
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-22-2012

Towards Quantifying Programmable Logic
Controller Resilience Against Intentional Exploits
Henry W. Bushey

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Bushey, Henry W., "Towards Quantifying Programmable Logic Controller Resilience Against Intentional Exploits" (2012). Theses and
Dissertations. 1087.
https://scholar.afit.edu/etd/1087

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1087?utm_source=scholar.afit.edu%2Fetd%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

TOWARDS QUANTIFYING PROGRAMMABLE LOGIC CONTROLLER

RESILIENCE AGAINST INTENTIONAL EXPLOITS

THESIS

Henry W. Bushey, Captain, USAF

AFIT/GCO/ENG/12-03

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the United States Government
and is not subject to copyright protection in the United States.

AFIT/GCO/ENG/12-03

TOWARDS QUANTIFYING PROGRAMMABLE LOGIC CONTROLLER

RESILIENCE AGAINST INTENTIONAL EXPLOITS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Henry W. Bushey, B.S.E.E.

Captain, USAF

March 2012

Distribution Statement A. Approved for public release; distribution is unlimited.

AFIT/GCO/ENG/12-03

TOWARDS QUANTIFYING PROGRAMMABLE LOGIC CONTROLLER

RESILIENCE AGAINST INTENTIONAL EXPLOITS

Henry W. Bushey, B.S.E.E.
Captain, USAF

Approved:

//SIGNED//_________________________ ___5Mar2012
Maj Jonathan Butts, Ph.D. (Chairman) Date

//SIGNED//_________________________ ___2Mar2012
Mr. Juan Lopez, Jr. (Member) Date

//SIGNED//_________________________ ___2Mar2012
Dr. Robert Mills, Ph.D. (Member) Date

AFIT/GCO/ENG/12-03

iv

Abstract

Supervisory Control and Data Acquisition (SCADA) systems control and monitor

services for the nation’s critical infrastructure. Recent cyber induced events (e.g.,

Stuxnet) provide an example of a targeted, covert cyber attack against a SCADA system

that resulted in physical effects. Of particular note is how Stuxnet exploited the trust

relationship between the human machine interface (HMI) and programmable logic

controllers (PLCs). Current methods for validating system operating parameters rely on

message exchange and network communications protocols, generally observed at the

HMI. Although sufficient at the macro level, this method does not provide detection of

malware that exhibits physical effects via covert manipulation of the PLC, as

demonstrated by Stuxnet. In this research, an alternative method that leverages direct

analysis of PLC input and output to derive the true state of SCADA end-devices is

introduced. The behavioral input-output characteristics are modeled using Petri nets to

derive metrics for quantifying resilient properties of systems against malicious exploits.

The results yield metrics that are applicable towards quantifying resilience in PLCs and

implementing real-time security solutions. These findings enable detecting programming

changes that affect input and output relationships, identifying the degree of deviation

from a baseline program, and minimizing performance losses against disruptive events.

v

Acknowledgments

I would like to thank my advisor Maj Jonathan Butts for his insightful guidance

throughout the entirety of my thesis development. I would also like to thank my

committee members, Lt Col David Robinson, Dr. Robert Mills, and Mr. Juan Lopez for

exposing me to their wealth of knowledge during my research. A warm thank you is also

extended to my classmates who journeyed through the GCO program alongside me.

Finally, I’d like to acknowledge a loving appreciation to my wife and children who

support me through everything.

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents ... vi

List of Figures ..x

List of Tables ... xiv

List of Equations .. xvi

I. Introduction ...1

1.1 Motivation ...1
1.2 Research Statement ...3
1.3 Research Approach ...3
1.4 Assumptions/Limitations ..4
1.5 Thesis Organization ..6

II. Literature Review ...8

2.1 Background ...8

2.1.1 Supervisory Control and Data Acquisition (SCADA) 8
2.1.2 Resilience Overview ... 13
2.1.3 Petri Nets Overview ... 15

2.2 Related Work ..19
2.2.1 Survivable SCADA Systems ... 19
2.2.2 Redundant SCADA Network Architecture ... 21

2.2.3 Mechanisms to Provide Integrity in SCADA Devices 24
2.2.4 Resilient ICS: Concepts, Formulation, Metrics, and Insights 26

2.3 Summary of Literature ..27

III. Methodology ...28

3.1 Problem Definition ...28

3.1.1 Goal 28
3.1.2 Hypothesis .. 29

3.2 System Boundaries ..29
3.3 System Services ..30
3.4 System Parameters ..32
3.5 Factors ...33
3.6 Workload ..34

vii

3.7 Approach ...35

3.7.1 Establish Baseline for PLC Instance #1 .. 37
3.7.2 Characterize Baseline Program as Petri Net .. 38
3.7.3 Establish Delta Baseline Program .. 42
3.7.4 Apply Workload (Attacks to Baselines) ... 42

3.8 Performance Metrics ...43
3.9 Evaluation Technique ...44

3.9.1 Direct Measurement via PLC ... 44
3.9.2 Petri net Analysis ... 45

3.10 Experimental Design ..46
3.11 Summary of Methodology ..46

IV. Results and Analysis ...48

4.1 Results of Simulation Scenarios ...48
4.1.1 Derivation of Tangible State Table .. 48
4.1.2 Derivation of Reachability Graph ... 49
4.1.3 Derivation of Reachability Matrix ... 51
4.1.4 Differentiating Between Reachability Matrices ... 52
4.1.5 Differentiating Between Ladder Logic .. 55
4.1.6 Summary of Results .. 57

4.2 Analysis of Results ...58
4.2.1 Scatter Plot of Results .. 59
4.2.2 Smooth Densities Plot of Results ... 60
4.2.3 Correlation Results .. 61
4.2.4 Observations from Differentiation Tables and Correlation Analysis............ 62

4.2.5 Summary of Analysis .. 64
4.3 Significant Findings ..65

4.3.1 Applicability to the Resilience Framework .. 65
4.3.2 Applicability to Real-Time Hardware Solutions.. 67
4.3.3 Summary of Findings ... 68

4.4 Summary of Results and Analysis ..69

V. Conclusions and Recommendations ..70

5.1 Research Summary ...70
5.1.1 Summary of Experimental Methodology ... 70

5.1.2 Summary of Analysis .. 71
5.1.3 Summary of Meeting Goals ... 72

5.2 Future Work ..72
5.2.1 Real-time Application of Metrics in Hardware ... 72
5.2.2 Enhancing Benchmark Tools for Resilience .. 73
5.2.3 Alternate Experimentation Method Strictly Utilizing Petri Nets 73

5.3 Concluding Remarks ..74

Appendix A ..75

viii

Baseline Program ..75

Attack Baseline Program for Instance 1..78
Attack Baseline Program for Instance 2..81
Attack Baseline Program for Instance 3..84
Attack Baseline Program for Instance 4..87
Attack Baseline Program for Instance 5..90
Attack Baseline Program for Instance 6..93
Attack Baseline Program for Instance 7..96
Attack Baseline Program for Instance 8..99
Attack Baseline Program for Instance 9..101
Attack Baseline Program for Instance 10..104
Delta Baseline Program for Instance 1..107
Delta Baseline Program for Instance 2..108

Delta Baseline Program for Instance 3..109
Delta Baseline Program for Instance 4..110
Delta Baseline Program for Instance 5..111
Delta Baseline Program for Instance 6..112
Delta Baseline Program for Instance 7..113
Delta Baseline Program for Instance 8..114
Delta Baseline Program for Instance 9..115
Delta Baseline Program for Instance 10..116
Attack Delta Baseline Program for Instance 1 ..117
Attack Delta Baseline Program for Instance 2 ..118
Attack Delta Baseline Program for Instance 3 ..119
Attack Delta Baseline Program for Instance 4 ..120
Attack Delta Baseline Program for Instance 5 ..121

Attack Delta Baseline Program for Instance 6 ..122
Attack Delta Baseline Program for Instance 7 ..123
Attack Delta Baseline Program for Instance 8 ..124
Attack Delta Baseline Program for Instance 9 ..125
Attack Delta Baseline Program for Instance 10 ..128

Appendix B ..129

Baseline Program ..129

Attack Delta Baseline Program (for PLC Instance 9) ...131
Attack Baseline Program (for PLC Instance 1)...133
Attack Baseline Program (for PLC Instance 2)...135

Attack Baseline Program (for PLC Instance 3)...137

Attack Baseline Program (for PLC Instance 4)...139
Attack Baseline Program (for PLC Instance 5)...141
Attack Baseline Program (for PLC Instance 6)...143

Attack Baseline Program (for PLC Instance 7)...145
Attack Baseline Program (for PLC Instance 8)...147
Attack Baseline Program (for PLC Instance 9)...148

ix

Attack Baseline Program (for PLC Instance 10)...150

Bibliography ..152

x

List of Figures

 Page
Figure 1: SCADA Components (Stouffer, 2008) .. 9

Figure 2: Example Traffic Light Petri Net ... 17

Figure 3: Queiroz’s Summary for Sample Data (Queiroz, 2010) 20

Figure 4: Germanus’ Middleware Building Blocks (Germanus, 2010) 22

Figure 5: Germanus’ (2010) Redundant P2P Model ... 23

Figure 6: Shah’s (2008) Verification Function Overview ... 24

Figure 7: Wei’s Resilience Curve (Wei, 2009) .. 26

Figure 8: PLC SUT Diagram ... 30

Figure 9: Ladder Logic of Baseline Program .. 38

Figure 10: Petri Net of Baseline Program .. 42

Figure 11: Reachability Graph for Baseline .. 50

Figure 12: Baseline PLC Ladder Logic ... 55

Figure 13: Attack Baseline PLC Ladder Logic for Instance #1 56

Figure 14: Scatter Plot Between Ladder Logic and I/O Deltas 59

Figure 15: Scatter Plot Revealing Overlap Densities .. 61

Figure 16: High-Level Petri Net Utilizing I/O Analysis (Nominal Operation) 68

Figure 17: High-Level Petri Net Utilizing I/O Analysis (Safe-Mode Triggered) 69

Figure 18: Ladder Logic for Baseline (all) .. 75

Figure 19: Petri Net for Baseline (all).. 76

Figure 20: Ladder Logic for Attack Baseline (1) ... 78

Figure 21: Petri Net for Attack Baseline (1) .. 79

xi

Figure 22: Ladder Logic for Attack Baseline (2) ... 81

Figure 23: Petri Net for Attack Baseline (2) .. 82

Figure 24: Ladder Logic for Attack Baseline (3) ... 84

Figure 25: Petri Net for Attack Baseline (3) .. 85

Figure 26: Ladder Logic for Attack Baseline (4) ... 87

Figure 27: Petri Net for Attack Baseline (4) .. 88

Figure 28: Ladder Logic for Attack Baseline (5) ... 90

Figure 29: Petri Net for Attack Baseline (5) .. 91

Figure 30: Ladder Logic for Attack Baseline (6) ... 93

Figure 31: Petri Net for Attack Baseline (6) .. 94

Figure 32: Ladder Logic for Attack Baseline (7) ... 96

Figure 33: Petri Net for Attack Baseline (7) .. 97

Figure 34: Ladder Logic for Attack Baseline (8) ... 99

Figure 35: Petri Net for Attack Baseline (8) .. 100

Figure 36: Ladder Logic for Attack Baseline (9) ... 101

Figure 37: Petri Net for Attack Baseline (9) .. 102

Figure 38: Ladder Logic for Attack Baseline (10) ... 105

Figure 39: Petri Net for Attack Baseline (10) .. 105

Figure 40: Ladder Logic for Delta Baseline (1) ... 107

Figure 41: Ladder Logic for Delta Baseline (2) ... 108

Figure 42: Ladder Logic for Delta Baseline (3) ... 109

Figure 43: Ladder Logic for Delta Baseline (4) ... 110

Figure 44: Ladder Logic for Delta Baseline (5) ... 111

xii

Figure 45: Ladder Logic for Delta Baseline (6) ... 112

Figure 46: Ladder Logic for Delta Baseline (7) ... 113

Figure 47: Ladder Logic for Delta Baseline (8) ... 114

Figure 48: Ladder Logic for Delta Baseline (9) ... 115

Figure 49: Ladder Logic for Delta Baseline (10) ... 116

Figure 50: Attack Ladder Logic for Delta Baseline (1) ... 117

Figure 51: Attack Ladder Logic for Delta Baseline (2) ... 118

Figure 52: Attack Ladder Logic for Delta Baseline (3) ... 119

Figure 53: Attack Ladder Logic for Delta Baseline (4) ... 120

Figure 54: Attack Ladder Logic for Delta Baseline (5) ... 121

Figure 55: Attack Ladder Logic for Delta Baseline (6) ... 122

Figure 56: Attack Ladder Logic for Delta Baseline (7) ... 123

Figure 57: Attack Ladder Logic for Delta Baseline (8) ... 124

Figure 58: Attack Ladder Logic for Delta Baseline (9) ... 125

Figure 59: Petri Net for Attack Delta Baseline (9) .. 126

Figure 60: Attack Ladder Logic for Delta Baseline (10) ... 128

Figure 61: Graph for Baseline (1-10), Delta Baseline (1-10) and Attack Delta Baseline

