Petri nets are derived. 

The method of characterizing a PLC program via a Petri net is by defining the 

inputs, outputs, and input-output interdependencies of the PLC program.  The inputs of 

the PLC program characterize the transitions between observable process events.  The 

outputs of the PLC program characterize the observable process events.  The input-output 

interdependencies characterize the association between the transitions and observable 

process events.  The resulting Petri nets allow for graphical and mathematical analysis of 

the emulated PLC instances.  These results facilitate identification of metrics which are 

applicable to assessing resilience. 

The Petri nets are created and simulated with PIPEv4.0 software.  PIPEv4.0 

allows for non-deterministic analysis of the Petri nets (Bonet, 2007).  The results 

establish a set of tangible states and a reachability graph for each Petri net.  The tangible 

states and graphs are combined into a matrix which lists the input-output behavior for 

each Petri net.  Comparative analysis of the matrices provides several metrics that 

directly address, or indirectly support, the key aspects of resilience. 

1.4 Assumptions/Limitations 

In this research, the specific attack applied to the baseline program assumes 

knowledge of the original baseline program.  Similarly, the protective baseline program 
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utilizes knowledge of the attack.  These assumptions lead to the creation of four distinctly 

defined program categories:  (i) baseline, (ii) attack baseline, (iii) delta baseline, and (iv) 

attack delta baseline.  This research does not focus on ladder logic programming, but 

rather seeks to identify measures for differentiating between programs of known 

quantities.  By formulating known programs, the analysis is assured of presenting 

findings consistent with true input-output behavior for a PLC system under nominal, 

attack, and protected instances. 

The Petri net’s simulation software, PIPEv4.0, has limited expressive capabilities.  

Indeed, the drawing functions are limited to basic places, transitions, and arcs; however, 

the software performs sufficient simulations and analysis for the instances presented.  A 

useful element not utilized in the experimentation is the presence of inhibitor arcs.   Due 

to the lack of inhibitor arcs, some Petri nets illustrate transitions which have similar, yet 

unique, properties.  For example, a transition labeled 10 to 8 signifies the same PLC input 

sequence as a transition labeled 10to8; however, the next output state taken by the PLC is 

determined by the current place(s) which is enabling the transition 10 to 8 (also 10to8).  

Note that a labeled transition (e.g., 10 to 8) within a Petri net refers to the change in 

decimal value, from ten to eight, within the PLC’s input module.    

The assumptions, and limitation, do not alter the applicability of this research or 

the significance of its findings.  Utilizing known programs as a basis for differentiating 

input-output behavior is necessary and sufficient for this research.  Bonet compared PIPE 

to several other Petri net tools and preferred PIPE’s interface and analysis modules 

(Bonet, 2007).  The key analysis modules used are:   
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 GSPN analysis – Checks for safeness and boundedness, and generates a 
tangible state table 

 Reachability graph – Checks for safeness and boundedness, and generates a 
graph of all possible firing sequences between reachable states 

 Simulation – Performs step-wise and fully automated simulation for a Petri 
net 

Additionally, the Petri net modeling interface analysis fully captures the defined 

process requirements for each PLC instance.  The appropriate enabling states for each 

transition are representative of the proposed PLC programs. 

1.5 Thesis Organization 

Chapter 1 provides an introduction for this research.  This includes the motivation 

for this research, research statement, research approach, assumptions, and the 

organization for this document. 

Chapter 2 presents fundamental concepts and related work associated with this 

research.  Background topics include SCADA, resilience, and Petri nets.  Related work 

includes efforts related to SCADA security and resilience. 

Chapter 3 describes the experimental methodology.  First, a definition of the 

system boundaries is provided.  Second, the factors and workload applied to the system 

are defined.  Finally, details for characterizing the PLC instances into Petri nets and the 

method for performance evaluation are presented.  

Chapter 4 provides the details for the results and analysis of the PLC instances.  A 

corollary analysis of the resulting metrics is performed to identify statistically relevant 

observations.  Then significant findings from the analysis of the metrics and their 

applicability toward resilience are discussed. 
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Chapter 5 reviews the key points of this research and provides recommendations 

for follow-on research.  Finally, concluding remarks for this research are provided. 
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II.  Literature Review 

This chapter addresses fundamental concepts and related work.  Section 2.1 

details background topics in SCADA, resilience and Petri nets.  Section 2.2 discusses 

several works closely related to SCADA security and resilience.   

2.1 Background 

The background topics relevant to this research include SCADA, resilience, and 

Petri nets.  An overview of SCADA architecture is presented along with discussion on 

security vulnerabilities of associated subcomponents.  Additionally, the definition of 

resilience is discussed, and Petri nets are discussed as a practical means of modeling 

processes.   

 

2.1.1 Supervisory Control and Data Acquisition (SCADA) 

SCADA systems provide an efficient means of monitoring and controlling 

processes across large geographical regions.  SCADA systems are implemented in most 

modern industrial facilities, such as utilities and manufacturing. Approximately 90 

percent of the nation’s critical infrastructures are privately owned; a majority of these 

implementing SCADA as part of their enterprise network (Stouffer, 2008).  Indeed, 

SCADA systems allow industries to streamline operating processes that cover vast 

geographical regions.  To further enhance operating efficiency, industries have now 

integrated the SCADA system with their business enterprise networks (Stouffer, 2008).   
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2.1.1.1 Components of SCADA 

A SCADA system consists of a control center, communication links, and field 

sites (Figure 1) (Stouffer, 2008).  The control center is comprised of the following: 

 Human Machine Interface – displays status of field sites in graphical form. 

 Engineering Workstations – allows for operator control of field sites. 

 Data Historian – storage and analysis of processed data. 

 Control Server or Master Terminal Unit (MTU) – operates SCADA functions, 
and processes data between control center and field sites. 

 

 

Figure 1:  SCADA Components (Stouffer, 2008) 

 

Communication links, routers, and modems relay and convert signals for 

processing between field sites and the control center.  Field sites consist of end-devices 

that collect data from various sensors (e.g., pressure, flow, or temperature) and transmit 

the appropriate data to the MTU.  The end devices represented in Figure 1 include 

programmable logic controllers (PLC), intelligent electronic devices (IED), and remote 
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terminal units (RTU) (Stouffer, 2008).  These devices perform similar functions in that 

they locally control devices (e.g., motors, sensors, valves) and are able to communicate 

with the control center. 

While PLCs and RTUs share similarities, they differ by their interaction to end-

devices.  RTUs may communicate with other processing units prior to control of an end-

device, while PLCs are directly linked to end-devices.  PLCs are also more capable of 

tightly controlling sequential physical processes.  The PLC replaces what traditionally 

were multiple solid state relays, switches, and mechanical timers; however, PLC’s 

flexible programming facilitates configuration changes to physical process requirements. 

 

2.1.1.2 SCADA Security Issues 

SCADA systems are designed to provide cost effective control and data 

acquisition.  Security was not initially a priority of SCADA design and development.  

However, in the past decade focus on SCADA security has grown due to both intentional 

(Table 1) and unintentional events (Table 2) (Stouffer, 2008) (Falliere, 2011).  Non-

intentional events have traditionally been addressed with redundant and fault tolerant 

architectures.  Only recently has intentional consequences of malicious events drawn the 

attention of security experts in the SCADA domain.   
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Table 1:  Intentional SCADA Incidents 

 

 

The introduction of business enterprise networks to the SCADA domain has 

increased vulnerability to malicious attack.  Injection points of attack can occur via the 

Internet, the enterprise network, internal workstations, or communication links between 

the control center and field sites (Stouffer, 2008).  The end goal of a SCADA specific 

attack may include affecting the physical process by altering the end devices (e.g., 

motors, sensors, valves); such was the case with the Stuxnet worm.  Stuxnet executed 

code on specific PLCs that caused physical damage to specific drive motors (Falliere, 

2011).  Stuxnet was not detected by SCADA operators due to a rootkit that masked the 

deviant behavior. 

Name Description

Worcester Air 
Traffic 
Communications

In March 1997, a teenager in Worcester, Massachusetts disabled part of the public switched 
telephone network using a dial-up modem connected to the system. This knocked out phone 
service at the control tower, airport security, the airport fire department, the weather service, 
and carriers that use the airport. Also, the tower’s main radio transmitter and another 
transmitter that activates runway lights were shut down, as well as a printer that controllers use 
to monitor flight progress. The attack also knocked out phone service to 600 homes and 
businesses in the nearby town of Rutland (Thomas, 1998).

MAROOCHY 
Shire Sewage Spill

In the spring of 2000, a former employee of an Australian organization that develops 
manufacturing software applied for a job with the local government, but was rejected. Over a 
two-month period, the disgruntled rejected employee reportedly used a radio transmitter on as 
many as 46 occasions to remotely break into the controls of a sewage treatment system. He 
altered electronic data for particular sewerage pumping stations and caused malfunctions in their 
operations, ultimately releasing about 264,000 gallons of raw sewage into nearby rivers and 
parks (Smith, 2001).

Stuxnet Siemens 
Worm

Stuxnet is a threat targeting a specific industrial control system likely in Iran, such as a gas 
pipeline or power plant. The ultimate goal of Stuxnet is to sabotage that facility by 
reprogramming PLCs to operate as the attackers intend them to, most likely out of their 
specified boundaries. Stuxnet was discovered in July 2010, but is confirmed to have existed at 
least one year prior and likely even before. The majority of infections were found in Iran 
(Falliere, 2011).
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Table 2:  Non-Intentional SCADA Incidents 

 

 

Name Description

CSX Train 
Signaling System

In August 2003, the Sobig computer virus was blamed for shutting down train signaling systems 
throughout the east coast of the U.S. The virus infected the computer system at CSX Corp.’s 
Jacksonville, Florida headquarters, shutting down signaling, dispatching, and other systems. 
According to Amtrak spokesman Dan Stessel, ten Amtrak trains were affected in the morning. 
Trains between Pittsburgh and Florence, South Carolina were halted because of dark signals, 
and one regional Amtrak train from Richmond, Virginia to Washington and New York was 
delayed for more than two hours. Long-distance trains were also delayed between four and six 
hours (Niland, 2003).

Davis-Besse

In August 2003, the Nuclear Regulatory Commission confirmed that in January 2003, the 
Microsoft SQL Server worm known as Slammer infected a private computer network at the 
idled Davis-Besse nuclear power plant in Oak Harbor, Ohio, disabling a safety monitoring 
system for nearly five hours. In addition, the plant’s process computer failed, and it took about 
six hours for it to become available again. Slammer reportedly also affected communications on 
the control networks of at least five other utilities by propagating so quickly that control system 
traffic was blocked (Poulsen, 2003).

Northeast Power 
Blackout

In August 2003, failure of the alarm processor in First Energy’s SCADA system prevented 
control room operators from having adequate situational awareness of critical operational 
changes to the electrical grid. Additionally, effective reliability oversight was prevented when the 
state estimator at the Midwest Independent System Operator failed due to incomplete 
information on topology changes, preventing contingency analysis. Several key 345kV 
transmission lines in Northern Ohio trip due to contact with trees. This eventually initiates 
cascading overloads of additional 345 kV and 138 kV lines, leading to an uncontrolled 
cascading failure of the grid. A total of 61,800 MW load was lost as 508 generating units at 
265 power plants tripped (Minkel, 2008).

Zotob Worm

In August 2005, a round of Internet worm infections knocked 13 of DaimlerChrysler’s U.S. 
automobile manufacturing plants offline for almost an hour; stranding workers as infected 
Microsoft Windows systems were patched. Plants in Illinois, Indiana, Wisconsin, Ohio, 
Delaware, and Michigan were knocked offline. While the worm affected primarily Windows 
2000 systems, it also affected some early versions of Windows XP. Symptoms include the 
repeated shutdown and rebooting of a computer. Zotob and its variations caused computer 
outages at heavy-equipment maker Caterpillar Inc., aircraft-maker Boeing, and several large 
U.S. news organizations (Roberts, 2005).
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2.1.2 Resilience Overview 

In general terms, resilience is the ability of a system to continue to operate 

through disruptions.  This notion encompasses a multitude of other terms such as 

robustness, dependability, and survivability.  These characteristics are important to the 

protection and healing of a system.  This section surveys various resilience models from 

other domains for applicability to SCADA systems (e.g., PLCs).   

 

2.1.2.1 Defining Resilience 

Resilience has been researched in other domains in which biological, 

psychological and community resilient models have been formulated.  Biological 

resilience presents itself in the study of immune systems (VanBreda, 2001).  

Psychological resilience has been studied in the mental capacity for individuals to 

perform through adversity (VanBreda, 2001).  Community and organizational resilience 

is demonstrated through the ability of a group or region to recover from catastrophic 

events (Tierney, 2007; Cutter, 2008).  In each of these domains, a common structure of 

resilience is presented.  For example, the components of psychological resilience can be 

categorized into the following three parts (VanBreda, 2001):  

 Inner Self Mechanism - monitoring your physical, meditative, and mental 
awareness  

 Relationship Mechanism - monitoring the taking and giving awareness as well 
as your self-relationship  

 Method - monitoring your habits 
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This structure of resilience incorporate self awareness and self monitoring 

mechanisms from the psychological domain in order to initiate the actions required to 

maintain functional capacity and ability to recover. 

Similarly, Tierney (2007) presents resilience in a community or organization as: 

 Robustness - the ability of systems, system elements, and other units of 
analysis to withstand disaster forces without significant degradation or loss of 
performance 

 Redundancy - the extent to which systems, system elements, or other units are 
substitutable, that is, capable of satisfying functional requirements, if 
significant degradation or loss of functionality occurs 

 Resourcefulness - the ability to diagnose and prioritize problems and to 
initiate solutions by identifying and mobilizing material, monetary, 
informational, technological, and human resources 

 Rapidity - the capacity to restore functionality in a timely way, containing 
losses and avoiding disruptions 

Trivedi (2009) states that while qualitative descriptions of resilience across 

domains have been accomplished, applicable quantitative measures are still deficient.  

This statement is particularly applicable to computer systems.  His work attempts to 

quantify metrics that compare availability, performance, and survivability for computer 

systems (Trivedi, 2009).  Similarly, quantifying resilience of SCADA systems is 

necessary to measure their ability to perform when perturbations or disruptions to the 

system occur.  
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2.1.2.2 Resilience Framework 

While there are numerous definitions of resilience across various domains, The 

National Infrastructure Advisory Council (NIAC) provides perhaps the most fitting 

definition with respect to SCADA.  NIAC (2009) define infrastructure resilience as: 

“the ability to reduce the magnitude and/or duration of disruptive events. The 
effectiveness of a resilient infrastructure or enterprise depends upon its ability to 
anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive 
event.” (p. 8)  

This definition provides a framework for resilience according to the following 

four characteristics: 

1. The ability to anticipate a potentially disruptive event requires that the 
system has a self awareness of its baseline and is able to monitor its 
current state.   

2. The ability to absorb potentially disruptive events requires that the system 
has mechanisms in place to minimize the amount, if any, of performance 
loss.   

3. The ability to adapt requires that the system have contingencies available 
that allow for flexible system adjustments to maintain operational 
availability.   

4. The ability to recover from a disruptive event requires mechanisms (either 
automated or manual processes) which allow the system to perform up to 
its baseline. 

 

2.1.3 Petri Nets Overview 

Petri nets are named after its creator Carl A. Petri in 1962 (Zurawski, 1994).  

Initial development in 1962 concentrated on the study of communication via automata.  

Zurawski and Zhou provide a simple definition (Zurawski, 1994):  

“Petri nets as, graphical and mathematical tools, provide a uniform environment 
for modeling, formal analysis, and design of discrete event systems.” (p. 567)    
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In its graphical form, Petri nets consist of four basic parts: (i) places, (ii) 

transitions, (iii) arcs, and (iv) tokens.  The places and transitions are indicative of nodes 

within a graph and arcs relate to pairs of places and transitions.  The tokens represent 

places which are active (marked).  Table 3 lists examples of places and transitions. 

 

Table 3:  Examples of Petri Net Places and Transitions (Abhishek, 2005) 

 

 

2.1.3.1 Simple Petri Net Example 

Figure 2 illustrates three markings of a Petri net modeling a simple traffic light, 

with one light for red, yellow, and green (Abhishek, 2005).  Places are represented by 

circles, transitions as blocks (or bars), arcs as directed arrows, and tokens as dots.  The 

initial marked graph (M0) shows that a token is active in the red place, which is 

interpreted as the red light being active (or illuminated).  Note that there is only one token 

in the red place of the initial marked graph (M0) to emphasize that only one red light 

exists for this example.  The presence of multiple tokens in one place may be interpreted 

as the existence of more than one red light in the system.   

The basic rules for transitioning a Petri net from one marked graph (M0) to the 

next (M1) involves the action of the transitions (Peterson, 1977).  The execution of a 

transition is called firing.  In order for a transition to fire, the transition must be enabled.  

Places Transitions
pre/post condition event
input/output data computational step
input/output signal signal processor
resources tasking
buffer processor
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A transition is enabled, and may fire, if all its input places contain at least one token.  

Note that even though a transition is enabled, it is not strictly required to fire.  The firing 

of a transition results in moving a token from the input places to all output places.  In the 

traffic light example, all transitions have only one input and output place, so it is easily 

shown that the number of tokens in the Petri net remain unchanged (at one).  Figure 2 

shows all possible states of the Petri net (based on the initial state of M0 with one token).  

The sequence of places is limited to one light (red, green, or yellow) illuminated in any 

specific instance, and limited to one repeating sequence (R  G  Y). 

 

 

Figure 2:  Example Traffic Light Petri Net 

 

2.1.3.2 Formal Definition of a Petri Net  

A Petri net C consists of four subsets, C = {P, T, I, O}, such that P is a set of 

places, T is a set of transitions, I is a set of input functions for each transition, and O is a 
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set of output functions for each transition (Peterson , 1981).  The formal definition for the 

traffic light example in Figure 2 is represented as: 

 C = {P, T, I, O} 

 P = {red, green, yellow} 

 T = {T0, T1, T2} 

 I(T0) = {red}, I(T1) = {green}, I(T2) = {yellow} 

 O(T0) = {green}, O(T1) = {yellow}, O(T2} = {red} 

 

2.1.3.3 Petri nets in Application 

Petri nets have been applied to modeling of performance, reliability, fault 

recovery, and fault tolerance in various systems such as operating systems, queues, traffic 

control and mathematics (Peterson, 1981). Additionally, modeling of manufacturing 

processes similar to SCADA applications have also been analyzed (Zurawski, 1994).  

However, the analysis of these systems focuses primarily on fault tolerance and reliability 

within the systems’ designs.  Utilizing Petri nets to analyze systems for intentional 

exploits (e.g., malware) is significant to increasing the security posture of SCADA 

systems. 

Properties of Petri nets that are practical for analysis of SCADA applications are 

concurrency, safeness and boundedness (Peterson, 1977).  Concurrency allows for the 

modeling of parallel processes that occur between the multiple devices that interact in a 

SCADA system.  Safeness and boundedness addresses the potential issue of state 

explosion when analyzing a system.  Safeness implies no more than one token may be 
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present in each place of a Petri net.  It follows that if a Petri net is safe, then it is also 

bounded.  This results in a finite set of reachable markings since tokens are not created 

without bound.  These properties well suit the defined configuration and deterministic 

interdependencies present in SCADA systems.  Properly defining places and transitions 

for a Petri net based on SCADA system processes should result in a finite set of states.   

2.2 Related Work 

The related works section examines analysis and resiliency concepts relating to 

SCADA security.  Queiroz (2010) and Germanus (2010) present individual models for 

SCADA security analysis at a macro-level, while Shah (2008) explores SCADA security 

protocol at a micro-level.  Wei (2009) provides an exploratory analysis of resilience 

metrics that may be utilized to assess industrial control systems.    

 

2.2.1 Survivable SCADA Systems 

Queiroz (2010) presents a model to quantify SCADA system performance against 

a denial of service (DoS) attack.  The model focuses on the interplay of four main 

components of a SCADA system:  RTU, MTU, HMI Server, and Data Historian.  The 

availability of each component is modeled as queues that allow each service to handle a 

specific number of requests.  The aggregate output of each component’s availability is 

compiled into a Bayesian table, which incorporates the interdependencies, and then 

quantifies the survivability of the SCADA system.  Figure 3 provides a summary for two 

sets of sample data.  The thresholds for each of the SCADA components (i.e., normal, 
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degraded, unavailable) and survivability (i.e., yes, no) for the system is pre-determined 

prior to model analysis.   

 

 

Figure 3:  Queiroz’s Summary for Sample Data (Queiroz, 2010) 

 

Quieroz’s research contributes to part two of the previously defined resilience 

framework (i.e., the ability to absorb potentially disruptive events requires that the system 

has mechanisms in place to minimize the amount, if any, of performance loss).  

Interdependencies of a particular SCADA system may be analyzed to determine if the 

architecture is survivable against a DoS attack.  The result of the analysis can be used to 

improve the absorptive capacity for the SCADA system.  Quieroz’s approach is sufficient 

for system wide analysis of a SCADA system and the timing interdependencies between 

network nodes.  However, it does not account for hardware or software faults.  They 

assume that each node itself is not prone to failure; only that the communication between 

the nodes is interrupted which causes degradation of node availability, and subsequently 

system survivability.   

The Quieroz (2010) approach ignores traditional fault tolerance or the presence of 

malware.  Hardware faults are traditionally classified in the domain of fault tolerance, 

while software faults may include malware exploits such as Stuxnet.   Additionally, 
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Quieroz’s contribution towards resilience resides at the macro level of the SCADA 

system.  No observations are made to determine the specific behavior of one particular 

node.  This approach does not address part one of the resilience framework (i.e., the 

ability to anticipate a potentially disruptive event requires that the system has a self 

awareness of its baseline and is able monitor its current state) and lacks the sensitivity to 

detect malware.  While the model works well in determining susceptibility to DoS attacks 

and improving a SCADA system’s absorptive capacity, it is insufficient in monitoring the 

current state of the SCADA system to aid real-time monitoring of system behavior at a 

micro-level (e.g., end-device control via PLC). 

 

2.2.2 Redundant SCADA Network Architecture 

Germanus (2010) presents a model in which communication between the RTU 

and MTU is performed via redundant links throughout the SCADA system.  The model 

implements the redundant paths as middleware that are assumed to be free from security 

vulnerabilities.  This model may improve the SCADA system’s resilience against DoS 

and man-in-the-middle (MITM) attacks.  DoS attacks may be mitigated by using the 

redundant paths available on the network links.  MITM attacks may be mitigated by the 

data integrity checks associated with the middleware.  Figure 4 illustrates the middleware 

model that passively extracts SCADA communication and relays it across the peer-to-

peer (P2P) overlay.  
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Figure 4:  Germanus’ Middleware Building Blocks (Germanus, 2010) 

 

The advantages to this model are flexibility, interoperability, and minimal 

intrusiveness.  The flexibility allows the system to withstand link failures which 

addresses part two of the resilience framework (i.e., the ability to absorb potentially 

disruptive events requires that the system has mechanisms in place to minimize the 

amount, if any, of performance loss).  Figure 5 illustrates the interoperability and minimal 

intrusiveness of Germanus’ model which facilitates deployment of the model to existing 

SCADA systems since the P2P overlay uses middleware as an interface between existing 

RTU and MTU links (Germanus, 2010). 
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Figure 5:  Germanus’ (2010) Redundant P2P Model 

 

The model expands on Quieroz’s research contribution to SCADA resilience in 

two ways.  First, it can be implemented real-time on existing SCADA system 

infrastructure.  Second, the redundant network paths provide increased node availability, 

and therefore increase survivability of the SCADA system.   

Similar to Quieroz’s research, Germanus’ analysis resides at the macro-level of 

the SCADA system.  Detection of hardware and software faults local to either the RTU or 

MTU is undetected since it is isolated to the SCADA system’s communication links.  

Local behavior of any particular RTU is still only monitored through the HMI.  However, 

the P2P overlay is able to provide real-time feedback of link or message abnormalities 

and partially addresses part one of the resilience framework since it will detect systemic 

behavior. 
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2.2.3 Mechanisms to Provide Integrity in SCADA Devices 

Shah (2008) presents a method to verify the executable code of a PLC.  The 

method implements a challenge-response protocol between the PLC and an external 

dispatcher.  A verification function resides on both the PLC and dispatcher.  Figure 6 

summarizes the steps of the verification protocol.  Steps one through three assures that 

the verification function is trustworthy, while steps four and five assure that the 

executable code of the PLC is untampered (Shah, 2008).  Steps one through five of 

Shah’s challenge-response protocol is as follows: 

1. The dispatcher sends a random challenge to the PLC. 

2. The verification function of the PLC computes a checksum. 

3. PLC returns the results to the dispatcher. 

4. Verification function of the PLC creates a hash of the executable code. 

5. PLC sends the hash result to the dispatcher which compares it against the 
known hash. 

 

Figure 6:  Shah’s (2008) Verification Function Overview 
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This method of verifying executable code on the PLC approaches SCADA 

resilience from the local node level as opposed to the system-level approaches of Quieroz 

and Germanus.  Shah’s method addresses the first part of the resilience framework (i.e., 

the ability to anticipate a potentially disruptive event requires that the system has a self 

awareness of its baseline and is able monitor its current state) since it is able to detect 

changes to the executable code on the PLC.  It also provides flexibility since it may be 

implemented in existing PLCs currently deployed in the field; however, it requires that 

the verification function be integrated with the PLC.   

Shah’s method incurs several logistical issues.  The paper acknowledges that the 

verification functions of the PLC and dispatcher are different for each PLC manufacturer 

(Shah, 2008).  While the challenge-response protocol is general across platforms, the 

verification functions differ based on the PLC architecture.  Another logistical issue is 

that the PLC must be taken off-line to perform the challenge-response protocol between 

the dispatcher and PLC.  This presents operational impacts to most SCADA systems 

since most PLCs run real-time applications.    

Shah (2008) also acknowledges that the verification process only assures that no 

malicious code is present at the time the verification function is performed between the 

dispatcher and PLC.  It does not prevent timed attacks in which the adversary may 

execute malicious code on the PLC between verification timelines.  Additionally, the 

method does not address the second part of the resilience framework (i.e., the ability to 

absorb potentially disruptive events requires that the system has mechanisms in place to 

minimize the amount, if any, of performance loss) since no processes are in place to 

reduce the effect of malicious code once detected.    
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2.2.4 Resilient ICS:  Concepts, Formulation, Metrics, and Insights 

Industrial control systems (ICS) are deployed in sectors such as agriculture, 

utilities, and transportation.  Wei (2009) presents a set of resilience metrics that may be 

used to quantify performance of a system.  Figure 7 identifies the trigger points for a 

resilient system across a timeline.  The trigger points are utilized to define equations for 

protection time, degradation time, identification time, recovery time, performance 

degradation, performance loss, total loss, and overall potential critical loss.  

 

 

Figure 7:  Wei’s Resilience Curve (Wei, 2009) 
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Subsets of the defined equations that apply to the first and second parts of the 

resilience framework are (Wei, 2009):   

 Protection time – time that the system tolerates an incident without 
degradation 

 Degradation time – time that the system incurs to reach its minimum 
performance level 

 Identification time – time from incident occurrence to system identification 

 Performance degradation – difference between baseline performance and 
degraded performance due to incident 

 

The four definitions presented by Wei address the detection of the incident and 

the level of mitigation the system performs.  These definitions, or slight variations of 

them, may aid in analyzing various models that seek to improve resilience in SCADA 

systems.  