(1-8,10) .. 129

Figure 62: Graph for Attack Delta Baseline (9) ... 131

Figure 63: Graph for Attack Baseline (1) .. 133

Figure 64: Graph for Attack Baseline (2) .. 135

Figure 65: Graph for Attack Baseline (3) .. 137

Figure 66: Graph for Attack Baseline (4) .. 139

xiii

Figure 67: Graph for Attack Baseline (5) .. 141

Figure 68: Graph for Attack Baseline (6) .. 143

Figure 69: Graph for Attack Baseline (7) .. 145

Figure 70: Graph for Attack Baseline (8) .. 147

Figure 71: Graph for Attack Baseline (9) .. 148

Figure 72: Graph for Attack Baseline (10) .. 150

xiv

List of Tables

 Page
Table 1: Intentional SCADA Incidents .. 11

Table 2: Non-Intentional SCADA Incidents.. 12

Table 3: Examples of Petri Net Places and Transitions (Abhishek, 2005) 16

Table 4: Example Traffic Light System Response .. 32

Table 5: Parameters.. 33

Table 6: Ten PLC Attack Instances ... 35

Table 7: Tangible States for Baseline .. 49

Table 8: Reachable Markings for Baseline .. 51

Table 9: Reachable Markings for Attack (Instance #1) ... 53

Table 10: Net Difference in Input-Output Behavior (Instance #1) 54

Table 11: Net Difference in Symbolic Ladder Logic (Instance #1) 57

Table 12: Net Difference in Symbolic Ladder Logic .. 57

Table 13: Net Difference in Input-Output Behavior .. 58

Table 14: Tangible States for Baseline (all), Delta Baseline (all) and Attack Delta

Baseline (1-8, 10) ... 129

Table 15: Matrix for Baseline (1-10), Delta Baseline (1-10) and Attack Delta Baseline

(1-8,10) .. 130

Table 16: Tangible States for Attack Delta Baseline (9) ... 131

Table 17: Matrix for Attack Delta Baseline (9) ... 132

Table 18: Tangible States for Attack Baseline (1) ... 133

Table 19: Matrix for Attack Baseline (1) ... 134

xv

Table 20: Tangible States for Attack Baseline (2) ... 135

Table 21: Matrix for Attack Baseline (2) ... 136

Table 22: Tangible States for Attack Baseline (3) ... 137

Table 23: Matrix for Attack Baseline (3) ... 138

Table 24: Tangible States for Attack Baseline (4) ... 139

Table 25: Matrix for Attack Baseline (4) ... 140

Table 26: Tangible States for Attack Baseline (5) ... 141

Table 27: Matrix for Attack Baseline (5) ... 142

Table 28: Tangible States for Attack Baseline (6) ... 143

Table 29: Matrix for Attack Baseline (6) ... 144

Table 30: Tangible States for Attack Baseline (7) ... 145

Table 31: Matrix for Attack Baseline (7) ... 146

Table 32: Tangible States for Attack Baseline (8) ... 147

Table 33: Matrix for Attack Baseline (8) ... 147

Table 34: Tangible States for Attack Baseline (9) ... 148

Table 35: Matrix for Attack Baseline (9) ... 149

Table 36: Tangible States for Attack Baseline (10) ... 150

Table 37: Matrix for Attack Baseline (10) ... 151

xvi

List of Equations

 Page
Equation 1: Spearman’s Rank Order Coefficient .. 61

1

TOWARDS QUANTIFYING PROGRAMMABLE LOGIC CONTROLLER

RESILIENCE AGAINST INTENTIONAL EXPLOITS

 I. Introduction

This chapter provides an overview of this research. Section 1.1 introduces the

motivation; Section 1.2 provides the research goals; Section 1.3 describes an overview of

the research approach; Section 1.4 lists key assumptions and limitations; and Section 1.5

outlines the thesis organization.

1.1 Motivation

Supervisory Control and Data Acquisition (SCADA) systems provide automated

control and monitoring for the nation’s critical infrastructure. Implemented in many

industry sectors as early as the 1960’s, security was not initially a priority for SCADA

design and development; however, recent intentional and unintentional events have

highlighted concerns associated with SCADA security (Stouffer, 2008). Non-intentional

events have traditionally been addressed with redundant and fault tolerant architectures.

However, current solutions for intentional malicious actions are not sufficient for

addressing the threat.

A primary risk factor associated with intentional malicious events is the trend to

incorporate business enterprise networks for cost saving purposes. Indeed,

interconnecting critical systems via LAN and WAN technologies enables entry points for

attacks via the Internet, internal workstations, or communication links between the

control center and field sites (Stouffer, 2008). As demonstrated by Stuxnet, an attack can

2

propagate via the enterprise network to execute code on field devices that results in

physical damage to the underlying system (Falliere, 2011).

Stuxnet is a recent example of an intentional malicious cyber event. Stuxnet

targeted a specific programmable logic controller (PLC) manufacturer and configuration.

PLCs control physical end-devices (e.g., sensors, pumps, motors, valves) at the edge of

SCADA systems. Stuxnet functionally alters the PLC’s parameters such that specific

drive motors were driven beyond nominal specifications (Falliere, 2011). Additionally,

Stuxnet masks modification of the PLCs functions from the SCADA system operator.

Stuxnet demonstrates a novel threat to SCADA security since it both altered physical

parameters to the system and concealed the modifications.

The Stuxnet example demonstrates SCADA systems are vulnerable to rootkit-like

exploits. Current methods of validating the functional parameters of a PLC primarily

consider the message exchange and network communications protocols, generally

observed at the human machine interface (HMI). Although sufficient at the macro level,

this method does not provide detection of malware which exhibits physical effects and

masks the operations from the HMI or communication channel.

Establishing a resilient SCADA system can help mitigate risks associated with

malicious exploits. Resiliency requires that a system be self-aware, robust and adaptive

(National Infrastructure Advisory Council, 2009). Additionally, determining the

resilience of a system requires that a system’s susceptibility to degradation and capability

to recover be quantifiable. Establishing a quantifiable measure of resilience for SCADA

systems is key to protecting critical infrastructure assets.

3

1.2 Research Statement

The goal of this research is to provide a method to quantify the identification and

absorption of malicious alterations by monitoring and characterizing field device inputs

and outputs to PLCs. By focusing on the field device at the micro level, intentional

malicious actions can be observed that otherwise would mask effects at the HMI, as was

the case in Stuxnet. This research investigates metrics that align with characteristics of

resilience. Traits such as self-awareness are a foundational characteristic of resilience

and may provide a basis for tangible mechanisms to maintain the integrity of a PLC’s

nominal functions in the presence of malicious events.

1.3 Research Approach

Establishing a metric to assess a PLC’s resilience requires both data that reflects

nominal PLC functionality and a definition of resilience which makes the metric

applicable. The data used for this research is derived from PLC simulations executed on

LogixPro® 500 software. The definition for resilience is taken from the National

Infrastructure Advisory Council (2009).

The PLC simulations consist of various programs that emulate instances of a

PLC. Each PLC instance is subjected to malicious exploit test cases. The simulated PLC

programs are then observed for input-output behavior. The behavior is characterized into

formal Petri nets to facilitate analysis of the data and to allow for graphical and

mathematical analysis of defined system events (Zurawski, 1994).

This research establishes four program types for each instance. The first two

types of programs form two baselines for a PLC instance. The first baseline establishes

4

the nominal ladder logic to execute a defined set of system processes. The second

baseline alters the original baseline’s ladder logic to protect against a known malicious

exploit. The second pair of programs is formed when attacks alter the logic of the first

two baselines. The formation of these four PLC programs forms the basis from which

equivalent Petri nets are derived.

The method of characterizing a PLC program via a Petri net is by defining the

inputs, outputs, and input-output interdependencies of the PLC program. The inputs of

the PLC program characterize the transitions between observable process events. The

outputs of the PLC program characterize the observable process events. The input-output

interdependencies characterize the association between the transitions and observable

process events. The resulting Petri nets allow for graphical and mathematical analysis of

the emulated PLC instances. These results facilitate identification of metrics which are

applicable to assessing resilience.

The Petri nets are created and simulated with PIPEv4.0 software. PIPEv4.0

allows for non-deterministic analysis of the Petri nets (Bonet, 2007). The results

establish a set of tangible states and a reachability graph for each Petri net. The tangible

states and graphs are combined into a matrix which lists the input-output behavior for

each Petri net. Comparative analysis of the matrices provides several metrics that

directly address, or indirectly support, the key aspects of resilience.

1.4 Assumptions/Limitations

In this research, the specific attack applied to the baseline program assumes

knowledge of the original baseline program. Similarly, the protective baseline program

5

utilizes knowledge of the attack. These assumptions lead to the creation of four distinctly

defined program categories: (i) baseline, (ii) attack baseline, (iii) delta baseline, and (iv)

attack delta baseline. This research does not focus on ladder logic programming, but

rather seeks to identify measures for differentiating between programs of known

quantities. By formulating known programs, the analysis is assured of presenting

findings consistent with true input-output behavior for a PLC system under nominal,

attack, and protected instances.

The Petri net’s simulation software, PIPEv4.0, has limited expressive capabilities.

Indeed, the drawing functions are limited to basic places, transitions, and arcs; however,

the software performs sufficient simulations and analysis for the instances presented. A

useful element not utilized in the experimentation is the presence of inhibitor arcs. Due

to the lack of inhibitor arcs, some Petri nets illustrate transitions which have similar, yet

unique, properties. For example, a transition labeled 10 to 8 signifies the same PLC input

sequence as a transition labeled 10to8; however, the next output state taken by the PLC is

determined by the current place(s) which is enabling the transition 10 to 8 (also 10to8).

Note that a labeled transition (e.g., 10 to 8) within a Petri net refers to the change in

decimal value, from ten to eight, within the PLC’s input module.