2.3 Summary of Literature 

This chapter presented the relevant background and related works associated with 

quantifying resiliency of PLCs through the use of Petri nets.  Knowledge of SCADA 

architecture and security vulnerabilities is a foundational element.  A formal definition of 

resilience and Petri nets is also relevant to key areas of Chapters 3 and 4 of this research.  

The various SCADA security analysis techniques presented at both the macro and micro-

levels provide a basis of comparison for the proposed methodology of Chapter 3.  The 

related work on resilient metrics for ICS is insightful to the hypothesis of this research 

and gives relevance to findings in Chapter 4.  
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III.  Methodology 

This chapter presents the methodology for characterizing the PLC ladder logic 

programs into equivalent Petri nets for evaluating metrics to assess resilience.  Section 

3.1 describes the goal and hypothesis for this research.  Section 3.2 identifies the system 

boundaries.  Section 3.3 describes the system services.  Section 3.4 lists the parameters of 

the system.  Section 3.5 defines the factors that apply to the system.  Section 3.6 

describes the workload applied to the system.  Section 3.7 details the approach for 

characterizing the ladder logic into equivalent Petri nets.  Section 3.8 identifies the 

performance metrics derived from the experimentation.  Section 3.9 describes the 

evaluation method used to form resilience metrics.  Section 3.10 outlines the 

experimental design.  

3.1 Problem Definition 

Improving the resilience of ICS allows critical infrastructures to withstand 

degrading events, and recover to a nominal functional capability within an acceptable 

period.  However, determining resilience requires that a system’s susceptibility to 

degradation and capability to recover is quantifiable. Narrowing the scope of research to 

a micro-level component of a SCADA system provides a basis to facilitate evaluation of 

potential resilience metrics.   

 

3.1.1 Goal 

The primary goal of this research is to identify metrics that may assess a PLCs 

performance with respect to the resilience framework presented in Chapter 2.  A 
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complimentary goal is to identify metrics that are applicable to real-time physical 

mechanisms.   The resilience curve (Figure 7) identifies trigger points that are utilized in 

evaluating resilience performance; however, the mechanisms for the triggers are absent.  

Achieving both research goals may result in applicable mechanisms which appropriately 

assess resilience in controlled (e.g., benchmark) and real-time (e.g., operations) 

environments.  This research may reveal comparative metrics that help determine if 

awareness of the system state is discernible.  Self-awareness is a foundational 

characteristic of the resilient framework and provides a basis for tangible mechanisms to 

implement trigger points in real-time hardware protection schemes.    

 

3.1.2 Hypothesis 

The hypothesis of this research is that a PLC’s ability to identify and absorb 

malicious alterations is quantifiable by monitoring system outputs in response to system 

inputs.  The approach to derive the metrics for resilience assessment uses comparative 

analysis of various instances of PLC programs. 

3.2 System Boundaries 

The system under test (SUT) is the PLC processes.  Figure 8 illustrates the SUT 

and associated inputs and outputs.  The workload applied to the SUT includes various 

attack instances as detailed in Section 3.6.  The parameters applied to the SUT are 

primarily fixed attributes of the PLC emulation provided by LogixPro® 500; the varying 

parameter during experimentation is the protection scheme applied to each specific PLC 
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instance.  The metric produced from the SUT is the decimal input and output values 

produced during program execution. 

 

 

Figure 8:  PLC SUT Diagram 

 

System components that comprise the PLC include: Memory, Data/Code, CPU, 

Input Ports, Output Ports, Power Supply, and Communication Port.  The component 

under test (CUT) is the data/code or programming logic of the system.  Data/code is 

programmed in ladder logic from a laptop with the accompanying LogixPro®  500 

software package associated with the PLC.  The program is loaded to the PLC which 

executes the ladder logic and produces observable output signals in response to input 

signals. 

3.3 System Services 

A PLC provides four primary services:  (i) execution of the ladder logic program, 

(ii) monitoring of input signals, (iii) production of output signals, and (iv) providing data 

back to the master device of a SCADA system.  It is assumed that accurate data are 
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transmitted to the master device (i.e., no spoofing of output states), and that input signals 

are only injected at valid input ports (i.e., no spoofing of input states).  It is also assumed 

that the programs (i.e., baseline and enumerated versions) are not subject to hardware 

faults or undesired software faults.  These assumptions isolate the boundary of the system 

from external influences, and assure the integrity of the applied inputs and observed 

outputs. 

The primary services monitored are the applied inputs and the behavior of the 

outputs.  The observed PLC output signals are a direct result of the PLC program code 

execution and the input signal status.  Applying inputs to the PLC produces output signal 

states that affect the end-devices (e.g., motors, lights, actuators).  These behavioral 

responses of the output states in response to the input states are measurable in the 

observed status of the end-devices.  The PLC’s interaction with the end-devices fall into 

one of three observable response categories:  

 Valid – Nominal input results in nominal output processes 

 Degraded – Nominal input results in deviant but safe output processes.  A safe 
outcome is defined as a non-nominal output response in which the system’s 
interactions with end-devices do not cause catastrophic losses (e.g., minor 
perturbations) 

 Unstable – Nominal input results in deviant and unsafe processes.  An unsafe 
outcome is defined as a non-nominal output response in which the system’s 
interactions with end-devices may cause catastrophic losses (e.g., loss of life 
or resources) 

 

Table 4 outlines system responses using a traffic signal example.  For this 

example, the input is an automated timed sequence which transitions the light between its 
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potential outputs.  In nominal conditions the sequence is always valid (see Table 4).  

However, as seen in Table 4, in non-nominal conditions the sequences are degraded 

(within defined process requirements) or unstable (outside defined process requirements).  

The output of the end-devices (i.e., lights) are observed, and categorized accordingly. 

 

Table 4:  Example Traffic Light System Response 

 

 

3.4 System Parameters 

The following are the system parameters:  Power Input, Communication Port 

Input, Communication Port Output, CPU scanning speed, Memory size, Input module 

size, Output module size, Data/Code (programmed Ladder Logic).  Table 5 describes 

each parameter. 

Category Traffic Signal Output
Valid Lights transition from green to yellow to red.
Degraded Lights transition from green to yellow to flashing red.
Unstable Lights transition from green to yellow to green.
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Table 5:  Parameters 

 

 

3.5 Factors 

The factor of interest resides in the ladder logic programs of the PLC.  Two 

variations of a program baseline are applied to the CUT.  The research environment 

consists of a process emulation using LogixPro® 500.  LogixPro® 500 provides a 

graphical user interface to develop, compile, and execute distinct instances of PLC 

Parameter Description

Power Input Provides power to the PLC via an AC to DC inverter.  This remains at factory 
default (24VDC).

Communication Input 
Port

Provides access to write to PLC memory.  This is used to download program 
code to the PLC via serial communications using RS-232 signaling.  During 
testing, the port is not used and is in a closed state.

Communication 
Output Port

Provides external and remote monitoring of the PLC via an external master 
unit.  During testing, the port is not used and is in a closed state.

CPU Scanning 
Speed

Adjusts the rate at which the code is read from memory.  The experiment will 
use factory default settings of 44 Kbps.

Memory Size
Memory size is upgradeable depending on the size of programming required.  
The experiment does not necessitate programs larger than the factory default 
memory space.  The experiment will use the factory default of 1K.

Input Module Size
Modules are upgradeable depending on the number of required inputs signals 
that are required to connect to the PLC.  The experiment does not necessitate 
a number larger than the factory default input module size (4 input channels).

Output Module Size
Modules are upgradeable depending on number of required outputs signals that 
are required to connect to the PLC.  The testing scenarios do not necessitate a 
number larger than the factory default output module size (4 output channels).

Data/Code (Ladder 
Logic)

Ladder logic is the data held in memory which is executed by the CPU.  Input 
channels are scanned, depending on the program logic, and output channels are 
energized.
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programs and system operating parameters. The multiple instances demonstrate distinct 

observable input-output behavioral patterns when subjected to various example malicious 

attacks. For each instance, two baseline program categories are established:   

 Baseline – A program to perform defined process requirements; generates 
valid input-output responses. 

 Delta Baseline – A protection scheme applied to the baseline that generates 
valid input-output responses. The protection scheme can be considered 
equivalent to a fail-safe system state (e.g., flashing red lights for a roadway 
stoplight system). 

 

3.6 Workload 

The workload includes ten instances of PLC attacks applied to the CUT.  These 

ten instances were created such that degraded physical operations of the system are 

readily observable.  Table 6 summarizes the ten attack instances.  The attacks, in 

combination with the baseline program categories, form two additional program 

categories: 

 Attack Baseline – A targeted attack to the baseline that generates degraded or 
unstable input-output responses. 

 Attack Delta Baseline – A targeted attack applied to the delta baseline that 
generates valid, degraded or unstable input-output responses. 
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Table 6:  Ten PLC Attack Instances 

 

 

3.7 Approach 

This section describes the methodology for characterizing the input-output 

relationships for a PLC’s programming logic. An initial baseline program is established 

that incorporates PLC programming for an operational system. Once the baseline is 

established, modifications are made to emulate a PLC infected with malware. Protective 

schemes are then applied to mitigate effects of the malware.  The enumerated instances of 

the PLC programs are evaluated to observe deviations of input-output behavior.  Petri net 

Instance Description

1 remove logic for proximity sensor in rung 3; quickly floods plant unless 
stopped manually

2 remove ladder logic for level sensor in rung 2; quickly floods plant unless 
stopped manually

3 remove logic for manual stop in rung 0; plant runs continuously

4 remove logic for full signal in rung 3; slowly floods plant due to lag 
response of fill valve to close; may stop manually

5 combine attack 2 & 4; quickly floods plant; may stop manually

6 combine attacks 2, 3, and 4; quickly floods plant; manual stop disabled

7 remove logic for proximity sensor and full light signal in rung 1; slowly 
floods due to containers not stopping at fill station; may stop manually

8 combine attack 6 & 7; quickly floods plant; manual stop disabled

9 remove full light and motor signal in rung 4; slowly floods plant; may stop 
manually

10 remove logic for proximity sensor and motor signal in rung 4; quickly 
floods; may stop manually
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models are then utilized to extract metrics that measure the PLC’s security performance 

with respect to the resiliency framework.  

The various PLC instances establish a basis of observable input-output responses 

that are modeled and analyzed using Petri nets. The observations obtained from the input-

output responses are consistent with black-box analysis; however, application of the 

targeted attacks and protection schemes use the PLC program to facilitate differentiation 

of observed behavior from the defined nominal process requirements.  The following 

steps describe the methodology for deriving each of the four program categories and 

equivalent Petri nets. 

1. Establish Baseline Program – A ladder logic program is developed to 
perform defined nominal process requirements. The baseline program 
generates valid system input-output responses.   

2. The possible combinations for outputs of the formal ladder logic are 
abstracted as places in a Petri net.   

3. The possible combinations for inputs of the formal ladder logic are 
abstracted as transitions in a Petri net.   

4. The input and output interdependencies of the formal ladder logic are 
abstracted as input and output functions for each of the potential 
transitions of the Petri net.   

5. The data obtained in steps 2 through 4 are combined to define a Petri net 
for stochastic analysis of the input-output behavior.   

6. Establish Delta Baseline Program – The original ladder logic developed 
in Step 1 is modified to incorporate a protective scheme that generates 
valid input-output responses. Steps 2 through 5 are repeated to produce the 
equivalent Petri net of the delta baseline PLC Program. 

7. Establish Attack Baseline Program – This step modifies the ladder logic in 
a manner consistent with a targeted malicious attack. Steps 2 through 5 are 
repeated to produce the equivalent Petri net of the attack baseline PLC 
Program. 
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8. Establish Attack Delta Baseline Program – The ladder logic developed in 
Step 7 is modified with a targeted attack to generate degraded or unstable 
input-output responses. Steps 2 through 5 are repeated to produce the 
equivalent Petri net of the attack delta baseline PLC Program. 

 

This research examines ten instances and varying attacks using an example silo 

process for experimentation.  Each PLC instance has a baseline and delta baseline 

program; each instance also has an attack applied to each baseline.  The net result is each 

PLC instance has four generated programs and corresponding Petri nets.  The following 

provides a step-by-step guide to generate the four programs and corresponding Petri nets 

for the first PLC instance.  The remaining nine instances are derived in a similar fashion; 

the resulting programs and Petri nets are provided in Appendix A.    

 

3.7.1  Establish Baseline for PLC Instance #1 

This phase constructs a ladder logic program which executes a defined set of 

process requirements.  Consider, for example, a system process in a silo plant that fills 

containers via a conveyer belt and automated sensors.  The nominal processes for the silo 

plant are:  bring an empty container into the plant, maneuver the container under the silo 

valve, fill the container until full, and ship the full container out of the plant.  Figure 9 

shows a baseline ladder logic program for the process. 
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Figure 9:  Ladder Logic of Baseline Program 

 

 

3.7.2 Characterize Baseline Program as Petri Net 

This phase translates the ladder logic program into an equivalent Petri net.  

Potential inputs, outputs, and interdependencies of the program are converted into a Petri 

net C = {P, T, I, O}.  The formal definition of C is used to generate a graphical Petri net 

that is simulated to derive analytical data and metrics. 
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3.7.2.1 List Potential Output Behavior 

Output behavior of the program is monitored and recorded during its execution.  

For this example, output behavior during simulation is described as the following: deliver 

container, stop deliver, fill container, stop fill, container full, depart silo, stop depart, ship 

container, stop ship.  Note that observed output behavior of the program closely mirrors 

the nominal process requirements described in Section 3.7.1; the only additions are the 

stop intervals during any portion of the program’s execution.  This is as expected since a 

PLC directly controls physical devices. 

The output behaviors form the set of output places, P, for the Petri net C:  P = 

{deliver container, stop deliver, fill container, stop fill, container full, depart silo, stop 

depart, ship container, stop ship}.  Note that a place (e.g., deliver container) within a 

Petri net is defined as an observed physical process of the PLC. 

 

3.7.2.2 List Potential Input Transitions 

Input transitions of the program that result in changes to output behavior are 

monitored and recorded.  For example, consider the following input transitions:  2 to 0, 2 

to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 24, 26 to 27.  These input 

transitions form the set of transitions for the Petri net:  T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 

10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 24, 26 to 27}.  Note that a transition (e.g., 2 to 

0) within a Petri net is defined as a change in decimal value from two to zero, within the 

PLC’s input module.    



 

40 

3.7.2.3 Identify Input-Output Interdependencies 

The input and output interdependencies of the program during execution are 

monitored and recorded.  This step defines the arcs that interconnect the places and 

transitions of the Petri net.   The process of defining each of the Petri nets focuses strictly 

on PLC program input transitions that cause a physical output state to change.  For 

example in the baseline program, the act of the user releasing the stop button causes the 

input value to transition from 0 to 2; however it causes no change to the output state.  

Only the act of pressing the stop button (changing input value from 2 to 0) may cause a 

change to the output state.  This simplification to the Petri net models enables PIPEv4.0 

to adequately model the input-output behavior of the PLC programs.  Note that the output 

places are annotated with the cumulative decimal value of the PLC’s output module for a 

given observable physical process (i.e., deliver container is manifested when the decimal 

value of the PLC is 5).  The set of I consist of the following functions: 

 I(2 to 0) = {deliver container (5)} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {deliver container (5)} 

 I(10 to 2) = {ship container (21)} 

 I(10 to 8) = {fill container (14), ship container (21)} 

 I(10 to 11) = {stop fill (0), stop ship (0)} 

 I(10 to 26) = {fill container (14)} 

 I(26 to 10) = {depart silo (21), container full (20)} 

 I(26 to 24) = {depart silo (21)} 

 I(26 to 27) = {stop depart (0)}  
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The set of O consist of the following functions: 

 O(2 to 0) = {stop deliver (0)} 

 O(2 to 3) = {deliver container (5)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 2) = {deliver container (5)} 

 O(10 to 8) = {stop fill (0), stop ship (0)} 

 O(10 to 11) = {fill container (14), ship container (21)} 

 O(10 to 26) = {depart silo (21), container full (20)} 

 O(26 to 10) = {ship container (21)} 

 O(26 to 24) = {stop depart (0)} 

 O(26 to 27) = {depart silo (21)} 

 

3.7.2.4 Formal Petri Net of Program 

The formal Petri net for the baseline program is defined as C = {P, T, I, O}.  

Combining the definitions for P, T, I and O from Section 3.7.2.1 through Section 3.7.2.3 

results in the graphical Petri net presented in Figure 10.   
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Figure 10:  Petri Net of Baseline Program 

    

3.7.3 Establish Delta Baseline Program 

Establishing a delta baseline program provides a ladder logic program which 

emulates the process requirements of the baseline program.  The primary difference is 

that it provides robustness against a targeted attack (Table 6).  The formation of the 

baseline and delta baseline program comprises the two possible factors for each PLC 

instance.  Characterization of the delta baseline program into a Petri net follows the 

method described in Section 3.7.2.  The resulting ladder logic and Petri net for the delta 

baseline program is provided in Appendix A. 

 

3.7.4 Apply Workload (Attacks to Baselines) 

The applications of attacks to the baseline and delta baseline programs comprise 

the workload for the experimentation.  The attacks modify the ladder logic of each of the 

baseline program.  The resulting attacks result in two additional PLC programs:  attack 
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baseline, and attack delta baseline.  Characterization of these two programs via a Petri 

net follows the method described in Section 3.7.2.  The resulting programs and Petri nets 

for the attack baseline, and attack delta baseline, are provided in Appendix A. 

In all PLC instances the attack baseline programs demonstrate degraded or 

unstable output; similarly, all attack delta baseline programs demonstrate stable or 

degraded output.  This outcome is a product of the assumption that states all attacks are 

based on internal knowledge of the baseline program.  This also highlights the fact that 

the delta baseline programs are consequently more robust than the baseline programs 

when similar attacks are applied.  

3.8 Performance Metrics 

The metric of interest produced from the SUT are the decimal values of the input 

and output states during the execution of the programs for each PLC instance.  The 

decimal values of the input and output states are measured directly from the input and 

output modules of the PLC.  Observing the input-output behavior during program 

execution allows for the characterization of an equivalent Petri net.  The Petri nets are 

then analyzed to derive comparative metrics to determine which set(s) of programs 

provide significant findings towards assessing a PLC’s performance with respect to the 

resilience framework. 

Performing a pair-wise comparison between the four possible programs results in 

six possible pairings:  

 (baseline – delta baseline) 

 (baseline – attack baseline) 
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 (baseline – attack delta baseline) 

 (attack baseline – delta baseline) 

 (attack baseline – attack delta baseline) 

 (delta baseline – attack delta baseline) 

 

Analyzing the observed differences between these pairings provides metrics for 

assessing PLC performance with respect to the resiliency framework.  The direct 

measurements and comparisons of the input and output states of the PLC provide a true 

representation of the PLCs performance. 

3.9 Evaluation Technique 

The experiments are performed via two methods:  (i) direct measurement on PLC 

hardware, and (ii) simulated results evaluated with a Petri net model. 

 

3.9.1 Direct Measurement via PLC 

The setup for this method utilizes LogixPro® 500 and a laptop with Windows 7 

(64-bit) installed.  For each PLC instance, four programs are created.  The first program 

is the baseline program which executes defined nominal process requirements.  The 

second is a delta baseline program which also executes defined nominal process 

requirements, but is more robust against the application of a specific attack.  The third 

program is a modified version of the baseline program to simulate application of a 

specific attack.  The fourth program is a modified version of the delta baseline program to 
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simulate the application of the same specific attack previously demonstrated in the third 

program.   

Both the baseline and delta baseline programs should produce predictable and 

valid responses for all input sequences.  The third program (attack baseline) should 

exhibit degraded or unstable responses as a consequence of the knowledgeable applied 

attack.  The fourth program, depending on its level of robustness, should exhibit valid or 

degraded responses.   

The input-output behavior during the execution of the four programs is monitored 

and recorded.  The derived metrics provide the basis for characterizing the equivalent 

Petri nets.  Additionally, the number of ladder logic modifications made between each of 

the four programs is recorded.  These metrics provide the basis for quantifying the 

internal modifications made to the PLC programs. 

 

3.9.2 Petri net Analysis 

The setup for analysis of the Petri nets uses Platform Independent Petri Net Editor 

version 4.0 (PIPEv4.0) and a laptop with Windows 7 installed (32-bit).  For each PLC 

instance, four equivalent Petri nets are created.  The purpose of each Petri net follows the 

four programs described in Section 3.9.1.  The input-output behavior during the 

simulation of the four Petri nets is monitored and recorded.  These metrics provide the 

basis for quantifying the external input-output behavior of the PLC programs.   
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3.10 Experimental Design 

Experimental trials consist of full factorial (without replication) configuration for 

the PLC and equivalent Petri nets.  The two baseline programs combined with the attacks 

of each PLC instance result in four program categories that alter the data/code. 

 Data/Code 

1. Baseline – A program to perform defined process requirements and 
generates valid input-output responses. 

2. Attack Baseline – A targeted attack to the baseline that generates degraded 
or unstable input-output responses. 

3. Delta Baseline – A protection scheme applied to the baseline that 
generates valid input-output responses. The protection scheme can be 
considered equivalent to a fail-safe system state (e.g., flashing red lights 
for a roadway stoplight system). 

4. Attack Delta Baseline – A targeted attack applied to the delta baseline that 
generates valid, degraded or unstable input-output responses. 

 PLC instances – See Table 6 in Section 3.7 for description of ten PLC 
instances. 

 Methods – Metrics collected from both the PLC and Petri net simulations. 

 

Full factorial experimentation leads to:  4 (program categories) * 10 (PLC 

instances) * 2 (methods: PLC/Petri net) = 80 trials 

3.11 Summary of Methodology  

This chapter provided the goals of the experimentation and detailed the 

boundaries and approach.  The goals of this research are to identify metrics that may 

assess a PLC’s resiliency and applicability as trigger points in real-time hardware 

protection schemes.   The boundaries of the SUT are the PLC; the CUT is the ladder logic 
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program that executes on the PLC.  The approach consists of emulating ten PLC 

instances.  Each PLC instance is comprised of four varying program types:  baseline, 

delta baseline, attack baseline and attack delta baseline.  Execution of the PLC instances 

occurs in both emulated hardware simulations and equivalent Petri net simulations.   

The PLC simulations provide delta ladder logic metrics, and the Petri net 

simulations provide delta input-output behavioral metrics.  The comparative analysis 

performed between all PLC program and Petri net metrics result in six comparative 

metrics which form the basis for quantitative analysis to achieve the stated goals:   

 (baseline – delta baseline) 

 (baseline – attack baseline) 

 (baseline – attack delta baseline) 

 (attack baseline – delta baseline) 

 (attack baseline – attack delta baseline) 

 (delta baseline – attack delta baseline) 
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IV.  Results and Analysis 

The purpose of this chapter is to document the analysis and results derived from 

the behavioral-based characterization process of PLCs.  The primary focus is to 

determine the applicability of potential metrics that directly, or indirectly support, the 

four characteristics of the resilience framework as documented in Chapter 2.  The metrics 

are a result of a general stochastic Petri net (GSPN) analysis for each of the Petri nets 

derived in Chapter 3.   

Section 4.1 documents the results of the GSPN analysis for each of the Petri nets.  

Section 4.2 presents corollary analysis of the resulting metrics to identify statistically 

relevant observations.  Section 4.3 reports the significant findings from the analysis of the 

metrics and applicability toward the resilience framework. 

4.1 Results of Simulation Scenarios 

This section describes the collection and organization of data produced from the 

experimentation.  The behavioral-based characterization process yields equivalent Petri 

nets that facilitate analysis of the PLC input-output behavior.  The Petri net simulation 

application, PIPEv4.0 (Bonet, 2007), is used to execute a GSPN analysis for each of the 

40 Petri nets.  The results of the GSPN analysis provide the reachability matrices of each 

Petri net. 

 

4.1.1  Derivation of Tangible State Table 

A tangible state table is a direct result of the characterization process and 

facilitates quantitative analysis.  The GSPN analysis module of PIPEv4.0 produces a 
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table of states and lists the output characteristics for each state.  Table 7 illustrates the 

tangible state table for one example baseline PLC instance.  Note that analysis for the ten 

instances and varying programs are consistent with the example used for discussion.   

 

Table 7:  Tangible States for Baseline 

  

 

The rows represent the tangible states, and columns represent the places that 

characterize the output states.  The elements of each matrix are marked as 0 or 1, which 

represent the absence or presence of a token, respectively.  For example, state M0 

represents the Petri net marking in which the place stop deliver is active.  The baseline 

PLC for this instance comprises eight distinct states. 

 

4.1.2  Derivation of Reachability Graph 

A reachability graph identifies all possible states and interactions for a given Petri 

net.  PIPEv4.0 provides an analysis module that creates a reachability graph for each Petri 

net.  Figure 11 illustrates the reachability graph consistent with the baseline PLC instance 
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referenced in Table 7.  Note that analysis for the ten instances and varying programs are 

consistent with the example used for discussion. 

In Figure 11, S0 through S7 inherit the output characteristics of M0 through M7, 

respectively.  The arrows pointing towards a state indicate the Petri net transition required 

to reach that state.  For example, to transition from state S0 to S1, the transition 2 to 3 

must fire.  Note that any given state must have at least one enabling transition; similarly 

any given state may have more than one enabling transitions.   

 

 

Figure 11:  Reachability Graph for Baseline 
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4.1.3  Derivation of Reachability Matrix 

A reachability matrix is a combination of results from the tangible state table and 

reachability graph.  The reachability matrix identifies the output states and enabling input 

transitions for all potential markings of a given Petri net.  Table 8 presents the 

reachability matrix consistent with tangible state table and reachability graph, presented 

in Table 7 and Figure 11, respectively.  Note that analysis for the ten instances and 

varying programs are consistent with the example used for discussion. 

 

Table 8:  Reachable Markings for Baseline 

 

PN 
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

deliver 
container

1

stop fill 1

fill 
container

1

stop depart 1

depart silo 1

container 
full

1 1

stop ship 1

ship 
container

1

2 --> 0 1  
2 --> 3  1
2 --> 10 1
10 --> 2 1
10 --> 8 1  1
10 --> 11 1  1
10 --> 26 1
26 --> 10  1
26 --> 24 1  
26 --> 27  1

*input

Output 
Places

Input 
Transitions
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The reachability matrix organizes the input-output behavior into a numerical 

model that facilitates quantitative analysis.  The columns present the potential markings 

for a given Petri net.  The rows list the potential output behavior and input transitions.  A 

numeral one in the element of the matrix indicates the specific combination of inputs and 

outputs that characterize any given marking for a Petri net.  In Table 8, the Petri net 

marking m4 is summarized with the output behavior of depart silo and container full.  

Marking m4 may only be reached with the firing of either transition 10 to 26 or 26 to 27.   

 

4.1.4  Differentiating Between Reachability Matrices 

Differentiating the input-output behaviors between any two PLC programs forms 

the basis for analysis of one set of metrics.  The net difference between any two PLC 

programs is derived by comparing the number of dissimilar markings between each of 

their respective reachability matrices.  Table 9 presents the reachability matrix for the 

attack program for PLC instance #1.  Note that analyses for the ten instances are 

consistent with the example used for discussion. 