The assumptions, and limitation, do not alter the applicability of this research or

the significance of its findings. Utilizing known programs as a basis for differentiating

input-output behavior is necessary and sufficient for this research. Bonet compared PIPE

to several other Petri net tools and preferred PIPE’s interface and analysis modules

(Bonet, 2007). The key analysis modules used are:

6

 GSPN analysis – Checks for safeness and boundedness, and generates a
tangible state table

 Reachability graph – Checks for safeness and boundedness, and generates a
graph of all possible firing sequences between reachable states

 Simulation – Performs step-wise and fully automated simulation for a Petri
net

Additionally, the Petri net modeling interface analysis fully captures the defined

process requirements for each PLC instance. The appropriate enabling states for each

transition are representative of the proposed PLC programs.

1.5 Thesis Organization

Chapter 1 provides an introduction for this research. This includes the motivation

for this research, research statement, research approach, assumptions, and the

organization for this document.

Chapter 2 presents fundamental concepts and related work associated with this

research. Background topics include SCADA, resilience, and Petri nets. Related work

includes efforts related to SCADA security and resilience.

Chapter 3 describes the experimental methodology. First, a definition of the

system boundaries is provided. Second, the factors and workload applied to the system

are defined. Finally, details for characterizing the PLC instances into Petri nets and the

method for performance evaluation are presented.

Chapter 4 provides the details for the results and analysis of the PLC instances. A

corollary analysis of the resulting metrics is performed to identify statistically relevant

observations. Then significant findings from the analysis of the metrics and their

applicability toward resilience are discussed.

7

Chapter 5 reviews the key points of this research and provides recommendations

for follow-on research. Finally, concluding remarks for this research are provided.

8

II. Literature Review

This chapter addresses fundamental concepts and related work. Section 2.1

details background topics in SCADA, resilience and Petri nets. Section 2.2 discusses

several works closely related to SCADA security and resilience.

2.1 Background

The background topics relevant to this research include SCADA, resilience, and

Petri nets. An overview of SCADA architecture is presented along with discussion on

security vulnerabilities of associated subcomponents. Additionally, the definition of

resilience is discussed, and Petri nets are discussed as a practical means of modeling

processes.

2.1.1 Supervisory Control and Data Acquisition (SCADA)

SCADA systems provide an efficient means of monitoring and controlling

processes across large geographical regions. SCADA systems are implemented in most

modern industrial facilities, such as utilities and manufacturing. Approximately 90

percent of the nation’s critical infrastructures are privately owned; a majority of these

implementing SCADA as part of their enterprise network (Stouffer, 2008). Indeed,

SCADA systems allow industries to streamline operating processes that cover vast

geographical regions. To further enhance operating efficiency, industries have now

integrated the SCADA system with their business enterprise networks (Stouffer, 2008).

9

2.1.1.1 Components of SCADA

A SCADA system consists of a control center, communication links, and field

sites (Figure 1) (Stouffer, 2008). The control center is comprised of the following:

 Human Machine Interface – displays status of field sites in graphical form.

 Engineering Workstations – allows for operator control of field sites.

 Data Historian – storage and analysis of processed data.

 Control Server or Master Terminal Unit (MTU) – operates SCADA functions,
and processes data between control center and field sites.

Figure 1: SCADA Components (Stouffer, 2008)

Communication links, routers, and modems relay and convert signals for

processing between field sites and the control center. Field sites consist of end-devices

that collect data from various sensors (e.g., pressure, flow, or temperature) and transmit

the appropriate data to the MTU. The end devices represented in Figure 1 include

programmable logic controllers (PLC), intelligent electronic devices (IED), and remote

10

terminal units (RTU) (Stouffer, 2008). These devices perform similar functions in that

they locally control devices (e.g., motors, sensors, valves) and are able to communicate

with the control center.

While PLCs and RTUs share similarities, they differ by their interaction to end-

devices. RTUs may communicate with other processing units prior to control of an end-

device, while PLCs are directly linked to end-devices. PLCs are also more capable of

tightly controlling sequential physical processes. The PLC replaces what traditionally

were multiple solid state relays, switches, and mechanical timers; however, PLC’s

flexible programming facilitates configuration changes to physical process requirements.

2.1.1.2 SCADA Security Issues

SCADA systems are designed to provide cost effective control and data

acquisition. Security was not initially a priority of SCADA design and development.

However, in the past decade focus on SCADA security has grown due to both intentional

(Table 1) and unintentional events (Table 2) (Stouffer, 2008) (Falliere, 2011). Non-

intentional events have traditionally been addressed with redundant and fault tolerant

architectures. Only recently has intentional consequences of malicious events drawn the

attention of security experts in the SCADA domain.

11

Table 1: Intentional SCADA Incidents

The introduction of business enterprise networks to the SCADA domain has

increased vulnerability to malicious attack. Injection points of attack can occur via the

Internet, the enterprise network, internal workstations, or communication links between

the control center and field sites (Stouffer, 2008). The end goal of a SCADA specific

attack may include affecting the physical process by altering the end devices (e.g.,

motors, sensors, valves); such was the case with the Stuxnet worm. Stuxnet executed

code on specific PLCs that caused physical damage to specific drive motors (Falliere,

2011). Stuxnet was not detected by SCADA operators due to a rootkit that masked the

deviant behavior.

Name Description

Worcester Air
Traffic
Communications

In March 1997, a teenager in Worcester, Massachusetts disabled part of the public switched
telephone network using a dial-up modem connected to the system. This knocked out phone
service at the control tower, airport security, the airport fire department, the weather service,
and carriers that use the airport. Also, the tower’s main radio transmitter and another
transmitter that activates runway lights were shut down, as well as a printer that controllers use
to monitor flight progress. The attack also knocked out phone service to 600 homes and
businesses in the nearby town of Rutland (Thomas, 1998).

MAROOCHY
Shire Sewage Spill

In the spring of 2000, a former employee of an Australian organization that develops
manufacturing software applied for a job with the local government, but was rejected. Over a
two-month period, the disgruntled rejected employee reportedly used a radio transmitter on as
many as 46 occasions to remotely break into the controls of a sewage treatment system. He
altered electronic data for particular sewerage pumping stations and caused malfunctions in their
operations, ultimately releasing about 264,000 gallons of raw sewage into nearby rivers and
parks (Smith, 2001).

Stuxnet Siemens
Worm

Stuxnet is a threat targeting a specific industrial control system likely in Iran, such as a gas
pipeline or power plant. The ultimate goal of Stuxnet is to sabotage that facility by
reprogramming PLCs to operate as the attackers intend them to, most likely out of their
specified boundaries. Stuxnet was discovered in July 2010, but is confirmed to have existed at
least one year prior and likely even before. The majority of infections were found in Iran
(Falliere, 2011).

12

Table 2: Non-Intentional SCADA Incidents

Name Description

CSX Train
Signaling System

In August 2003, the Sobig computer virus was blamed for shutting down train signaling systems
throughout the east coast of the U.S. The virus infected the computer system at CSX Corp.’s
Jacksonville, Florida headquarters, shutting down signaling, dispatching, and other systems.
According to Amtrak spokesman Dan Stessel, ten Amtrak trains were affected in the morning.
Trains between Pittsburgh and Florence, South Carolina were halted because of dark signals,
and one regional Amtrak train from Richmond, Virginia to Washington and New York was
delayed for more than two hours. Long-distance trains were also delayed between four and six
hours (Niland, 2003).

Davis-Besse

In August 2003, the Nuclear Regulatory Commission confirmed that in January 2003, the
Microsoft SQL Server worm known as Slammer infected a private computer network at the
idled Davis-Besse nuclear power plant in Oak Harbor, Ohio, disabling a safety monitoring
system for nearly five hours. In addition, the plant’s process computer failed, and it took about
six hours for it to become available again. Slammer reportedly also affected communications on
the control networks of at least five other utilities by propagating so quickly that control system
traffic was blocked (Poulsen, 2003).

Northeast Power
Blackout

In August 2003, failure of the alarm processor in First Energy’s SCADA system prevented
control room operators from having adequate situational awareness of critical operational
changes to the electrical grid. Additionally, effective reliability oversight was prevented when the
state estimator at the Midwest Independent System Operator failed due to incomplete
information on topology changes, preventing contingency analysis. Several key 345kV
transmission lines in Northern Ohio trip due to contact with trees. This eventually initiates
cascading overloads of additional 345 kV and 138 kV lines, leading to an uncontrolled
cascading failure of the grid. A total of 61,800 MW load was lost as 508 generating units at
265 power plants tripped (Minkel, 2008).

Zotob Worm

In August 2005, a round of Internet worm infections knocked 13 of DaimlerChrysler’s U.S.
automobile manufacturing plants offline for almost an hour; stranding workers as infected
Microsoft Windows systems were patched. Plants in Illinois, Indiana, Wisconsin, Ohio,
Delaware, and Michigan were knocked offline. While the worm affected primarily Windows
2000 systems, it also affected some early versions of Windows XP. Symptoms include the
repeated shutdown and rebooting of a computer. Zotob and its variations caused computer
outages at heavy-equipment maker Caterpillar Inc., aircraft-maker Boeing, and several large
U.S. news organizations (Roberts, 2005).

13

2.1.2 Resilience Overview

In general terms, resilience is the ability of a system to continue to operate

through disruptions. This notion encompasses a multitude of other terms such as

robustness, dependability, and survivability. These characteristics are important to the

protection and healing of a system. This section surveys various resilience models from

other domains for applicability to SCADA systems (e.g., PLCs).

2.1.2.1 Defining Resilience

Resilience has been researched in other domains in which biological,

psychological and community resilient models have been formulated. Biological

resilience presents itself in the study of immune systems (VanBreda, 2001).

Psychological resilience has been studied in the mental capacity for individuals to

perform through adversity (VanBreda, 2001). Community and organizational resilience

is demonstrated through the ability of a group or region to recover from catastrophic

events (Tierney, 2007; Cutter, 2008). In each of these domains, a common structure of

resilience is presented. For example, the components of psychological resilience can be

categorized into the following three parts (VanBreda, 2001):

 Inner Self Mechanism - monitoring your physical, meditative, and mental
awareness

 Relationship Mechanism - monitoring the taking and giving awareness as well
as your self-relationship

 Method - monitoring your habits

14

This structure of resilience incorporate self awareness and self monitoring

mechanisms from the psychological domain in order to initiate the actions required to

maintain functional capacity and ability to recover.

Similarly, Tierney (2007) presents resilience in a community or organization as:

 Robustness - the ability of systems, system elements, and other units of
analysis to withstand disaster forces without significant degradation or loss of
performance

 Redundancy - the extent to which systems, system elements, or other units are
substitutable, that is, capable of satisfying functional requirements, if
significant degradation or loss of functionality occurs

 Resourcefulness - the ability to diagnose and prioritize problems and to
initiate solutions by identifying and mobilizing material, monetary,
informational, technological, and human resources

 Rapidity - the capacity to restore functionality in a timely way, containing
losses and avoiding disruptions

Trivedi (2009) states that while qualitative descriptions of resilience across

domains have been accomplished, applicable quantitative measures are still deficient.

This statement is particularly applicable to computer systems. His work attempts to

quantify metrics that compare availability, performance, and survivability for computer

systems (Trivedi, 2009). Similarly, quantifying resilience of SCADA systems is

necessary to measure their ability to perform when perturbations or disruptions to the

system occur.

15

2.1.2.2 Resilience Framework

While there are numerous definitions of resilience across various domains, The

National Infrastructure Advisory Council (NIAC) provides perhaps the most fitting

definition with respect to SCADA. NIAC (2009) define infrastructure resilience as:

“the ability to reduce the magnitude and/or duration of disruptive events. The
effectiveness of a resilient infrastructure or enterprise depends upon its ability to
anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive
event.” (p. 8)

This definition provides a framework for resilience according to the following

four characteristics:

1. The ability to anticipate a potentially disruptive event requires that the
system has a self awareness of its baseline and is able to monitor its
current state.

2. The ability to absorb potentially disruptive events requires that the system
has mechanisms in place to minimize the amount, if any, of performance
loss.

3. The ability to adapt requires that the system have contingencies available
that allow for flexible system adjustments to maintain operational
availability.

4. The ability to recover from a disruptive event requires mechanisms (either
automated or manual processes) which allow the system to perform up to
its baseline.

2.1.3 Petri Nets Overview

Petri nets are named after its creator Carl A. Petri in 1962 (Zurawski, 1994).

Initial development in 1962 concentrated on the study of communication via automata.

Zurawski and Zhou provide a simple definition (Zurawski, 1994):

“Petri nets as, graphical and mathematical tools, provide a uniform environment
for modeling, formal analysis, and design of discrete event systems.” (p. 567)

16

In its graphical form, Petri nets consist of four basic parts: (i) places, (ii)

transitions, (iii) arcs, and (iv) tokens. The places and transitions are indicative of nodes

within a graph and arcs relate to pairs of places and transitions. The tokens represent

places which are active (marked). Table 3 lists examples of places and transitions.

Table 3: Examples of Petri Net Places and Transitions (Abhishek, 2005)

2.1.3.1 Simple Petri Net Example

Figure 2 illustrates three markings of a Petri net modeling a simple traffic light,

with one light for red, yellow, and green (Abhishek, 2005). Places are represented by

circles, transitions as blocks (or bars), arcs as directed arrows, and tokens as dots. The

initial marked graph (M0) shows that a token is active in the red place, which is

interpreted as the red light being active (or illuminated). Note that there is only one token

in the red place of the initial marked graph (M0) to emphasize that only one red light

exists for this example. The presence of multiple tokens in one place may be interpreted

as the existence of more than one red light in the system.

The basic rules for transitioning a Petri net from one marked graph (M0) to the

next (M1) involves the action of the transitions (Peterson, 1977). The execution of a

transition is called firing. In order for a transition to fire, the transition must be enabled.

Places Transitions
pre/post condition event
input/output data computational step
input/output signal signal processor
resources tasking
buffer processor

17

A transition is enabled, and may fire, if all its input places contain at least one token.

Note that even though a transition is enabled, it is not strictly required to fire. The firing

of a transition results in moving a token from the input places to all output places. In the

traffic light example, all transitions have only one input and output place, so it is easily

shown that the number of tokens in the Petri net remain unchanged (at one). Figure 2

shows all possible states of the Petri net (based on the initial state of M0 with one token).

The sequence of places is limited to one light (red, green, or yellow) illuminated in any

specific instance, and limited to one repeating sequence (R G Y).

Figure 2: Example Traffic Light Petri Net

2.1.3.2 Formal Definition of a Petri Net

A Petri net C consists of four subsets, C = {P, T, I, O}, such that P is a set of

places, T is a set of transitions, I is a set of input functions for each transition, and O is a

18

set of output functions for each transition (Peterson , 1981). The formal definition for the

traffic light example in Figure 2 is represented as:

 C = {P, T, I, O}

 P = {red, green, yellow}

 T = {T0, T1, T2}

 I(T0) = {red}, I(T1) = {green}, I(T2) = {yellow}

 O(T0) = {green}, O(T1) = {yellow}, O(T2} = {red}

2.1.3.3 Petri nets in Application

Petri nets have been applied to modeling of performance, reliability, fault

recovery, and fault tolerance in various systems such as operating systems, queues, traffic

control and mathematics (Peterson, 1981). Additionally, modeling of manufacturing

processes similar to SCADA applications have also been analyzed (Zurawski, 1994).

However, the analysis of these systems focuses primarily on fault tolerance and reliability

within the systems’ designs. Utilizing Petri nets to analyze systems for intentional

exploits (e.g., malware) is significant to increasing the security posture of SCADA

systems.

Properties of Petri nets that are practical for analysis of SCADA applications are

concurrency, safeness and boundedness (Peterson, 1977). Concurrency allows for the

modeling of parallel processes that occur between the multiple devices that interact in a

SCADA system. Safeness and boundedness addresses the potential issue of state

explosion when analyzing a system. Safeness implies no more than one token may be

19

present in each place of a Petri net. It follows that if a Petri net is safe, then it is also

bounded. This results in a finite set of reachable markings since tokens are not created

without bound. These properties well suit the defined configuration and deterministic

interdependencies present in SCADA systems. Properly defining places and transitions

for a Petri net based on SCADA system processes should result in a finite set of states.

2.2 Related Work

The related works section examines analysis and resiliency concepts relating to

SCADA security. Queiroz (2010) and Germanus (2010) present individual models for

SCADA security analysis at a macro-level, while Shah (2008) explores SCADA security

protocol at a micro-level. Wei (2009) provides an exploratory analysis of resilience

metrics that may be utilized to assess industrial control systems.

2.2.1 Survivable SCADA Systems

Queiroz (2010) presents a model to quantify SCADA system performance against

a denial of service (DoS) attack. The model focuses on the interplay of four main

components of a SCADA system: RTU, MTU, HMI Server, and Data Historian. The

availability of each component is modeled as queues that allow each service to handle a

specific number of requests. The aggregate output of each component’s availability is

compiled into a Bayesian table, which incorporates the interdependencies, and then

quantifies the survivability of the SCADA system. Figure 3 provides a summary for two

sets of sample data. The thresholds for each of the SCADA components (i.e., normal,

20

degraded, unavailable) and survivability (i.e., yes, no) for the system is pre-determined

prior to model analysis.

Figure 3: Queiroz’s Summary for Sample Data (Queiroz, 2010)

Quieroz’s research contributes to part two of the previously defined resilience

framework (i.e., the ability to absorb potentially disruptive events requires that the system

has mechanisms in place to minimize the amount, if any, of performance loss).

Interdependencies of a particular SCADA system may be analyzed to determine if the

architecture is survivable against a DoS attack. The result of the analysis can be used to

improve the absorptive capacity for the SCADA system. Quieroz’s approach is sufficient

for system wide analysis of a SCADA system and the timing interdependencies between

network nodes. However, it does not account for hardware or software faults. They

assume that each node itself is not prone to failure; only that the communication between

the nodes is interrupted which causes degradation of node availability, and subsequently

system survivability.

The Quieroz (2010) approach ignores traditional fault tolerance or the presence of

malware. Hardware faults are traditionally classified in the domain of fault tolerance,

while software faults may include malware exploits such as Stuxnet. Additionally,

21

Quieroz’s contribution towards resilience resides at the macro level of the SCADA

system. No observations are made to determine the specific behavior of one particular

node. This approach does not address part one of the resilience framework (i.e., the

ability to anticipate a potentially disruptive event requires that the system has a self

awareness of its baseline and is able monitor its current state) and lacks the sensitivity to

detect malware. While the model works well in determining susceptibility to DoS attacks

and improving a SCADA system’s absorptive capacity, it is insufficient in monitoring the

current state of the SCADA system to aid real-time monitoring of system behavior at a

micro-level (e.g., end-device control via PLC).

2.2.2 Redundant SCADA Network Architecture

Germanus (2010) presents a model in which communication between the RTU

and MTU is performed via redundant links throughout the SCADA system. The model

implements the redundant paths as middleware that are assumed to be free from security

vulnerabilities. This model may improve the SCADA system’s resilience against DoS

and man-in-the-middle (MITM) attacks. DoS attacks may be mitigated by using the

redundant paths available on the network links. MITM attacks may be mitigated by the

data integrity checks associated with the middleware. Figure 4 illustrates the middleware

model that passively extracts SCADA communication and relays it across the peer-to-

peer (P2P) overlay.

22

Figure 4: Germanus’ Middleware Building Blocks (Germanus, 2010)

The advantages to this model are flexibility, interoperability, and minimal

intrusiveness. The flexibility allows the system to withstand link failures which

addresses part two of the resilience framework (i.e., the ability to absorb potentially

disruptive events requires that the system has mechanisms in place to minimize the

amount, if any, of performance loss). Figure 5 illustrates the interoperability and minimal

intrusiveness of Germanus’ model which facilitates deployment of the model to existing

SCADA systems since the P2P overlay uses middleware as an interface between existing

RTU and MTU links (Germanus, 2010).

23

Figure 5: Germanus’ (2010) Redundant P2P Model

The model expands on Quieroz’s research contribution to SCADA resilience in

two ways. First, it can be implemented real-time on existing SCADA system

infrastructure. Second, the redundant network paths provide increased node availability,

and therefore increase survivability of the SCADA system.

Similar to Quieroz’s research, Germanus’ analysis resides at the macro-level of

the SCADA system. Detection of hardware and software faults local to either the RTU or

MTU is undetected since it is isolated to the SCADA system’s communication links.

Local behavior of any particular RTU is still only monitored through the HMI. However,

the P2P overlay is able to provide real-time feedback of link or message abnormalities

and partially addresses part one of the resilience framework since it will detect systemic

behavior.

24

2.2.3 Mechanisms to Provide Integrity in SCADA Devices

Shah (2008) presents a method to verify the executable code of a PLC. The

method implements a challenge-response protocol between the PLC and an external

dispatcher. A verification function resides on both the PLC and dispatcher. Figure 6

summarizes the steps of the verification protocol. Steps one through three assures that

the verification function is trustworthy, while steps four and five assure that the

executable code of the PLC is untampered (Shah, 2008). Steps one through five of

Shah’s challenge-response protocol is as follows:

1. The dispatcher sends a random challenge to the PLC.

2. The verification function of the PLC computes a checksum.

3. PLC returns the results to the dispatcher.

4. Verification function of the PLC creates a hash of the executable code.

5. PLC sends the hash result to the dispatcher which compares it against the
known hash.

Figure 6: Shah’s (2008) Verification Function Overview

25

This method of verifying executable code on the PLC approaches SCADA

resilience from the local node level as opposed to the system-level approaches of Quieroz

and Germanus. Shah’s method addresses the first part of the resilience framework (i.e.,

the ability to anticipate a potentially disruptive event requires that the system has a self

awareness of its baseline and is able monitor its current state) since it is able to detect

changes to the executable code on the PLC. It also provides flexibility since it may be

implemented in existing PLCs currently deployed in the field; however, it requires that

the verification function be integrated with the PLC.

Shah’s method incurs several logistical issues. The paper acknowledges that the

verification functions of the PLC and dispatcher are different for each PLC manufacturer

(Shah, 2008). While the challenge-response protocol is general across platforms, the

verification functions differ based on the PLC architecture. Another logistical issue is

that the PLC must be taken off-line to perform the challenge-response protocol between

the dispatcher and PLC. This presents operational impacts to most SCADA systems

since most PLCs run real-time applications.

Shah (2008) also acknowledges that the verification process only assures that no

malicious code is present at the time the verification function is performed between the

dispatcher and PLC. It does not prevent timed attacks in which the adversary may

execute malicious code on the PLC between verification timelines. Additionally, the

method does not address the second part of the resilience framework (i.e., the ability to

absorb potentially disruptive events requires that the system has mechanisms in place to

minimize the amount, if any, of performance loss) since no processes are in place to

reduce the effect of malicious code once detected.