The input transition *input in Tables 8, and 9, denotes transitions in the attack 

scenario, which are not represented in the baseline case; *input is important in 

differentiating PLC programs from the baseline case.  Similarly, as seen in Table 9, 

*output-place (e.g., *deliver container) is important in differentiating specific PLC 

program cases.  Table 9 shows the attack program where *deliver container’s decimal 

output value is different than the decimal output value produced by the baseline 

program’s deliver container in Table 8.   
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Table 9:  Reachable Markings for Attack (Instance #1) 

 

 

The net difference is determined via a pair-wise comparison of the programs’ 

potential markings.  The following algorithm compares the pair-wise behavioral 

comparisons between two matrices such as (baseline – attack baseline): 

1. Select two matrices, A and B 

PN 
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

*deliver 
container

1

stop fill 1

fill 
container

1

stop depart 1

depart silo 1

container 
full

1 1

stop ship 1

ship 
container

1

2 --> 0 1  
2 --> 3  1
2 --> 10 1
10 --> 2 1
10 --> 8 1  1
10 --> 11 1  1
10 --> 26 1
26 --> 10  1
26 --> 24 1  
26 --> 27  1

*input

Output 
Places

Input 
Transitions



 

54 

2. If the number of potential markings between matrices is unequal, set the 
matrix with the highest number of potential markings as matrix A 

3. count = the number of potential markings in A 

4. maxA = count 

5. maxB = number of potential markings in B 

6. Set X and Y to zero 

7. Compare all input-output parameters of A(mX) to B(mY) 

a) If A(mX) == B(mY), X = X + 1, Y = 0, count = count - 1; goto 7 

b) If Y < maxB, Y = Y + 1; goto 7 

c) If X < maxA, X = X + 1, Y = 0, goto 7 

d) Else goto 8 

8. Return count  

 

The resulting net difference between the baseline matrix and attack baseline 

matrix for PLC instance #1 is one.  Table 10 presents the differences between each of the 

four program categories.  For example, there are no observable differences in the input-

output behavior between the following program pairings:  (baseline – delta baseline), 

(baseline – attack delta baseline), and (delta baseline – attack delta baseline). There is 

exactly one observable difference between the remaining pairings. 

 

Table 10:  Net Difference in Input-Output Behavior (Instance #1) 

 

baseline -                               
attack baseline

baseline -                             
delta baseline

baseline -                                
attack delta baseline

attack baseline -                       
delta baseline

attack baseline -             
attack delta baseline

delta baseline -                    
attack delta baseline

1 0 0 1 1 0
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4.1.5 Differentiating Between Ladder Logic 

Differentiating the ladder logic between any two PLC programs forms the basis of 

analysis for a second set of metrics.  The net difference between any two PLC programs 

is derived by comparing the number of dissimilar ladder logic symbols between the PLC 

programs.  Figure 12 illustrates the baseline PLC Ladder Logic for the baseline program 

for PLC instance #1.  Note that analyses for the ten instances are consistent with the 

example used for discussion. 

 

 

Figure 12:  Baseline PLC Ladder Logic 
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To find the net difference between the baseline and attack baseline programs for 

PLC instance #1, the symbolic ladder logic deltas are counted (both the removal and 

addition of a symbol count as one change).  For this example there is only one difference; 

the symbol for Prox Switch, present in rung 003 of the baseline (Figure 12), is removed 

from rung 003 of the attack baseline program in Figure 13.  The converse is also true; the 

symbol for Prox Switch, absent in rung 003 of the attack program, is added to rung 003 of 

the baseline program. 

 

 

Figure 13:  Attack Baseline PLC Ladder Logic for Instance #1 
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Table 11 presents the differences between each of the four program categories.  

There are two observable differences in the ladder logic between the program pairings 

(baseline – attack delta baseline) and (attack baseline – delta baseline).  There is exactly 

one observable difference between the remaining pairings. 

Table 11:  Net Difference in Symbolic Ladder Logic (Instance #1) 

 

 

4.1.6 Summary of Results 

Each of the ten PLC instances specified in Chapter 3 result in 6 pair wise 

differentiations of the ladder logic and input-output behavior.  The resulting net 

differences for each of the 60 cases are presented in Tables 12 and 13.  The ladder logic 

programs for all 60 cases are available in Appendix A.  Similarly, the state tables, 

reachability graphs, and matrices are available in Appendix B. 

 

Table 12:  Net Difference in Symbolic Ladder Logic 

 

baseline -                               
attack baseline

baseline -                             
delta baseline

baseline -                                
attack delta baseline

attack baseline -                       
delta baseline

attack baseline -             
attack delta baseline

delta baseline -                    
attack delta baseline

1 1 2 2 1 1

Instance #
baseline              
- attack 
baseline

baseline              
- delta baseline

baseline              
- attack delta 

baseline

attack baseline  
- delta baseline

attack baseline  
- attack delta 

baseline

delta baseline    
- attack delta 

baseline
1 1 1 2 2 1 1
2 1 1 0 2 1 1
3 1 2 3 3 2 1
4 1 2 3 3 2 1
5 2 2 4 4 2 2
6 3 4 7 7 4 3
7 2 2 0 4 2 2
8 5 6 7 11 6 5
9 6 10 10 6 4 2
10 10 12 10 4 2 2
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Table 13:  Net Difference in Input-Output Behavior 

 

 

The results of the ladder logic and input-output differentiation provide the basis 

for identifying quantitative metrics that support the resiliency framework.  The results of 

these comparisons are analyzed for correlation between ladder logic deltas and input-

output behavior deltas.  Testing for correlation determines the delta ladder logic dictates 

the outcome of the input-output behavior deltas.  The significant findings are then 

assessed against the resiliency framework to determine their applicability in potential 

real-time hardware solutions. 

4.2 Analysis of Results 

The data presented in Tables 12 and 13 represent two sets of metrics that measure 

the observable differences between PLC programs.  The purpose of this section is to 

identify which, if any, of the metrics is most applicable to the resilience framework.  

Analysis for correlation is performed between the ladder logic and input-output behavior.  

Instance #
baseline              
- attack 
baseline

baseline              
- delta baseline

baseline              
- attack delta 

baseline

attack baseline  
- delta baseline

attack baseline  
- attack delta 

baseline

delta baseline    
- attack delta 

baseline
1 1 0 0 1 1 0
2 6 0 0 6 6 0
3 4 0 0 4 4 0
4 3 0 0 3 3 0
5 4 0 0 4 4 0
6 7 0 0 7 7 0
7 5 0 0 5 5 0
8 8 0 0 8 8 0
9 1 0 4 1 4 4
10 1 0 0 1 1 0
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Then observations between any correlation and the differentiation tables are listed.  The 

result is a subset of metrics that are most applicable to the resilience framework. 

 

4.2.1 Scatter Plot of Results 

The deltas in ladder logic and input-output behavior are visually tested for 

correlation in R.  Figure 14 illustrates a scatter plot of the 60 data points derived from the 

data in Tables 12 and 13.  For example, PLC instance #5, (baseline – attack), generates 

the point (2, 4) on the scatter plot.  Upon visual inspection, no apparent correlation 

between delta for ladder logic and input-output behavior exist.  Note that there are less 

than 60 data points visible on Figure 14 due to overlap of several data points. 

 

 
Figure 14:  Scatter Plot Between Ladder Logic and I/O Deltas 
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4.2.2 Smooth Densities Plot of Results 

A secondary plot to test for possible correlation is performed with the smooth 

density function of R.  The smooth density function aids in visualizing any potential 

correlation within the overlapped data points (Figure 15).  Upon visual inspection, a 

dense region exists at around the points (2, 0) and (2, 4).  The remainder of the plot is 

similar to Figure 14 in that no other apparent correlations are visible.   
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Figure 15:  Scatter Plot Revealing Overlap Densities 

 
The dense regions around the points (2, 0) and (2, 4) conflict one another and 

suggests that the differences of input-output behavior are independent from the 

differences in the ladder logic.  This finding suggests that the delta ladder logic alone is 

insufficient in determining the input-output deltas of the PLC.  The remaining regions of 

the density plot suggest no other observations to confirm or refute the previous 

suggestion.  Visual inspection is useful in identifying consistent trends, but since this is 

absent in the plots a mathematical correlation of the data points is executed in R. 

 

4.2.3 Correlation Results 

A useful method to assess correlation between a set of variables is Spearman’s 

rank order coefficient.  Spearman’s method of correlation is preferred over other 

methods, such as Pearson’s, due to the non-linear patterns observed in the scatter plots 

(Bolboaca, 2006).  The value for Spearman’s rank order coefficient ranges from -1 to 1; 

values close to zero suggests no correlation exists between the variables and values close 

to ±1 suggests a corollary relationship exists.   

Equation 1:  Spearman’s Rank Order Coefficient   

 

Equation 1 defines Spearman’s rank order coefficient, ρ, where: 

di = difference in paired ranks 

n = number of cases 
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Applying R’s Spearman correlation function to the data set resulted in ρ = 0.14; p-

value = 0.3015.  The ρ value suggests there is very little correlation between the deltas in 

ladder logic and the deltas of input-output behavior; however, the p-value of 0.3015 

implies weak confidence in this hypothesis.  Therefore the null hypothesis cannot be 

rejected beyond a confidence threshold of p = 0.30.  Investigating the cause of the weak 

p-value reveals that the sample size of cases, n, is the root cause.   

Spearman’s ρ indicates a statistically weak correlation between the delta ladder 

logic and delta input-output data.  This supports the visual observation of the plots which 

strongly suggests the relationship between the deltas in ladder logic and input-output 

behavior is strongly independent of one another.  This result supports the assertion that 

no correlation exists between the two sets of metrics.  This assertion is applied to 

additional observations that further refine the applicability of the metrics to the resilience 

framework.  

 

4.2.4 Observations from Differentiation Tables and Correlation Analysis 

Key observations from the correlation analysis and differentiation tables identify 

the most relevant subset of metrics which are applicable to the resilience framework.  The 

net difference in ladder logic is a derivative of a PLC’s internal characteristics which 

does not consistently quantify physical changes to the PLC’s external state.  Conversely, 

the net difference of input-output behavior is a derivative of a PLC’s external 

characteristics which consistently quantifies external physical states.  This distinction 

between the two metrics suggests the most significant metric resulting from the 



 

63 

experiments is the difference observed between the PLC programs’ and instances’ input-

output behavior.   

Since the input-output behavior metrics are self-sufficient, a focus to identify a 

key subset of these metrics is undertaken.  Note the assumption asserted in Chapter 3 

which states that all instances execute a successful attack that changes the physical input-

output behavior of the system.  The contribution of the ladder logic metrics as a 

complimentary metric is pursued in a latter section.  The following are key observations 

of the differentiation tables for the input-output behavior (see Table 13): 

 (baseline – delta baseline) is always equal to zero; this is by design of PLC 
instances/programs such that the baseline and delta baseline I/O behavior 
are consistent with each other. 

 (baseline – attack delta baseline) and (delta baseline – attack delta 
baseline) are inconclusive; note that these metrics results in zero and non-
zero values. 

 (attack baseline – attack delta baseline) is inconclusive; note that this 
metric results in non-zero values for the ten instances; however, an 
instance can be created such that this metric results in zero, therefore it is 
inconclusive. 

 (attack baseline – baseline) and (attack baseline – delta baseline) are 
conclusive; note that these metrics are always non-zero in the face of a 
successful attack and always zero in the face of an unsuccessful attack. 

  

The most important observation is number four.  The two metrics (attack baseline 

– baseline) and (attack baseline – delta baseline) are identified as the most discerning 

metrics in detecting input-output changes caused by successful attacks to the PLC’s 

program.  While the two metrics are equally discerning, the metric (attack baseline – 

delta baseline), is proposed as being more applicable in real-time hardware solutions to 
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improve the system’s security posture.  The metric, (attack baseline – delta baseline), also 

directly addresses two aspects of resiliency (i.e., detecting a change occurrence, and 

quantifying the degree of change occurrence) and supports mechanisms to minimize 

performance losses due to disruptive events.  

 

4.2.5 Summary of Analysis 

Corollary analysis between the ladder logic and input-outputs suggests no direct 

correlation exists; therefore, it can be reasoned that the net change of ladder logic within 

a PLC program is not a self-sufficient metric to assess a PLCs security performance with 

respect to the resilience framework. As suggested by the analysis and observations, the 

most significant metrics resulting from the experiments is the difference observed 

between the PLC programs’ and instances’ input-output behavior.  The metrics, (attack 

baseline – baseline) and (attack baseline – delta baseline), exhibit roles both as a self-

sufficient metrics and as a complimentary metrics to the deltas in ladder logic.  Perhaps 

significant, is the finding that the metric, (attack baseline – delta baseline), is applicable 

to the resilience framework and potential real-time hardware solutions. 
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4.3 Significant Findings 

The most significant finding in the analysis of the data is the metric (attack 

baseline – delta baseline).  Indeed, the corollary analysis and differentiation observations 

suggest that this metric directly addresses two aspects of resiliency and supports 

mechanisms to minimize performance losses due to disruptive events.  As a result of the 

metric’s contribution to the resiliency framework, it may have potential application in 

real-time hardware solutions to improve a system’s security posture.  This section 

presents the applicability to both the resilience framework and real-time hardware 

solutions. 

 

4.3.1 Applicability to the Resilience Framework 

The following subsections summarize the application of the metric, (attack 

baseline – delta baseline), with respect to the four tenants of the resilience framework. 

 

4.3.1.1 Self Awareness and Monitoring   

The first tenant of the resilience framework is the ability to anticipate a 

potentially disruptive event requires that the system has self-awareness of its baseline 

and is able to monitor its current state.   

The proposed metric identifies when physical input-output relationships deviate 

from its baseline.  This metric may support one of two triggering mechanisms:   

1. A quantity of deviations exceeding a threshold is identified by count 

2. A violation against a whitelist (e.g., any matrix component output value of 
attack baseline is deviant)  
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4.3.1.2 Absorbing Disruptions 

The second tenant of the resilience framework is the ability to absorb potentially 

disruptive events requires that the system has mechanisms in place to minimize the 

amount, if any, of performance loss. 

The proposed metric in combination with the difference in ladder logic changes 

may assess a PLC’s ability to absorb disruptive events:   

1. If the input-output behavioral difference is zero, then the differences in 
ladder logic are treated as complimentary metrics to assess the inherent 
robustness of a PLC’s ladder logic program. 