26

2.2.4 Resilient ICS: Concepts, Formulation, Metrics, and Insights

Industrial control systems (ICS) are deployed in sectors such as agriculture,

utilities, and transportation. Wei (2009) presents a set of resilience metrics that may be

used to quantify performance of a system. Figure 7 identifies the trigger points for a

resilient system across a timeline. The trigger points are utilized to define equations for

protection time, degradation time, identification time, recovery time, performance

degradation, performance loss, total loss, and overall potential critical loss.

Figure 7: Wei’s Resilience Curve (Wei, 2009)

27

Subsets of the defined equations that apply to the first and second parts of the

resilience framework are (Wei, 2009):

 Protection time – time that the system tolerates an incident without
degradation

 Degradation time – time that the system incurs to reach its minimum
performance level

 Identification time – time from incident occurrence to system identification

 Performance degradation – difference between baseline performance and
degraded performance due to incident

The four definitions presented by Wei address the detection of the incident and

the level of mitigation the system performs. These definitions, or slight variations of

them, may aid in analyzing various models that seek to improve resilience in SCADA

systems.

2.3 Summary of Literature

This chapter presented the relevant background and related works associated with

quantifying resiliency of PLCs through the use of Petri nets. Knowledge of SCADA

architecture and security vulnerabilities is a foundational element. A formal definition of

resilience and Petri nets is also relevant to key areas of Chapters 3 and 4 of this research.

The various SCADA security analysis techniques presented at both the macro and micro-

levels provide a basis of comparison for the proposed methodology of Chapter 3. The

related work on resilient metrics for ICS is insightful to the hypothesis of this research

and gives relevance to findings in Chapter 4.

28

III. Methodology

This chapter presents the methodology for characterizing the PLC ladder logic

programs into equivalent Petri nets for evaluating metrics to assess resilience. Section

3.1 describes the goal and hypothesis for this research. Section 3.2 identifies the system

boundaries. Section 3.3 describes the system services. Section 3.4 lists the parameters of

the system. Section 3.5 defines the factors that apply to the system. Section 3.6

describes the workload applied to the system. Section 3.7 details the approach for

characterizing the ladder logic into equivalent Petri nets. Section 3.8 identifies the

performance metrics derived from the experimentation. Section 3.9 describes the

evaluation method used to form resilience metrics. Section 3.10 outlines the

experimental design.

3.1 Problem Definition

Improving the resilience of ICS allows critical infrastructures to withstand

degrading events, and recover to a nominal functional capability within an acceptable

period. However, determining resilience requires that a system’s susceptibility to

degradation and capability to recover is quantifiable. Narrowing the scope of research to

a micro-level component of a SCADA system provides a basis to facilitate evaluation of

potential resilience metrics.

3.1.1 Goal

The primary goal of this research is to identify metrics that may assess a PLCs

performance with respect to the resilience framework presented in Chapter 2. A

29

complimentary goal is to identify metrics that are applicable to real-time physical

mechanisms. The resilience curve (Figure 7) identifies trigger points that are utilized in

evaluating resilience performance; however, the mechanisms for the triggers are absent.

Achieving both research goals may result in applicable mechanisms which appropriately

assess resilience in controlled (e.g., benchmark) and real-time (e.g., operations)

environments. This research may reveal comparative metrics that help determine if

awareness of the system state is discernible. Self-awareness is a foundational

characteristic of the resilient framework and provides a basis for tangible mechanisms to

implement trigger points in real-time hardware protection schemes.

3.1.2 Hypothesis

The hypothesis of this research is that a PLC’s ability to identify and absorb

malicious alterations is quantifiable by monitoring system outputs in response to system

inputs. The approach to derive the metrics for resilience assessment uses comparative

analysis of various instances of PLC programs.

3.2 System Boundaries

The system under test (SUT) is the PLC processes. Figure 8 illustrates the SUT

and associated inputs and outputs. The workload applied to the SUT includes various

attack instances as detailed in Section 3.6. The parameters applied to the SUT are

primarily fixed attributes of the PLC emulation provided by LogixPro® 500; the varying

parameter during experimentation is the protection scheme applied to each specific PLC

30

instance. The metric produced from the SUT is the decimal input and output values

produced during program execution.

Figure 8: PLC SUT Diagram

System components that comprise the PLC include: Memory, Data/Code, CPU,

Input Ports, Output Ports, Power Supply, and Communication Port. The component

under test (CUT) is the data/code or programming logic of the system. Data/code is

programmed in ladder logic from a laptop with the accompanying LogixPro® 500

software package associated with the PLC. The program is loaded to the PLC which

executes the ladder logic and produces observable output signals in response to input

signals.

3.3 System Services

A PLC provides four primary services: (i) execution of the ladder logic program,

(ii) monitoring of input signals, (iii) production of output signals, and (iv) providing data

back to the master device of a SCADA system. It is assumed that accurate data are

31

transmitted to the master device (i.e., no spoofing of output states), and that input signals

are only injected at valid input ports (i.e., no spoofing of input states). It is also assumed

that the programs (i.e., baseline and enumerated versions) are not subject to hardware

faults or undesired software faults. These assumptions isolate the boundary of the system

from external influences, and assure the integrity of the applied inputs and observed

outputs.

The primary services monitored are the applied inputs and the behavior of the

outputs. The observed PLC output signals are a direct result of the PLC program code

execution and the input signal status. Applying inputs to the PLC produces output signal

states that affect the end-devices (e.g., motors, lights, actuators). These behavioral

responses of the output states in response to the input states are measurable in the

observed status of the end-devices. The PLC’s interaction with the end-devices fall into

one of three observable response categories:

 Valid – Nominal input results in nominal output processes

 Degraded – Nominal input results in deviant but safe output processes. A safe
outcome is defined as a non-nominal output response in which the system’s
interactions with end-devices do not cause catastrophic losses (e.g., minor
perturbations)

 Unstable – Nominal input results in deviant and unsafe processes. An unsafe
outcome is defined as a non-nominal output response in which the system’s
interactions with end-devices may cause catastrophic losses (e.g., loss of life
or resources)

Table 4 outlines system responses using a traffic signal example. For this

example, the input is an automated timed sequence which transitions the light between its

32

potential outputs. In nominal conditions the sequence is always valid (see Table 4).

However, as seen in Table 4, in non-nominal conditions the sequences are degraded

(within defined process requirements) or unstable (outside defined process requirements).

The output of the end-devices (i.e., lights) are observed, and categorized accordingly.

Table 4: Example Traffic Light System Response

3.4 System Parameters

The following are the system parameters: Power Input, Communication Port

Input, Communication Port Output, CPU scanning speed, Memory size, Input module

size, Output module size, Data/Code (programmed Ladder Logic). Table 5 describes

each parameter.

Category Traffic Signal Output
Valid Lights transition from green to yellow to red.
Degraded Lights transition from green to yellow to flashing red.
Unstable Lights transition from green to yellow to green.

33

Table 5: Parameters

3.5 Factors

The factor of interest resides in the ladder logic programs of the PLC. Two

variations of a program baseline are applied to the CUT. The research environment

consists of a process emulation using LogixPro® 500. LogixPro® 500 provides a

graphical user interface to develop, compile, and execute distinct instances of PLC

Parameter Description

Power Input Provides power to the PLC via an AC to DC inverter. This remains at factory
default (24VDC).

Communication Input
Port

Provides access to write to PLC memory. This is used to download program
code to the PLC via serial communications using RS-232 signaling. During
testing, the port is not used and is in a closed state.

Communication
Output Port

Provides external and remote monitoring of the PLC via an external master
unit. During testing, the port is not used and is in a closed state.

CPU Scanning
Speed

Adjusts the rate at which the code is read from memory. The experiment will
use factory default settings of 44 Kbps.

Memory Size
Memory size is upgradeable depending on the size of programming required.
The experiment does not necessitate programs larger than the factory default
memory space. The experiment will use the factory default of 1K.

Input Module Size
Modules are upgradeable depending on the number of required inputs signals
that are required to connect to the PLC. The experiment does not necessitate
a number larger than the factory default input module size (4 input channels).

Output Module Size
Modules are upgradeable depending on number of required outputs signals that
are required to connect to the PLC. The testing scenarios do not necessitate a
number larger than the factory default output module size (4 output channels).

Data/Code (Ladder
Logic)

Ladder logic is the data held in memory which is executed by the CPU. Input
channels are scanned, depending on the program logic, and output channels are
energized.

34

programs and system operating parameters. The multiple instances demonstrate distinct

observable input-output behavioral patterns when subjected to various example malicious

attacks. For each instance, two baseline program categories are established:

 Baseline – A program to perform defined process requirements; generates
valid input-output responses.

 Delta Baseline – A protection scheme applied to the baseline that generates
valid input-output responses. The protection scheme can be considered
equivalent to a fail-safe system state (e.g., flashing red lights for a roadway
stoplight system).

3.6 Workload

The workload includes ten instances of PLC attacks applied to the CUT. These

ten instances were created such that degraded physical operations of the system are

readily observable. Table 6 summarizes the ten attack instances. The attacks, in

combination with the baseline program categories, form two additional program

categories:

 Attack Baseline – A targeted attack to the baseline that generates degraded or
unstable input-output responses.

 Attack Delta Baseline – A targeted attack applied to the delta baseline that
generates valid, degraded or unstable input-output responses.

35

Table 6: Ten PLC Attack Instances

3.7 Approach

This section describes the methodology for characterizing the input-output

relationships for a PLC’s programming logic. An initial baseline program is established

that incorporates PLC programming for an operational system. Once the baseline is

established, modifications are made to emulate a PLC infected with malware. Protective

schemes are then applied to mitigate effects of the malware. The enumerated instances of

the PLC programs are evaluated to observe deviations of input-output behavior. Petri net

Instance Description

1 remove logic for proximity sensor in rung 3; quickly floods plant unless
stopped manually

2 remove ladder logic for level sensor in rung 2; quickly floods plant unless
stopped manually

3 remove logic for manual stop in rung 0; plant runs continuously

4 remove logic for full signal in rung 3; slowly floods plant due to lag
response of fill valve to close; may stop manually

5 combine attack 2 & 4; quickly floods plant; may stop manually

6 combine attacks 2, 3, and 4; quickly floods plant; manual stop disabled

7 remove logic for proximity sensor and full light signal in rung 1; slowly
floods due to containers not stopping at fill station; may stop manually

8 combine attack 6 & 7; quickly floods plant; manual stop disabled

9 remove full light and motor signal in rung 4; slowly floods plant; may stop
manually

10 remove logic for proximity sensor and motor signal in rung 4; quickly
floods; may stop manually

36

models are then utilized to extract metrics that measure the PLC’s security performance

with respect to the resiliency framework.

The various PLC instances establish a basis of observable input-output responses

that are modeled and analyzed using Petri nets. The observations obtained from the input-

output responses are consistent with black-box analysis; however, application of the

targeted attacks and protection schemes use the PLC program to facilitate differentiation

of observed behavior from the defined nominal process requirements. The following

steps describe the methodology for deriving each of the four program categories and

equivalent Petri nets.

1. Establish Baseline Program – A ladder logic program is developed to
perform defined nominal process requirements. The baseline program
generates valid system input-output responses.

2. The possible combinations for outputs of the formal ladder logic are
abstracted as places in a Petri net.

3. The possible combinations for inputs of the formal ladder logic are
abstracted as transitions in a Petri net.

4. The input and output interdependencies of the formal ladder logic are
abstracted as input and output functions for each of the potential
transitions of the Petri net.

5. The data obtained in steps 2 through 4 are combined to define a Petri net
for stochastic analysis of the input-output behavior.

6. Establish Delta Baseline Program – The original ladder logic developed
in Step 1 is modified to incorporate a protective scheme that generates
valid input-output responses. Steps 2 through 5 are repeated to produce the
equivalent Petri net of the delta baseline PLC Program.

7. Establish Attack Baseline Program – This step modifies the ladder logic in
a manner consistent with a targeted malicious attack. Steps 2 through 5 are
repeated to produce the equivalent Petri net of the attack baseline PLC
Program.

37

8. Establish Attack Delta Baseline Program – The ladder logic developed in
Step 7 is modified with a targeted attack to generate degraded or unstable
input-output responses. Steps 2 through 5 are repeated to produce the
equivalent Petri net of the attack delta baseline PLC Program.

This research examines ten instances and varying attacks using an example silo

process for experimentation. Each PLC instance has a baseline and delta baseline

program; each instance also has an attack applied to each baseline. The net result is each

PLC instance has four generated programs and corresponding Petri nets. The following

provides a step-by-step guide to generate the four programs and corresponding Petri nets

for the first PLC instance. The remaining nine instances are derived in a similar fashion;

the resulting programs and Petri nets are provided in Appendix A.

3.7.1 Establish Baseline for PLC Instance #1

This phase constructs a ladder logic program which executes a defined set of

process requirements. Consider, for example, a system process in a silo plant that fills

containers via a conveyer belt and automated sensors. The nominal processes for the silo

plant are: bring an empty container into the plant, maneuver the container under the silo

valve, fill the container until full, and ship the full container out of the plant. Figure 9

shows a baseline ladder logic program for the process.

38

Figure 9: Ladder Logic of Baseline Program

3.7.2 Characterize Baseline Program as Petri Net

This phase translates the ladder logic program into an equivalent Petri net.

Potential inputs, outputs, and interdependencies of the program are converted into a Petri

net C = {P, T, I, O}. The formal definition of C is used to generate a graphical Petri net

that is simulated to derive analytical data and metrics.

39

3.7.2.1 List Potential Output Behavior

Output behavior of the program is monitored and recorded during its execution.

For this example, output behavior during simulation is described as the following: deliver

container, stop deliver, fill container, stop fill, container full, depart silo, stop depart, ship

container, stop ship. Note that observed output behavior of the program closely mirrors

the nominal process requirements described in Section 3.7.1; the only additions are the

stop intervals during any portion of the program’s execution. This is as expected since a

PLC directly controls physical devices.

The output behaviors form the set of output places, P, for the Petri net C: P =

{deliver container, stop deliver, fill container, stop fill, container full, depart silo, stop

depart, ship container, stop ship}. Note that a place (e.g., deliver container) within a

Petri net is defined as an observed physical process of the PLC.

3.7.2.2 List Potential Input Transitions

Input transitions of the program that result in changes to output behavior are

monitored and recorded. For example, consider the following input transitions: 2 to 0, 2

to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 24, 26 to 27. These input

transitions form the set of transitions for the Petri net: T = {2 to 0, 2 to 3, 2 to 10, 10 to 2,

10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to 24, 26 to 27}. Note that a transition (e.g., 2 to

0) within a Petri net is defined as a change in decimal value from two to zero, within the

PLC’s input module.

40

3.7.2.3 Identify Input-Output Interdependencies

The input and output interdependencies of the program during execution are

monitored and recorded. This step defines the arcs that interconnect the places and

transitions of the Petri net. The process of defining each of the Petri nets focuses strictly

on PLC program input transitions that cause a physical output state to change. For

example in the baseline program, the act of the user releasing the stop button causes the

input value to transition from 0 to 2; however it causes no change to the output state.

Only the act of pressing the stop button (changing input value from 2 to 0) may cause a

change to the output state. This simplification to the Petri net models enables PIPEv4.0

to adequately model the input-output behavior of the PLC programs. Note that the output

places are annotated with the cumulative decimal value of the PLC’s output module for a

given observable physical process (i.e., deliver container is manifested when the decimal

value of the PLC is 5). The set of I consist of the following functions:

 I(2 to 0) = {deliver container (5)}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {deliver container (5)}

 I(10 to 2) = {ship container (21)}

 I(10 to 8) = {fill container (14), ship container (21)}

 I(10 to 11) = {stop fill (0), stop ship (0)}

 I(10 to 26) = {fill container (14)}

 I(26 to 10) = {depart silo (21), container full (20)}

 I(26 to 24) = {depart silo (21)}

 I(26 to 27) = {stop depart (0)}

41

The set of O consist of the following functions:

 O(2 to 0) = {stop deliver (0)}

 O(2 to 3) = {deliver container (5)}

 O(2 to 10) = {fill container (14)}

 O(10 to 2) = {deliver container (5)}

 O(10 to 8) = {stop fill (0), stop ship (0)}

 O(10 to 11) = {fill container (14), ship container (21)}

 O(10 to 26) = {depart silo (21), container full (20)}

 O(26 to 10) = {ship container (21)}

 O(26 to 24) = {stop depart (0)}

 O(26 to 27) = {depart silo (21)}

3.7.2.4 Formal Petri Net of Program

The formal Petri net for the baseline program is defined as C = {P, T, I, O}.

Combining the definitions for P, T, I and O from Section 3.7.2.1 through Section 3.7.2.3

results in the graphical Petri net presented in Figure 10.

42

Figure 10: Petri Net of Baseline Program

3.7.3 Establish Delta Baseline Program

Establishing a delta baseline program provides a ladder logic program which

emulates the process requirements of the baseline program. The primary difference is

that it provides robustness against a targeted attack (Table 6). The formation of the

baseline and delta baseline program comprises the two possible factors for each PLC

instance. Characterization of the delta baseline program into a Petri net follows the

method described in Section 3.7.2. The resulting ladder logic and Petri net for the delta

baseline program is provided in Appendix A.

3.7.4 Apply Workload (Attacks to Baselines)

The applications of attacks to the baseline and delta baseline programs comprise

the workload for the experimentation. The attacks modify the ladder logic of each of the

baseline program. The resulting attacks result in two additional PLC programs: attack

43

baseline, and attack delta baseline. Characterization of these two programs via a Petri

net follows the method described in Section 3.7.2. The resulting programs and Petri nets

for the attack baseline, and attack delta baseline, are provided in Appendix A.

In all PLC instances the attack baseline programs demonstrate degraded or

unstable output; similarly, all attack delta baseline programs demonstrate stable or

degraded output. This outcome is a product of the assumption that states all attacks are

based on internal knowledge of the baseline program. This also highlights the fact that

the delta baseline programs are consequently more robust than the baseline programs

when similar attacks are applied.

3.8 Performance Metrics

The metric of interest produced from the SUT are the decimal values of the input

and output states during the execution of the programs for each PLC instance. The

decimal values of the input and output states are measured directly from the input and

output modules of the PLC. Observing the input-output behavior during program

execution allows for the characterization of an equivalent Petri net. The Petri nets are

then analyzed to derive comparative metrics to determine which set(s) of programs

provide significant findings towards assessing a PLC’s performance with respect to the

resilience framework.

Performing a pair-wise comparison between the four possible programs results in

six possible pairings:

 (baseline – delta baseline)

 (baseline – attack baseline)

44

 (baseline – attack delta baseline)

 (attack baseline – delta baseline)

 (attack baseline – attack delta baseline)

 (delta baseline – attack delta baseline)

Analyzing the observed differences between these pairings provides metrics for

assessing PLC performance with respect to the resiliency framework. The direct

measurements and comparisons of the input and output states of the PLC provide a true

representation of the PLCs performance.

3.9 Evaluation Technique

The experiments are performed via two methods: (i) direct measurement on PLC

hardware, and (ii) simulated results evaluated with a Petri net model.

3.9.1 Direct Measurement via PLC

The setup for this method utilizes LogixPro® 500 and a laptop with Windows 7

(64-bit) installed. For each PLC instance, four programs are created. The first program

is the baseline program which executes defined nominal process requirements. The

second is a delta baseline program which also executes defined nominal process

requirements, but is more robust against the application of a specific attack. The third

program is a modified version of the baseline program to simulate application of a

specific attack. The fourth program is a modified version of the delta baseline program to

45

simulate the application of the same specific attack previously demonstrated in the third

program.

Both the baseline and delta baseline programs should produce predictable and

valid responses for all input sequences. The third program (attack baseline) should

exhibit degraded or unstable responses as a consequence of the knowledgeable applied

attack. The fourth program, depending on its level of robustness, should exhibit valid or

degraded responses.

The input-output behavior during the execution of the four programs is monitored

and recorded. The derived metrics provide the basis for characterizing the equivalent

Petri nets. Additionally, the number of ladder logic modifications made between each of

the four programs is recorded. These metrics provide the basis for quantifying the

internal modifications made to the PLC programs.

3.9.2 Petri net Analysis

The setup for analysis of the Petri nets uses Platform Independent Petri Net Editor

version 4.0 (PIPEv4.0) and a laptop with Windows 7 installed (32-bit). For each PLC

instance, four equivalent Petri nets are created. The purpose of each Petri net follows the

four programs described in Section 3.9.1. The input-output behavior during the

simulation of the four Petri nets is monitored and recorded. These metrics provide the

basis for quantifying the external input-output behavior of the PLC programs.

46

3.10 Experimental Design

Experimental trials consist of full factorial (without replication) configuration for

the PLC and equivalent Petri nets. The two baseline programs combined with the attacks

of each PLC instance result in four program categories that alter the data/code.

 Data/Code

1. Baseline – A program to perform defined process requirements and
generates valid input-output responses.

2. Attack Baseline – A targeted attack to the baseline that generates degraded
or unstable input-output responses.

3. Delta Baseline – A protection scheme applied to the baseline that
generates valid input-output responses. The protection scheme can be
considered equivalent to a fail-safe system state (e.g., flashing red lights
for a roadway stoplight system).

4. Attack Delta Baseline – A targeted attack applied to the delta baseline that
generates valid, degraded or unstable input-output responses.

 PLC instances – See Table 6 in Section 3.7 for description of ten PLC
instances.

 Methods – Metrics collected from both the PLC and Petri net simulations.

Full factorial experimentation leads to: 4 (program categories) * 10 (PLC

instances) * 2 (methods: PLC/Petri net) = 80 trials

3.11 Summary of Methodology

This chapter provided the goals of the experimentation and detailed the

boundaries and approach. The goals of this research are to identify metrics that may

assess a PLC’s resiliency and applicability as trigger points in real-time hardware

protection schemes. The boundaries of the SUT are the PLC; the CUT is the ladder logic

47

program that executes on the PLC. The approach consists of emulating ten PLC

instances. Each PLC instance is comprised of four varying program types: baseline,

delta baseline, attack baseline and attack delta baseline. Execution of the PLC instances

occurs in both emulated hardware simulations and equivalent Petri net simulations.

The PLC simulations provide delta ladder logic metrics, and the Petri net

simulations provide delta input-output behavioral metrics. The comparative analysis

performed between all PLC program and Petri net metrics result in six comparative

metrics which form the basis for quantitative analysis to achieve the stated goals:

 (baseline – delta baseline)

 (baseline – attack baseline)

 (baseline – attack delta baseline)

 (attack baseline – delta baseline)

 (attack baseline – attack delta baseline)

 (delta baseline – attack delta baseline)

48

IV. Results and Analysis

The purpose of this chapter is to document the analysis and results derived from

the behavioral-based characterization process of PLCs. The primary focus is to

determine the applicability of potential metrics that directly, or indirectly support, the

four characteristics of the resilience framework as documented in Chapter 2. The metrics

are a result of a general stochastic Petri net (GSPN) analysis for each of the Petri nets

derived in Chapter 3.