2. If the input-output behavioral difference is greater than zero, then the 
differences seen in input-output behavior is self-sufficient and may be 
utilized to assess the PLC’s overall absorption. 

 

4.3.1.3 Adaptation 

The third tenant of the resilience framework, the ability to adapt, requires that the 

system has contingencies available that allow for flexible system adjustments to maintain 

operational availability. 

The proposed metric supports this by providing the triggering mechanisms 

necessary to initiate adaptive processes.  Either of the triggering mechanisms outlined in 

Section 4.3.1.1 may support initiation of the adaptive process.  Note that the adaptive 

processes may exist external to the PLC (e.g., requiring further coordination with 

additional hardware/software). 
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4.3.1.4 Recovery 

The fourth tenant of the resilience framework is the ability to recover from a 

disruptive event requires mechanisms, either automated or manual, that allow the system 

to perform functionalities consistent with its baseline. 

The proposed metric supports this by providing the triggering mechanisms 

necessary to initiate recovery processes.  Either of the triggering mechanisms outlined in 

Section 4.3.1.1 may support initiation of the recovery process.  Note that the recovery 

processes may exist external to the PLC (e.g., requiring further coordination with 

additional hardware or software). 

 

4.3.2 Applicability to Real-Time Hardware Solutions 

The metric’s applicability to the resiliency framework cooperates well with 

potential real-time hardware solutions.  This is an important notion because the protection 

mechanism may be an external, and preferably, parallel process. For example, Figure 16 

illustrates a high-level Petri net that utilizes the input-output behavioral metric as the 

primary means of monitoring and detecting state security.  The Petri net also illustrates 

architecture which supports absorptive, adaptive, and recovery features that are triggered 

when the metric (attack baseline – delta baseline) exceeds a threshold count delta or 

upon detection of deviant matrix values.   
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Figure 16:  High-Level Petri Net Utilizing I/O Analysis (Nominal Operation) 

 

The primary PLC executes the baseline program; however, the secondary 

protective PLC executes the delta baseline program and is isolated from direct 

communication links to the SCADA network.  If deviation from expected behavior is 

detected, the primary PLC is prevented from contributing to the input-output state of the 

system, and the secondary PLC triggers a fail-safe operation.  Figure 16 shows the system 

in nominal operation where the subnet for the primary PLC controls process flow; 

however, a deviation of input-output behavior as seen in Figure 17 transfers control of 

process flow to the subnet of the secondary PLC. 

 

4.3.3 Summary of Findings 

The metric (attack baseline – delta baseline) is the most significant result from the 

analysis of the data.  The application to the resilience framework directly addresses two 

tenants (i.e., monitor and absorb), and supports the remaining two tenants (i.e., adapt and 

recover).  A method of application is as a triggering mechanism which translates well 
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towards applications for potential real-time hardware solutions.  An example high-level 

Petri net architecture is presented that utilizes the metric as the primary mechanism to 

transfer between nominal and safe operating modes.  

 

 

Figure 17:  High-Level Petri Net Utilizing I/O Analysis (Safe-Mode Triggered) 

 

4.4 Summary of Results and Analysis 

The results in this chapter produced a quantitative means to assess the data 

generated from the Petri nets characterized from the PLC instances and programs.  The 

formation of the differentiation matrices forms the basis for the set of metrics that can 

assess the performance of a PLC with respect to the resiliency framework.  Analysis of 

the matrices suggests that the most significant metric is (attack baseline – delta baseline).  

This metric has direct applications to the resilience framework and subsequently to 

potential real-time hardware solutions. 
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V.  Conclusions and Recommendations 

This chapter summarizes the research effort and proposes considerations for 

future research.  Section 5.1 presents a summary of the research goals and approach.  

Section 5.2 discusses considerations that progress the significant findings of this research.  

Section 5.3 provides concluding remarks. 

5.1 Research Summary 

The primary goal of this research is to identify metrics that may assess a PLC’s 

resilience against malicious exploits.  The complimentary goal of this research is to 

identify metrics that may be applicable as mechanisms for triggers that allow real-time 

hardware implementation.  The experimental method to derive substantial metrics 

consisted of creating PLC instances, modeling equivalent Petri nets, and comparatively 

analyzing the data.  The following sections discuss the experimental methodology, data 

analysis and effectiveness of meeting the research goals for this research effort. 

 

5.1.1 Summary of Experimental Methodology 

The experimental methodology presented in this research used a set of defined 

PLC instances that comprised of four versions of a baseline ladder logic program.  The 

purpose is to emulate a variety of attacks that result in effectively altering the baseline 

performance of the PLC.  The four baseline programs include: 

 Baseline program – Executes nominal system processes 

 Attack baseline program – Modifies baseline ladder logic; alters nominal 
system process execution 
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 Delta baseline program – Executes nominal system processes; robust against 
attack 

 Attack delta baseline program – Modifies delta baseline ladder logic; may 
alter nominal system process execution 

The input-output behavior of the programs during execution are observed and 

characterized into Petri nets.  Non-deterministic simulation of the Petri nets generated the 

data necessary for the comparative analysis. 

 

5.1.2 Summary of Analysis 

Analysis of the Petri nets resulted in reachability matrices for each program.  

Differentiation between the matrices provided a summary of observable outcomes 

between the pair-wise analyses of reachability matrices.  The pair-wise comparisons 

between the four program types comprise the six metrics of interest: 

 (baseline – delta baseline) 

 (baseline – attack baseline) 

 (baseline – attack delta baseline) 

 (attack baseline – delta baseline) 

 (attack baseline – attack delta baseline) 

 (delta baseline – attack delta baseline) 

 

Two metrics, (attack baseline – baseline) and (attack baseline – delta baseline), 

are the most discerning metrics in detecting input-output modifications caused by 

successful attacks to a PLC’s program.  Of these two metrics, (attack baseline – delta 
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baseline), is proposed as having the most significant contributions to both the resilient 

framework and to real-time hardware applications. 

 

5.1.3 Summary of Meeting Goals 

The metric, (attack baseline – delta baseline), is determined to be most applicable 

to the research goals.  The metric allows for self awareness by enabling the detection of 

deviations from nominal input-output state behavior.  The metric may also quantify the 

absorptive performance of PLCs.  Finally, the metric supports the adaptive, and recovery, 

qualities of resilience and it may enable potential mechanisms for triggers in real-world 

hardware applications. 

5.2 Future Work 

This section proposes three topics that may progress the findings from this 

research.  The proposals include real-time hardware execution, benchmark utilization and 

an alternate view for the Petri net modeling of processes. 

  

5.2.1 Real-time Application of Metrics in Hardware 

The metric, (delta baseline – attack baseline), may be applicable to real-time 

hardware solutions to improve SCADA security.  At the micro-level, it can be applied to 

PLCs identified as critical nodes of the system.  Application of the metric requires that an 

additional hardware device operate concurrently with the baseline PLC.  The additional 

hardware device would execute nominal processes exactly the same as the baseline; 

however, it implements additional logic that may trigger protective actions.  The trigger 
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is initiated when a delta between the input-output characteristics of the baseline PLC and 

additional hardware is detected.  Potential issues that may arise in real-world 

experimentation are related to timing delays between the two devices.  This is due to the 

synchronous differentiation that the metric, (delta baseline – attack baseline), leverages.  

The potential for false negatives (e.g., attack to baseline not detected properly) is 

unlikely; however, false positives may result in excessive triggering of the protective 

actions.  

 

5.2.2 Enhancing Benchmark Tools for Resilience 

The metric, (delta baseline – attack baseline), provides a triggering mechanism to 

quantify changes to a system.  This result may be integrated with the resilience curve 

presented by Wei (2009).  The ability to measure aspects of the resilient curve is directly 

applicable to other work based on benchmarking tools for assessing resilience in systems 

(Almeida, 2010).  The findings from this research for detecting change and quantifying 

absorptive rates between PLCs may apply to assessing resilience of similar systems at a 

micro-level benchmark.  Finally, the application of the metric as a triggering mechanism 

may apply to assessing the adaptive and recovery aspects of resilience in a macro-level 

benchmark.   

 

5.2.3 Alternate Experimentation Method Strictly Utilizing Petri Nets 

Petri nets offer a powerful method of modeling and analyzing system processes 

(Peterson, 1981).  SCADA system processes are deterministic in that they exhibit defined 

state boundaries; however, there exists an infinite sequence of state execution within the 
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boundaries.  Non-deterministic analysis of Petri nets for a defined state space may 

provide an efficient method of modeling systems that execute discrete input-output states 

(Peng, 2004).   

The method used in this research defined PLC programs prior to characterization 

into Petri nets.  An alternate method is to solely define Petri nets as the basis for 

representing potential PLC instances.  This facilitates the creation of a magnitude 

(complexity and quantity) of PLC instances which may result in more significant 

statistical analysis.  Automating the generation and analysis of Petri nets would also 

eliminate potential sources of human error; the method utilized in this research consisted 

of several manual processes where human error is likely to be introduced. 

5.3 Concluding Remarks 

The behavioral-based method provides a practical means of assessing the security 

posture of a PLC against malicious code. The research demonstrates the means to 

quantify resiliency on the basis of monitoring, detecting, and absorbing intentional 

malicious actions. The ability to analyze the system in real-time, for nonconforming 

behavior at the PLC, enables security solutions for detecting and mitigating attacks at the 

system end points. Indeed, deriving metrics from input-out characterization incorporates 

a true representation of system state that cannot be deceived via alteration at the HMI or 

communication channel. This proposed method provides a measure of PLC performance 

against malicious code and provides a baseline for quantitative analysis of the security 

posture. Examining security at the micro level by focusing on field device and system 

functions provides a means for addressing and preparing for future Stuxnet-like attacks. 
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Appendix A 

Baseline Program 

Figure 18 illustrates the baseline program ladder logic and Figure 19 shows the 

baseline Petri net for all ten instances. 

 

 
Figure 18:  Ladder Logic for Baseline (all) 
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Figure 19:  Petri Net for Baseline (all) 

 
 

The formal definition for the Petri net illustrated in Figure 19 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 0) = {deliver container (5)} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {deliver container (5)} 

 I(10 to 2) = {ship container (21)} 

 I(10 to 8) = {fill container (14), ship container (21)} 

 I(10 to 11) = {stop fill (0), stop ship (0)} 

 I(10 to 26) = {fill container (14)} 

 I(26 to 10) = {depart silo (21), container full (20)} 
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 I(26 to 24) = {depart silo (21)} 

 I(26 to 27) = {stop depart (0)}  

 O(2 to 0) = {stop deliver (0)} 

 O(2 to 3) = {deliver container (5)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 2) = {deliver container (5)} 

 O(10 to 8) = {stop fill (0), stop ship (0)} 

 O(10 to 11) = {fill container (14), ship container (21)} 

 O(10 to 26) = {depart silo (21), container full (20)} 

 O(26 to 10) = {ship container (21)} 

 O(26 to 24) = {stop depart (0)} 

 O(26 to 27) = {depart silo (21)} 
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Attack Baseline Program for Instance 1 

Figure 20 illustrates the attack baseline program ladder logic and Figure 21 shows 

the Petri net for instance 1. 

 

 

Figure 20:  Ladder Logic for Attack Baseline (1) 
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Figure 21:  Petri Net for Attack Baseline (1) 

 
 

The formal definition for the Petri net illustrated in Figure 21 is C = {P, T, I, O}, 

such that: 

 P  = {*deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 0) = {*deliver container (15)} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {*deliver container (15)} 

 I(10 to 2) = {ship container (21)} 

 I(10 to 8) = {fill container (14), ship container (21)} 

 I(10 to 11) = {stop fill (0), stop ship (0)} 

 I(10 to 26) = {fill container (14)} 
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 I(26 to 10) = {depart silo (21), container full (20)} 

 I(26 to 24) = {depart silo (21)} 

 I(26 to 27) = {stop depart (0)}  

 O(2 to 0) = {stop deliver (0)} 

 O(2 to 3) = {*deliver container (15)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 2) = {*deliver container (15)} 

 O(10 to 8) = {stop fill (0), stop ship (0)} 

 O(10 to 11) = {fill container (14), ship container (21)} 

 O(10 to 26) = {depart silo (21), container full (20)} 

 O(26 to 10) = {ship container (21)} 

 O(26 to 24) = {stop depart (0)} 

 O(26 to 27) = {depart silo (21)} 
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Attack Baseline Program for Instance 2 

Figure 22 illustrates the attack baseline program ladder logic and Figure 23 shows 

the Petri net for instance 2. 

 

 

Figure 22:  Ladder Logic for Attack Baseline (2) 
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Figure 23:  Petri Net for Attack Baseline (2) 

 
 

The formal definition for the Petri net illustrated in Figure 23 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, *container full, 
*depart silo, stop depart} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 8, 10 to 11, 10 to 26, 26 to 24, 26 to 27, 
reset} 

 I(2 to 0) = {deliver container (5)} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {deliver container (5)} 

 I(10 to 8) = {fill container (14)} 

 I(10 to 11) = {stop fill (0)} 

 I(10 to 26) = {fill container (14)} 

 I(26 to 24) = {*depart silo (14)} 

 I(26 to 27) = {stop depart (0)}  
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 I(reset) = {*depart silo (14), *container full (14)} 

 O(2 to 0) = {stop deliver (0)} 

 O(2 to 3) = {deliver container (5)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 8) = {stop fill (0)} 

 O(10 to 11) = {fill container (14)} 

 O(10 to 26) = {*depart silo (14), *container full (14)} 

 O(26 to 24) = {stop depart (0)} 

 O(26 to 27) = {*depart silo (14)} 

 O(reset) = {stop deliver (0)} 
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Attack Baseline Program for Instance 3 

Figure 24 illustrates the attack baseline program ladder logic and Figure 25 shows 

the Petri net for instance 3. 