Section 4.1 documents the results of the GSPN analysis for each of the Petri nets.

Section 4.2 presents corollary analysis of the resulting metrics to identify statistically

relevant observations. Section 4.3 reports the significant findings from the analysis of the

metrics and applicability toward the resilience framework.

4.1 Results of Simulation Scenarios

This section describes the collection and organization of data produced from the

experimentation. The behavioral-based characterization process yields equivalent Petri

nets that facilitate analysis of the PLC input-output behavior. The Petri net simulation

application, PIPEv4.0 (Bonet, 2007), is used to execute a GSPN analysis for each of the

40 Petri nets. The results of the GSPN analysis provide the reachability matrices of each

Petri net.

4.1.1 Derivation of Tangible State Table

A tangible state table is a direct result of the characterization process and

facilitates quantitative analysis. The GSPN analysis module of PIPEv4.0 produces a

49

table of states and lists the output characteristics for each state. Table 7 illustrates the

tangible state table for one example baseline PLC instance. Note that analysis for the ten

instances and varying programs are consistent with the example used for discussion.

Table 7: Tangible States for Baseline

The rows represent the tangible states, and columns represent the places that

characterize the output states. The elements of each matrix are marked as 0 or 1, which

represent the absence or presence of a token, respectively. For example, state M0

represents the Petri net marking in which the place stop deliver is active. The baseline

PLC for this instance comprises eight distinct states.

4.1.2 Derivation of Reachability Graph

A reachability graph identifies all possible states and interactions for a given Petri

net. PIPEv4.0 provides an analysis module that creates a reachability graph for each Petri

net. Figure 11 illustrates the reachability graph consistent with the baseline PLC instance

50

referenced in Table 7. Note that analysis for the ten instances and varying programs are

consistent with the example used for discussion.

In Figure 11, S0 through S7 inherit the output characteristics of M0 through M7,

respectively. The arrows pointing towards a state indicate the Petri net transition required

to reach that state. For example, to transition from state S0 to S1, the transition 2 to 3

must fire. Note that any given state must have at least one enabling transition; similarly

any given state may have more than one enabling transitions.

Figure 11: Reachability Graph for Baseline

51

4.1.3 Derivation of Reachability Matrix

A reachability matrix is a combination of results from the tangible state table and

reachability graph. The reachability matrix identifies the output states and enabling input

transitions for all potential markings of a given Petri net. Table 8 presents the

reachability matrix consistent with tangible state table and reachability graph, presented

in Table 7 and Figure 11, respectively. Note that analysis for the ten instances and

varying programs are consistent with the example used for discussion.

Table 8: Reachable Markings for Baseline

PN
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

deliver
container

1

stop fill 1

fill
container

1

stop depart 1

depart silo 1

container
full

1 1

stop ship 1

ship
container

1

2 --> 0 1
2 --> 3 1
2 --> 10 1
10 --> 2 1
10 --> 8 1 1
10 --> 11 1 1
10 --> 26 1
26 --> 10 1
26 --> 24 1
26 --> 27 1

*input

Output
Places

Input
Transitions

52

The reachability matrix organizes the input-output behavior into a numerical

model that facilitates quantitative analysis. The columns present the potential markings

for a given Petri net. The rows list the potential output behavior and input transitions. A

numeral one in the element of the matrix indicates the specific combination of inputs and

outputs that characterize any given marking for a Petri net. In Table 8, the Petri net

marking m4 is summarized with the output behavior of depart silo and container full.

Marking m4 may only be reached with the firing of either transition 10 to 26 or 26 to 27.

4.1.4 Differentiating Between Reachability Matrices

Differentiating the input-output behaviors between any two PLC programs forms

the basis for analysis of one set of metrics. The net difference between any two PLC

programs is derived by comparing the number of dissimilar markings between each of

their respective reachability matrices. Table 9 presents the reachability matrix for the

attack program for PLC instance #1. Note that analyses for the ten instances are

consistent with the example used for discussion.

The input transition *input in Tables 8, and 9, denotes transitions in the attack

scenario, which are not represented in the baseline case; *input is important in

differentiating PLC programs from the baseline case. Similarly, as seen in Table 9,

*output-place (e.g., *deliver container) is important in differentiating specific PLC

program cases. Table 9 shows the attack program where *deliver container’s decimal

output value is different than the decimal output value produced by the baseline

program’s deliver container in Table 8.

53

Table 9: Reachable Markings for Attack (Instance #1)

The net difference is determined via a pair-wise comparison of the programs’

potential markings. The following algorithm compares the pair-wise behavioral

comparisons between two matrices such as (baseline – attack baseline):

1. Select two matrices, A and B

PN
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

*deliver
container

1

stop fill 1

fill
container

1

stop depart 1

depart silo 1

container
full

1 1

stop ship 1

ship
container

1

2 --> 0 1
2 --> 3 1
2 --> 10 1
10 --> 2 1
10 --> 8 1 1
10 --> 11 1 1
10 --> 26 1
26 --> 10 1
26 --> 24 1
26 --> 27 1

*input

Output
Places

Input
Transitions

54

2. If the number of potential markings between matrices is unequal, set the
matrix with the highest number of potential markings as matrix A

3. count = the number of potential markings in A

4. maxA = count

5. maxB = number of potential markings in B

6. Set X and Y to zero

7. Compare all input-output parameters of A(mX) to B(mY)

a) If A(mX) == B(mY), X = X + 1, Y = 0, count = count - 1; goto 7

b) If Y < maxB, Y = Y + 1; goto 7

c) If X < maxA, X = X + 1, Y = 0, goto 7

d) Else goto 8

8. Return count

The resulting net difference between the baseline matrix and attack baseline

matrix for PLC instance #1 is one. Table 10 presents the differences between each of the

four program categories. For example, there are no observable differences in the input-

output behavior between the following program pairings: (baseline – delta baseline),

(baseline – attack delta baseline), and (delta baseline – attack delta baseline). There is

exactly one observable difference between the remaining pairings.

Table 10: Net Difference in Input-Output Behavior (Instance #1)

baseline -
attack baseline

baseline -
delta baseline

baseline -
attack delta baseline

attack baseline -
delta baseline

attack baseline -
attack delta baseline

delta baseline -
attack delta baseline

1 0 0 1 1 0

55

4.1.5 Differentiating Between Ladder Logic

Differentiating the ladder logic between any two PLC programs forms the basis of

analysis for a second set of metrics. The net difference between any two PLC programs

is derived by comparing the number of dissimilar ladder logic symbols between the PLC

programs. Figure 12 illustrates the baseline PLC Ladder Logic for the baseline program

for PLC instance #1. Note that analyses for the ten instances are consistent with the

example used for discussion.

Figure 12: Baseline PLC Ladder Logic

56

To find the net difference between the baseline and attack baseline programs for

PLC instance #1, the symbolic ladder logic deltas are counted (both the removal and

addition of a symbol count as one change). For this example there is only one difference;

the symbol for Prox Switch, present in rung 003 of the baseline (Figure 12), is removed

from rung 003 of the attack baseline program in Figure 13. The converse is also true; the

symbol for Prox Switch, absent in rung 003 of the attack program, is added to rung 003 of

the baseline program.

Figure 13: Attack Baseline PLC Ladder Logic for Instance #1

57

Table 11 presents the differences between each of the four program categories.

There are two observable differences in the ladder logic between the program pairings

(baseline – attack delta baseline) and (attack baseline – delta baseline). There is exactly

one observable difference between the remaining pairings.

Table 11: Net Difference in Symbolic Ladder Logic (Instance #1)

4.1.6 Summary of Results

Each of the ten PLC instances specified in Chapter 3 result in 6 pair wise

differentiations of the ladder logic and input-output behavior. The resulting net

differences for each of the 60 cases are presented in Tables 12 and 13. The ladder logic

programs for all 60 cases are available in Appendix A. Similarly, the state tables,

reachability graphs, and matrices are available in Appendix B.

Table 12: Net Difference in Symbolic Ladder Logic

baseline -
attack baseline

baseline -
delta baseline

baseline -
attack delta baseline

attack baseline -
delta baseline

attack baseline -
attack delta baseline

delta baseline -
attack delta baseline

1 1 2 2 1 1

Instance #
baseline
- attack
baseline

baseline
- delta baseline

baseline
- attack delta

baseline

attack baseline
- delta baseline

attack baseline
- attack delta

baseline

delta baseline
- attack delta

baseline
1 1 1 2 2 1 1
2 1 1 0 2 1 1
3 1 2 3 3 2 1
4 1 2 3 3 2 1
5 2 2 4 4 2 2
6 3 4 7 7 4 3
7 2 2 0 4 2 2
8 5 6 7 11 6 5
9 6 10 10 6 4 2
10 10 12 10 4 2 2

58

Table 13: Net Difference in Input-Output Behavior

The results of the ladder logic and input-output differentiation provide the basis

for identifying quantitative metrics that support the resiliency framework. The results of

these comparisons are analyzed for correlation between ladder logic deltas and input-

output behavior deltas. Testing for correlation determines the delta ladder logic dictates

the outcome of the input-output behavior deltas. The significant findings are then

assessed against the resiliency framework to determine their applicability in potential

real-time hardware solutions.

4.2 Analysis of Results

The data presented in Tables 12 and 13 represent two sets of metrics that measure

the observable differences between PLC programs. The purpose of this section is to

identify which, if any, of the metrics is most applicable to the resilience framework.

Analysis for correlation is performed between the ladder logic and input-output behavior.

Instance #
baseline
- attack
baseline

baseline
- delta baseline

baseline
- attack delta

baseline

attack baseline
- delta baseline

attack baseline
- attack delta

baseline

delta baseline
- attack delta

baseline
1 1 0 0 1 1 0
2 6 0 0 6 6 0
3 4 0 0 4 4 0
4 3 0 0 3 3 0
5 4 0 0 4 4 0
6 7 0 0 7 7 0
7 5 0 0 5 5 0
8 8 0 0 8 8 0
9 1 0 4 1 4 4
10 1 0 0 1 1 0

59

Then observations between any correlation and the differentiation tables are listed. The

result is a subset of metrics that are most applicable to the resilience framework.

4.2.1 Scatter Plot of Results

The deltas in ladder logic and input-output behavior are visually tested for

correlation in R. Figure 14 illustrates a scatter plot of the 60 data points derived from the

data in Tables 12 and 13. For example, PLC instance #5, (baseline – attack), generates

the point (2, 4) on the scatter plot. Upon visual inspection, no apparent correlation

between delta for ladder logic and input-output behavior exist. Note that there are less

than 60 data points visible on Figure 14 due to overlap of several data points.

Figure 14: Scatter Plot Between Ladder Logic and I/O Deltas

60

4.2.2 Smooth Densities Plot of Results

A secondary plot to test for possible correlation is performed with the smooth

density function of R. The smooth density function aids in visualizing any potential

correlation within the overlapped data points (Figure 15). Upon visual inspection, a

dense region exists at around the points (2, 0) and (2, 4). The remainder of the plot is

similar to Figure 14 in that no other apparent correlations are visible.

61

Figure 15: Scatter Plot Revealing Overlap Densities

The dense regions around the points (2, 0) and (2, 4) conflict one another and

suggests that the differences of input-output behavior are independent from the

differences in the ladder logic. This finding suggests that the delta ladder logic alone is

insufficient in determining the input-output deltas of the PLC. The remaining regions of

the density plot suggest no other observations to confirm or refute the previous

suggestion. Visual inspection is useful in identifying consistent trends, but since this is

absent in the plots a mathematical correlation of the data points is executed in R.