 

 

Figure 24:  Ladder Logic for Attack Baseline (3) 
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Figure 25:  Petri Net for Attack Baseline (3) 

 
 

The formal definition for the Petri net illustrated in Figure 25 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 3) = {*stop deliver (0)} 

 I(2 to 10) = {deliver container (5)} 

 I(10 to 2) = {ship container (21)} 

 I(10 to 26) = {fill container (14)} 

 I(26 to 10) = {depart silo (21), container full (20)} 

 I(reset) = {ship container (20)} 

 O(2 to 3) = {deliver container (5)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 2) = {deliver container (5)} 
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 O(10 to 26) = {depart silo (21), container full (20)} 

 O(26 to 10) = {ship container (21)} 

 O(reset) = {*stop deliver (0)} 
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Attack Baseline Program for Instance 4 

Figure 26 illustrates the attack baseline program ladder logic and Figure 27 shows 

the Petri net for instance 4. 

 

 

Figure 26:  Ladder Logic for Attack Baseline (4) 
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Figure 27:  Petri Net for Attack Baseline (4) 

 
 

The formal definition for the Petri net illustrated in Figure 27 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 0) = {deliver container (5)} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {deliver container (5)} 

 I(10 to 2) = {*ship container (31)} 

 I(10 to 8) = {fill container (14), *ship container (31)} 

 I(10 to 11) = {stop fill (0), stop ship (0)} 

 I(10 to 26) = {fill container (14)} 
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 I(26 to 10) = {*depart silo (31), *container full (30)} 

 I(26 to 24) = {*depart silo (31)} 

 I(26 to 27) = {stop depart (0)}  

 O(2 to 0) = {stop deliver (0)} 

 O(2 to 3) = {deliver container (5)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 2) = {deliver container (5)} 

 O(10 to 8) = {stop fill (0), stop ship (0)} 

 O(10 to 11) = {fill container (14), *ship container (31)} 

 O(10 to 26) = {*depart silo (31), *container full (30)} 

 O(26 to 10) = {*ship container (31)} 

 O(26 to 24) = {stop depart (0)} 

 O(26 to 27) = {*depart silo (31)} 
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Attack Baseline Program for Instance 5 

Figure 28 illustrates the attack baseline program ladder logic and Figure 29 shows 

the Petri net for instance 5. 

 

 

Figure 28:  Ladder Logic for Attack Baseline (5) 
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Figure 29:  Petri Net for Attack Baseline (5) 

 
 

The formal definition for the Petri net illustrated in Figure 29 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 0) = {*deliver container (15)} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {*deliver container (15)} 

 I(10 to 2) = {*ship container (31)} 

 I(10 to 8) = {fill container (14), *ship container (31)} 

 I(10 to 11) = {stop fill (0), stop ship (0)} 

 I(10 to 26) = {fill container (14)} 
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 I(26 to 10) = {*depart silo (31), *container full (30)} 

 I(26 to 24) = {*depart silo (31)} 

 I(26 to 27) = {stop depart (0)}  

 O(2 to 0) = {stop deliver (0)} 

 O(2 to 3) = {*deliver container (15)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 2) = {*deliver container (15)} 

 O(10 to 8) = {stop fill (0), stop ship (0)} 

 O(10 to 11) = {fill container (14), *ship container (31)} 

 O(10 to 26) = {*depart silo (31), *container full (30)} 

 O(26 to 10) = {*ship container (31)} 

 O(26 to 24) = {stop depart (0)} 

 O(26 to 27) = {*depart silo (31)} 
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Attack Baseline Program for Instance 6 

Figure 30 illustrates the attack baseline program ladder logic and Figure 31 shows 

the Petri net for instance 6. 

 

 

Figure 30:  Ladder Logic for Attack Baseline (6) 
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Figure 31:  Petri Net for Attack Baseline (6) 

 
 

The formal definition for the Petri net illustrated in Figure 31 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {*deliver container (15)} 

 I(10 to 2) = {*ship container (31)} 

 I(10 to 26) = {fill container (14)} 

 I(26 to 10) = {*depart silo (31), *container full (30)} 

 I(reset) = {*ship container (31)} 

 O(2 to 3) = {*deliver container (15)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 2) = {*deliver container (15)} 
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 O(10 to 26) = {*depart silo (31), *container full (30)} 

 O(26 to 10) = {*ship container (31)} 

 O(reset) = {*stop deliver (0)} 
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Attack Baseline Program for Instance 7 

Figure 32 illustrates the attack baseline program ladder logic and Figure 33 shows 

the Petri net for instance 7. 

 

 

Figure 32:  Ladder Logic for Attack Baseline (7) 
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Figure 33:  Petri Net for Attack Baseline (7) 

 
 

The formal definition for the Petri net illustrated in Figure 33 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 0) = {deliver container (5)} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {deliver container (5)} 

 I(10 to 2) = {*fill container (15)} 

 I(10 to 8) = {*fill container (15)} 
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 I(10 to 11) = {stop fill (0)} 

 O(2 to 0) = {stop deliver (0)} 

 O(2 to 3) = {deliver container (5)} 

 O(2 to 10) = {*fill container (15)} 

 O(10 to 2) = {deliver container (5)} 

 O(10 to 8) = {stop fill (0)} 

 O(10 to 11) = {*fill container (15)} 
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Attack Baseline Program for Instance 8 

Figure 34 illustrates the attack baseline program ladder logic and Figure 35 shows 

the Petri net for instance 8. 

 

 

Figure 34:  Ladder Logic for Attack Baseline (8) 
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Figure 35:  Petri Net for Attack Baseline (8) 

 
 

The formal definition for the Petri net illustrated in Figure 35 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 3) = {*stop deliver (0)} 

 I(reset) = {*deliver container (15)} 

 O(2 to 3) = {*deliver container (15)} 

 O(reset) = {*stop deliver (0)} 
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Attack Baseline Program for Instance 9 

Figure 36 illustrates the attack baseline program ladder logic and Figure 37 shows 

the Petri net for instance 9. 

 

 

Figure 36:  Ladder Logic for Attack Baseline (9) 
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Figure 37:  Petri Net for Attack Baseline (9) 

 
 

The formal definition for the Petri net illustrated in Figure 37 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 0) = {deliver container (5)} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {deliver container (5)} 

 I(10 to 2) = {*ship container (31)} 

 I(10 to 8) = {fill container (14), *ship container (31)} 

 I(10 to 11) = {stop fill (0), stop ship (0)} 

 I(10 to 26) = {fill container (14)} 

 I(26 to 10) = {depart silo (21), container full (20)} 
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 I(26 to 24) = {depart silo (21)} 

 I(26 to 27) = {stop depart (0)}  

 O(2 to 0) = {stop deliver (0)} 

 O(2 to 3) = {deliver container (5)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 2) = {deliver container (5)} 

 O(10 to 8) = {stop fill (0), stop ship (0)} 

 O(10 to 11) = {fill container (14), *ship container (31)} 

 O(10 to 26) = {depart silo (21), container full (20)} 

 O(26 to 10) = {*ship container (31)} 

 O(26 to 24) = {stop depart (0)} 

 O(26 to 27) = {depart silo (21)} 
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Attack Baseline Program for Instance 10 

Figure 38 illustrates the attack baseline program ladder logic and Figure 39 shows 

the Petri net for instance 10. 
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Figure 38:  Ladder Logic for Attack Baseline (10) 

 

 

 
Figure 39:  Petri Net for Attack Baseline (10) 

 
 

The formal definition for the Petri net illustrated in Figure 39 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 0) = {*deliver container (15)} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {*deliver container (15)} 

 I(10 to 2) = {ship container (21)} 

 I(10 to 8) = {fill container (14), ship container (21)} 
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 I(10 to 11) = {stop fill (0), stop ship (0)} 

 I(10 to 26) = {fill container (14)} 

 I(26 to 10) = {depart silo (21), container full (20)} 

 I(26 to 24) = {depart silo (21)} 

 I(26 to 27) = {stop depart (0)}  

 O(2 to 0) = {stop deliver (0)} 

 O(2 to 3) = {*deliver container (15)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 2) = {*deliver container (15)} 

 O(10 to 8) = {stop fill (0), stop ship (0)} 

 O(10 to 11) = {fill container (14), ship container (21)} 

 O(10 to 26) = {depart silo (21), container full (20)} 

 O(26 to 10) = {ship container (21)} 

 O(26 to 24) = {stop depart (0)} 

 O(26 to 27) = {depart silo (21)} 

  



 

107 

Delta Baseline Program for Instance 1  

Figure 40 illustrates the delta baseline program ladder logic for instance 1.  The 

equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 40:  Ladder Logic for Delta Baseline (1) 

 

 
  



 

108 

Delta Baseline Program for Instance 2  

Figure 41 illustrates the delta baseline program ladder logic for instance 2.  The 

equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 41:  Ladder Logic for Delta Baseline (2) 
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Delta Baseline Program for Instance 3 

Figure 42 illustrates the delta baseline program ladder logic for instance 3.  The 

equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 42:  Ladder Logic for Delta Baseline (3) 
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Delta Baseline Program for Instance 4  

Figure 43 illustrates the delta baseline program ladder logic for instance 4.  The 

equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 43:  Ladder Logic for Delta Baseline (4) 
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Delta Baseline Program for Instance 5  

Figure 44 illustrates the delta baseline program ladder logic for instance 5.  The 

equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 44:  Ladder Logic for Delta Baseline (5) 
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Delta Baseline Program for Instance 6 

Figure 45 illustrates the delta baseline program ladder logic for instance 6.  The 

equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 45:  Ladder Logic for Delta Baseline (6) 
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Delta Baseline Program for Instance 7  

Figure 46 illustrates the delta baseline program ladder logic for instance 7.  The 

equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 46:  Ladder Logic for Delta Baseline (7) 
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Delta Baseline Program for Instance 8  

Figure 47 illustrates the delta baseline program ladder logic for instance 8.  The 

equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 47:  Ladder Logic for Delta Baseline (8) 

  



 

115 

Delta Baseline Program for Instance 9  

Figure 48 illustrates the delta baseline program ladder logic for instance 9.  The 

equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 48:  Ladder Logic for Delta Baseline (9) 
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Delta Baseline Program for Instance 10  

Figure 49 illustrates the delta baseline program ladder logic for instance 10.  The 

equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 49:  Ladder Logic for Delta Baseline (10) 
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Attack Delta Baseline Program for Instance 1  

Figure 50 illustrates the attack delta baseline program ladder logic for instance 1.  

The equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 50:  Attack Ladder Logic for Delta Baseline (1) 
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Attack Delta Baseline Program for Instance 2  

Figure 51 illustrates the attack delta baseline program ladder logic for instance 2.  

The equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 51:  Attack Ladder Logic for Delta Baseline (2) 

 

  



 

119 

Attack Delta Baseline Program for Instance 3  

Figure 52 illustrates the attack delta baseline program ladder logic for instance 3.  

The equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 52:  Attack Ladder Logic for Delta Baseline (3) 
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Attack Delta Baseline Program for Instance 4  

Figure 53 illustrates the attack delta baseline program ladder logic for instance 4.  

The equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 53:  Attack Ladder Logic for Delta Baseline (4) 
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Attack Delta Baseline Program for Instance 5  

Figure 54 illustrates the attack delta baseline program ladder logic for instance 5.  

The equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 54:  Attack Ladder Logic for Delta Baseline (5) 
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Attack Delta Baseline Program for Instance 6  

Figure 55 illustrates the attack delta baseline program ladder logic for instance 6.  

The equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 55:  Attack Ladder Logic for Delta Baseline (6) 
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Attack Delta Baseline Program for Instance 7  

Figure 56 illustrates the attack delta baseline program ladder logic for instance 7.  

The equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 56:  Attack Ladder Logic for Delta Baseline (7) 
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Attack Delta Baseline Program for Instance 8 

Figure 57 illustrates the attack delta baseline program ladder logic for instance 8.  

The equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 57:  Attack Ladder Logic for Delta Baseline (8) 
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Attack Delta Baseline Program for Instance 9 

Figure 58 illustrates the attack delta baseline program ladder logic and Figure 59 

shows the Petri net for instance 9.   

 

 

Figure 58:  Attack Ladder Logic for Delta Baseline (9) 
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Figure 59:  Petri Net for Attack Delta Baseline (9) 

 
 

The formal definition for the Petri net illustrated in Figure 77 is C = {P, T, I, O}, 

such that: 

 P  = {deliver container, stop deliver, fill container, stop fill, container full, 
depart silo, stop depart, ship container, stop ship} 

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 
24, 26 to 27} 

 I(2 to 0) = {deliver container (5)} 

 I(2 to 3) = {stop deliver (0)} 

 I(2 to 10) = {deliver container (5)} 

 I(10 to 8) = {fill container (14)} 

 I(10 to 11) = {stop fill (0)} 

 I(10 to 26) = {fill container (14)} 

 I(26 to 10) = {depart silo (21), container full (20)} 
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 I(26 to 24) = {depart silo (21)} 

 I(26 to 27) = {stop depart (0)}  

 I(reset) = {stop ship (0), *ship container (11)} 

 O(2 to 0) = {stop deliver (0)} 

 O(2 to 3) = {deliver container (5)} 

 O(2 to 10) = {fill container (14)} 

 O(10 to 8) = {stop fill (0)} 

 O(10 to 11) = {fill container (14)} 

 O(10 to 26) = {depart silo (21), container full (20)} 

 O(26 to 10) = {stop ship (0), *ship container (11)} 

 O(26 to 24) = {stop depart (0)} 

 O(26 to 27) = {depart silo (21)} 

 O(reset) = {stop deliver (0)} 
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Attack Delta Baseline Program for Instance 10 

Figure 60 illustrates the attack delta baseline program ladder logic for instance 10.  

The equivalent Petri net is similar to the baseline program shown in Figure 19. 

 

 

Figure 60:  Attack Ladder Logic for Delta Baseline (10) 
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Appendix B 

Baseline Program 

The following state table, reachability graph and matrix are representative of: 

 The baseline program for PLC instances 1 through 10 

 The delta baseline program for PLC instances 1 through 10 

 The attack delta baseline program for PLC instances 1 through 8, and 10 

Table 14:  Tangible States for Baseline (all), Delta Baseline (all) and Attack Delta Baseline (1-8, 10)   

 

 

Figure 61:  Graph for Baseline (1-10), Delta Baseline (1-10) and Attack Delta Baseline (1-8,10) 
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Table 15:  Matrix for Baseline (1-10), Delta Baseline (1-10) and Attack Delta Baseline (1-8,10)   
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26 --> 10  1

26 --> 24 1  

26 --> 27  1

*input

Output 

Places

Input 

Transitions
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Attack Delta Baseline Program (for PLC Instance 9) 

The following state table, reachability graph and matrix are representative of 

attack delta baseline program for PLC instance 9. 

 

Table 16:  Tangible States for Attack Delta Baseline (9) 

 

 

 

Figure 62:  Graph for Attack Delta Baseline (9)   
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Table 17:  Matrix for Attack Delta Baseline (9) 

 

 

  

PN 
marking

m0 m1 m2 m3 m4 m5 m6

stop deliver 1

deliver 
container

1

stop fill 1

fill 
container

1

stop depart 1

depart silo 1

container 
full

1 1

stop ship 1

*ship 
container

1

2 --> 0 1  
2 --> 3  1

2 --> 10 1
10 --> 2  
10 --> 8 1  
10 --> 11 1   
10 --> 26 1
26 --> 10  1
26 --> 24 1  
26 --> 27  1

*input 1

Output 
Places

Input 
Transitions
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Attack Baseline Program (for PLC Instance 1) 

The following state table, reachability graph and matrix are representative of 

attack baseline program for PLC instance 1. 

 

Table 18:  Tangible States for Attack Baseline (1) 

 

 

 

Figure 63:  Graph for Attack Baseline (1)       
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Table 19:  Matrix for Attack Baseline (1) 
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Attack Baseline Program (for PLC Instance 2) 

The following state table, reachability graph and matrix are representative of 

attack baseline program for PLC instance 2. 

 

Table 20:  Tangible States for Attack Baseline (2) 

 

 

 

Figure 64:  Graph for Attack Baseline (2)   
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Table 21:  Matrix for Attack Baseline (2) 
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Attack Baseline Program (for PLC Instance 3) 

The following state table, reachability graph and matrix are representative of 

attack baseline program for PLC instance 3. 

 

Table 22:  Tangible States for Attack Baseline (3) 

 

 

 

Figure 65:  Graph for Attack Baseline (3)   
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Table 23:  Matrix for Attack Baseline (3) 
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Attack Baseline Program (for PLC Instance 4) 

The following state table, reachability graph and matrix are representative of 

attack baseline program for PLC instance 4. 

 

Table 24:  Tangible States for Attack Baseline (4) 

 

 

 

Figure 66:  Graph for Attack Baseline (4)     
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Table 25:  Matrix for Attack Baseline (4) 
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Attack Baseline Program (for PLC Instance 5) 

The following state table, reachability graph and matrix are representative of 

attack baseline program for PLC instance 5. 

 

Table 26:  Tangible States for Attack Baseline (5) 

 

 

 

Figure 67:  Graph for Attack Baseline (5)   
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Table 27:  Matrix for Attack Baseline (5) 

 
 
 
  

PN 
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

*deliver 
container

1

stop fill 1

fill 
container

1

stop depart 1

*depart 
silo

1

*container 
full

1 1

stop ship 1

*ship 
container

1

2 --> 0 1  
2 --> 3  1
2 --> 10 1
10 --> 2 1
10 --> 8 1  1
10 --> 11 1  1
10 --> 26 1
26 --> 10  1
26 --> 24 1  
26 --> 27  1

*input

Output 
Places

Input 
Transitions



 

143 

Attack Baseline Program (for PLC Instance 6) 

The following state table, reachability graph and matrix are representative of 

attack baseline program for PLC instance 6. 

 

Table 28:  Tangible States for Attack Baseline (6) 

 

 

 

Figure 68:  Graph for Attack Baseline (6)   
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Table 29:  Matrix for Attack Baseline (6) 
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Attack Baseline Program (for PLC Instance 7) 

The following state table, reachability graph and matrix are representative of 

attack baseline program for PLC instance 7. 

 

Table 30:  Tangible States for Attack Baseline (7)   

 

 

 

Figure 69:  Graph for Attack Baseline (7)   
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Table 31:  Matrix for Attack Baseline (7) 
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Attack Baseline Program (for PLC Instance 8) 

The following state table, reachability graph and matrix are representative of 

attack baseline program for PLC instance 8. 

Table 32:  Tangible States for Attack Baseline (8)   

 

 

 

Figure 70:  Graph for Attack Baseline (8)   

 
Table 33:  Matrix for Attack Baseline (8) 
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Attack Baseline Program (for PLC Instance 9) 

The following state table, reachability graph and matrix are representative of 

attack baseline program for PLC instance 9. 

 

Table 34:  Tangible States for Attack Baseline (9) 

 

 

 

Figure 71:  Graph for Attack Baseline (9)   
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Table 35:  Matrix for Attack Baseline (9) 
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Attack Baseline Program (for PLC Instance 10) 

The following state table, reachability graph and matrix are representative of 

attack baseline program for PLC instance 10. 

 

Table 36:  Tangible States for Attack Baseline (10) 

 

 

 

Figure 72:  Graph for Attack Baseline (10)   
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Table 37:  Matrix for Attack Baseline (10) 

 
  

PN 
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

*deliver 
container

1

stop fill 1

fill 
container

1

stop depart 1

depart silo 1

container 
full

1 1

stop ship 1

ship 
container

1

2 --> 0 1  
2 --> 3  1
2 --> 10 1
10 --> 2 1
10 --> 8 1  1
10 --> 11 1  1
10 --> 26 1
26 --> 10  1
26 --> 24 1  
26 --> 27  1

*input

Output 
Places

Input 
Transitions



 

152 

Bibliography 

Abhishek, N. (2005). Time Augmented Petri Nets for Modeling Discrete Event Dynamic 
Systems. Durham NC: Duke University. 

Almeida, R. M. (2010). Benchmarking the Resilience of Self-Adaptive Systems: A New 
Research Challenge. 29th IEEE International Symposium on Reliable Distributed 
Systems (pp. 348-352). New Delhi: IEEE Computer Society. 

Bolboaca, S. J. (2006). Pearson versus Spearman, Kendall's Tau Correlation Analysis on 
Structure-Activity Relationships of Biologic Active Compounds. Leonardo Journal 
of Sciences, 179-200. 

Bonet, P. L. (2007). PIPE v2.5: a Petri Net Tool for Performance Modeling. 23d Latin 
American Conference on Informatics. San Jose, Costa Rica. 

Cutter, S. B. (2008). A place-based model for understanding community resilience to 
natural disasters. Global Environmental Change, 598-606. 

Falliere, N. M. (2011). W32.Stuxnet Dossier. Cupertino CA: Symantec Corporation. 

Germanus, D. K. (2010). Increasing the Resilience of Critical SCADA Systems Using 
Peer-to-Peer Overlays. Architecting Critical Systems, First International Symposium. 
Prague, Czech Republic: ISARCS. 

Johnson, A. M. (1988). Survey of Software Tools for Evaluating Reliability, Availability, 
and Serviceability. ACM Computing Surveys , 227-269. 

Minkel, J. (2008, Aug 13). The 2003 Northeast Blackout--Five Years Later. Retrieved 02 
29, 2012, from Scientific American: 
http://www.scientificamerican.com/article.cfm?id=2003-blackout-five-years-later 

National Infrastructure Advisory Council. (2009). Critical Infrastructure Resilience Final 
Report and Recommendations. Washington DC: Department of Homeland Security. 

Niland, M. (2009, Feb 11). Virus Disrupts Train Signals. Retrieved Feb 29, 2012, from 
cbsnews: http://www.cbsnews.com/stories/2003/08/21/tech/main569418.shtml 

Peng, S. Z. (2004). Ladder Diagram and Petri-Net-Based Discrete-Event Control Design 
Methods. IEEE Transactions on Systems, Man, and Cybernetics, 523-531. 



 

153 

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. New Jersey: 
Prentice Hall. 

Peterson, J. L. (1977). Petri Nets. ACM Computing Surveys, 223-252. 

Poulsen, K. (2003, Aug 19). Slammer worm crashed Ohio nuke plant network. Retrieved 
Feb 29, 2012, from SecurityFocus: http://www.securityfocus.com/news/6767 

Queiroz, C. M. (2010). An analytical framework using performance modeling. IEEE 
Globecom 2010. Melbourne, Australia: IEEE Communication Society. 

Reza, H. P. (2009). A Safety Analysis Method Using Fault Tree Analysis and Petri Nets. 
Sixth International Conference on Information Technology: New Generations (pp. 
1089-1094). Las Vegas NV: IEEE Computer Society. 

Roberts, P. (2005, Aug 18). Zotob, PnP Worms Slam 13 DaimlerChrysler Plants. 
Retrieved 02 29, 2012, from eWEEK: http://www.eweek.com/c/a/Security/Zotob-
PnP-Worms-Slam-13-DaimlerChrysler-Plants/ 

Shah, A. P. (2008). Mechanisms to Provide Integrity in SCADA and PCS devices. 
International Conference on distributed computing in sensor systems. Sontorni 
Greece. 

Smith, T. (2001, Oct 31). Hacker jailed for revenge sewage attacks. Retrieved Feb 29, 
2012, from The Register: 
http://www.theregister.co.uk/2001/10/31/hacker_jailed_for_revenge_sewage/ 

Stouffer, K. F., Falco, J., Scarfone, K. (2008). Guide to Industrial Control Systems (ICS) 
Security. Gaithersburg MD: National Institute of Standards and Technology. 

Thomas, P. (1998, Mar 18). Teen hacker faces federal charges. Retrieved 02 29, 2012, 
from CNN: 
http://www.cnn.com/TECH/computing/9803/18/juvenile.hacker/index.html 

Tierney, K. B. (2007). Conceptualizing and Measuring Resilience. TR News, 14-17. 

Trivedi, K. K. (2009). Resilience in Computer Systems and Networks. Computer-Aided 
Design-Digest of Technical Papers (pp. 74-77). San Jose CA: IEEE. 

VanBreda, A. (2001). Resilience Theory: A Literature Review. Gezina, South Africa: 
Military Psychological Institute. 



 

154 

Wei, D. J. (2009). Resilient Industrial Control System (RICS): Concepts, Formulation, 
Metrics, and Insights. 2d International Symposium on Resilient Control Systems. 
Idaho Falls ID: Resilient Control Systems. 

Zurawski, R. M. (1994). Petri Nets and Industrial Applications. IEEE Transactions on 
Industrial Electronics, 567-582. 

 

  



 

155 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

22 Mar 2012 
2. REPORT TYPE  
Master’s Thesis 

3. DATES COVERED (From – To) 
Sept 2010 – Mar 2012 

4. TITLE AND SUBTITLE 
Towards Quantifying Programmable Logic Controller Resilience Against 

Intentional Exploits 
 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
 

Bushey, Henry W., Capt, USAF 
 

5d.  PROJECT NUMBER 
N/A 
5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
 Air Force Institute of Technology 
Graduate School of Engineering and Management (AFIT/EN) 
2950 Hobson Way, Building 640 
WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

 AFIT/GCO/ENG/12-03 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
POC: Eric Cornelius, Department of Homeland Security Industrial Control 
Systems Cyber Emergency Response Team Technical Lead 
ATTN: NPPD/CS&C/NCSD/US-CERT 
Mailstop: 0635, 245 Murray Lane, SW, Bldg 410 
Washington, DC  20528   

ics-cert@dhs.gov; (877)776-7585 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 DHS ICS-CERT 

11.  SPONSOR/MONITOR’S REPORT NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Distribution Statement A. Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES  
This material is declared a work of the United States Government and is not subject to copyright protection in the United 
States. 
14. ABSTRACT  
Supervisory Control and Data Acquisition (SCADA) systems control and monitor services for the nation’s critical infrastructure. Recent 
cyber induced events (e.g., Stuxnet) provide an example of a targeted, covert cyber attack against a SCADA system that resulted in 
physical effects. Of particular note is how Stuxnet exploited the trust relationship between the human machine interface (HMI) and 
programmable logic controllers (PLCs).  Current methods for validating system operating parameters rely on message exchange and 
network communications protocols, generally observed at the HMI. Although sufficient at the macro level, this method does not provide 
detection of malware that exhibits physical effects via covert manipulation of the PLC, as demonstrated by Stuxnet. In this research, an 
alternative method that leverages direct analysis of PLC input and output to derive the true state of SCADA end-devices is introduced.  The 
behavioral input-output characteristics are modeled using Petri nets to derive metrics for quantifying resilient properties of systems against 
malicious exploits.  The results yield metrics that are applicable towards quantifying resilience in PLCs and implementing real-time 
security solutions.  These findings enable detecting programming changes that affect input and output relationships, identifying the degree 
of deviation from a baseline program, and minimizing performance losses against disruptive events.      

 
15. SUBJECT TERMS 

Behavioral-based security, resilience, SCADA security, Petri net  
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF  

     ABSTRACT 

 
UU 

18. NUMBER  
OF PAGES 

 
172 

19a.  NAME OF RESPONSIBLE PERSON 

Butts, Jonathan, Maj, Ph.D., USAF 
a. REPORT 
 

U 
b. ABSTRACT 
 

U 
c. THIS PAGE 
 

U 
19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, x 4332         
(jonathan.butts@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 


	Air Force Institute of Technology
	AFIT Scholar
	3-22-2012

	Towards Quantifying Programmable Logic Controller Resilience Against Intentional Exploits
	Henry W. Bushey
	Recommended Citation


	AFIT Thesis Template (2012)