4.2.3 Correlation Results

A useful method to assess correlation between a set of variables is Spearman’s

rank order coefficient. Spearman’s method of correlation is preferred over other

methods, such as Pearson’s, due to the non-linear patterns observed in the scatter plots

(Bolboaca, 2006). The value for Spearman’s rank order coefficient ranges from -1 to 1;

values close to zero suggests no correlation exists between the variables and values close

to ±1 suggests a corollary relationship exists.

Equation 1: Spearman’s Rank Order Coefficient

Equation 1 defines Spearman’s rank order coefficient, ρ, where:

di = difference in paired ranks

n = number of cases

62

Applying R’s Spearman correlation function to the data set resulted in ρ = 0.14; p-

value = 0.3015. The ρ value suggests there is very little correlation between the deltas in

ladder logic and the deltas of input-output behavior; however, the p-value of 0.3015

implies weak confidence in this hypothesis. Therefore the null hypothesis cannot be

rejected beyond a confidence threshold of p = 0.30. Investigating the cause of the weak

p-value reveals that the sample size of cases, n, is the root cause.

Spearman’s ρ indicates a statistically weak correlation between the delta ladder

logic and delta input-output data. This supports the visual observation of the plots which

strongly suggests the relationship between the deltas in ladder logic and input-output

behavior is strongly independent of one another. This result supports the assertion that

no correlation exists between the two sets of metrics. This assertion is applied to

additional observations that further refine the applicability of the metrics to the resilience

framework.

4.2.4 Observations from Differentiation Tables and Correlation Analysis

Key observations from the correlation analysis and differentiation tables identify

the most relevant subset of metrics which are applicable to the resilience framework. The

net difference in ladder logic is a derivative of a PLC’s internal characteristics which

does not consistently quantify physical changes to the PLC’s external state. Conversely,

the net difference of input-output behavior is a derivative of a PLC’s external

characteristics which consistently quantifies external physical states. This distinction

between the two metrics suggests the most significant metric resulting from the

63

experiments is the difference observed between the PLC programs’ and instances’ input-

output behavior.

Since the input-output behavior metrics are self-sufficient, a focus to identify a

key subset of these metrics is undertaken. Note the assumption asserted in Chapter 3

which states that all instances execute a successful attack that changes the physical input-

output behavior of the system. The contribution of the ladder logic metrics as a

complimentary metric is pursued in a latter section. The following are key observations

of the differentiation tables for the input-output behavior (see Table 13):

 (baseline – delta baseline) is always equal to zero; this is by design of PLC
instances/programs such that the baseline and delta baseline I/O behavior
are consistent with each other.

 (baseline – attack delta baseline) and (delta baseline – attack delta
baseline) are inconclusive; note that these metrics results in zero and non-
zero values.

 (attack baseline – attack delta baseline) is inconclusive; note that this
metric results in non-zero values for the ten instances; however, an
instance can be created such that this metric results in zero, therefore it is
inconclusive.

 (attack baseline – baseline) and (attack baseline – delta baseline) are
conclusive; note that these metrics are always non-zero in the face of a
successful attack and always zero in the face of an unsuccessful attack.

The most important observation is number four. The two metrics (attack baseline

– baseline) and (attack baseline – delta baseline) are identified as the most discerning

metrics in detecting input-output changes caused by successful attacks to the PLC’s

program. While the two metrics are equally discerning, the metric (attack baseline –

delta baseline), is proposed as being more applicable in real-time hardware solutions to

64

improve the system’s security posture. The metric, (attack baseline – delta baseline), also

directly addresses two aspects of resiliency (i.e., detecting a change occurrence, and

quantifying the degree of change occurrence) and supports mechanisms to minimize

performance losses due to disruptive events.

4.2.5 Summary of Analysis

Corollary analysis between the ladder logic and input-outputs suggests no direct

correlation exists; therefore, it can be reasoned that the net change of ladder logic within

a PLC program is not a self-sufficient metric to assess a PLCs security performance with

respect to the resilience framework. As suggested by the analysis and observations, the

most significant metrics resulting from the experiments is the difference observed

between the PLC programs’ and instances’ input-output behavior. The metrics, (attack

baseline – baseline) and (attack baseline – delta baseline), exhibit roles both as a self-

sufficient metrics and as a complimentary metrics to the deltas in ladder logic. Perhaps

significant, is the finding that the metric, (attack baseline – delta baseline), is applicable

to the resilience framework and potential real-time hardware solutions.

65

4.3 Significant Findings

The most significant finding in the analysis of the data is the metric (attack

baseline – delta baseline). Indeed, the corollary analysis and differentiation observations

suggest that this metric directly addresses two aspects of resiliency and supports

mechanisms to minimize performance losses due to disruptive events. As a result of the

metric’s contribution to the resiliency framework, it may have potential application in

real-time hardware solutions to improve a system’s security posture. This section

presents the applicability to both the resilience framework and real-time hardware

solutions.

4.3.1 Applicability to the Resilience Framework

The following subsections summarize the application of the metric, (attack

baseline – delta baseline), with respect to the four tenants of the resilience framework.

4.3.1.1 Self Awareness and Monitoring

The first tenant of the resilience framework is the ability to anticipate a

potentially disruptive event requires that the system has self-awareness of its baseline

and is able to monitor its current state.

The proposed metric identifies when physical input-output relationships deviate

from its baseline. This metric may support one of two triggering mechanisms:

1. A quantity of deviations exceeding a threshold is identified by count

2. A violation against a whitelist (e.g., any matrix component output value of
attack baseline is deviant)

66

4.3.1.2 Absorbing Disruptions

The second tenant of the resilience framework is the ability to absorb potentially

disruptive events requires that the system has mechanisms in place to minimize the

amount, if any, of performance loss.

The proposed metric in combination with the difference in ladder logic changes

may assess a PLC’s ability to absorb disruptive events:

1. If the input-output behavioral difference is zero, then the differences in
ladder logic are treated as complimentary metrics to assess the inherent
robustness of a PLC’s ladder logic program.

2. If the input-output behavioral difference is greater than zero, then the
differences seen in input-output behavior is self-sufficient and may be
utilized to assess the PLC’s overall absorption.

4.3.1.3 Adaptation

The third tenant of the resilience framework, the ability to adapt, requires that the

system has contingencies available that allow for flexible system adjustments to maintain

operational availability.

The proposed metric supports this by providing the triggering mechanisms

necessary to initiate adaptive processes. Either of the triggering mechanisms outlined in

Section 4.3.1.1 may support initiation of the adaptive process. Note that the adaptive

processes may exist external to the PLC (e.g., requiring further coordination with

additional hardware/software).

67

4.3.1.4 Recovery

The fourth tenant of the resilience framework is the ability to recover from a

disruptive event requires mechanisms, either automated or manual, that allow the system

to perform functionalities consistent with its baseline.

The proposed metric supports this by providing the triggering mechanisms

necessary to initiate recovery processes. Either of the triggering mechanisms outlined in

Section 4.3.1.1 may support initiation of the recovery process. Note that the recovery

processes may exist external to the PLC (e.g., requiring further coordination with

additional hardware or software).

4.3.2 Applicability to Real-Time Hardware Solutions

The metric’s applicability to the resiliency framework cooperates well with

potential real-time hardware solutions. This is an important notion because the protection

mechanism may be an external, and preferably, parallel process. For example, Figure 16

illustrates a high-level Petri net that utilizes the input-output behavioral metric as the

primary means of monitoring and detecting state security. The Petri net also illustrates

architecture which supports absorptive, adaptive, and recovery features that are triggered

when the metric (attack baseline – delta baseline) exceeds a threshold count delta or

upon detection of deviant matrix values.

68

Figure 16: High-Level Petri Net Utilizing I/O Analysis (Nominal Operation)

The primary PLC executes the baseline program; however, the secondary

protective PLC executes the delta baseline program and is isolated from direct

communication links to the SCADA network. If deviation from expected behavior is

detected, the primary PLC is prevented from contributing to the input-output state of the

system, and the secondary PLC triggers a fail-safe operation. Figure 16 shows the system

in nominal operation where the subnet for the primary PLC controls process flow;

however, a deviation of input-output behavior as seen in Figure 17 transfers control of

process flow to the subnet of the secondary PLC.

4.3.3 Summary of Findings

The metric (attack baseline – delta baseline) is the most significant result from the

analysis of the data. The application to the resilience framework directly addresses two

tenants (i.e., monitor and absorb), and supports the remaining two tenants (i.e., adapt and

recover). A method of application is as a triggering mechanism which translates well

69

towards applications for potential real-time hardware solutions. An example high-level

Petri net architecture is presented that utilizes the metric as the primary mechanism to

transfer between nominal and safe operating modes.

Figure 17: High-Level Petri Net Utilizing I/O Analysis (Safe-Mode Triggered)

4.4 Summary of Results and Analysis

The results in this chapter produced a quantitative means to assess the data

generated from the Petri nets characterized from the PLC instances and programs. The

formation of the differentiation matrices forms the basis for the set of metrics that can

assess the performance of a PLC with respect to the resiliency framework. Analysis of

the matrices suggests that the most significant metric is (attack baseline – delta baseline).

This metric has direct applications to the resilience framework and subsequently to

potential real-time hardware solutions.

70

V. Conclusions and Recommendations

This chapter summarizes the research effort and proposes considerations for

future research. Section 5.1 presents a summary of the research goals and approach.

Section 5.2 discusses considerations that progress the significant findings of this research.

Section 5.3 provides concluding remarks.

5.1 Research Summary

The primary goal of this research is to identify metrics that may assess a PLC’s

resilience against malicious exploits. The complimentary goal of this research is to

identify metrics that may be applicable as mechanisms for triggers that allow real-time

hardware implementation. The experimental method to derive substantial metrics

consisted of creating PLC instances, modeling equivalent Petri nets, and comparatively

analyzing the data. The following sections discuss the experimental methodology, data

analysis and effectiveness of meeting the research goals for this research effort.

5.1.1 Summary of Experimental Methodology

The experimental methodology presented in this research used a set of defined

PLC instances that comprised of four versions of a baseline ladder logic program. The

purpose is to emulate a variety of attacks that result in effectively altering the baseline

performance of the PLC. The four baseline programs include:

 Baseline program – Executes nominal system processes

 Attack baseline program – Modifies baseline ladder logic; alters nominal
system process execution

71

 Delta baseline program – Executes nominal system processes; robust against
attack

 Attack delta baseline program – Modifies delta baseline ladder logic; may
alter nominal system process execution

The input-output behavior of the programs during execution are observed and

characterized into Petri nets. Non-deterministic simulation of the Petri nets generated the

data necessary for the comparative analysis.

5.1.2 Summary of Analysis

Analysis of the Petri nets resulted in reachability matrices for each program.

Differentiation between the matrices provided a summary of observable outcomes

between the pair-wise analyses of reachability matrices. The pair-wise comparisons

between the four program types comprise the six metrics of interest:

 (baseline – delta baseline)

 (baseline – attack baseline)

 (baseline – attack delta baseline)

 (attack baseline – delta baseline)

 (attack baseline – attack delta baseline)

 (delta baseline – attack delta baseline)

Two metrics, (attack baseline – baseline) and (attack baseline – delta baseline),

are the most discerning metrics in detecting input-output modifications caused by

successful attacks to a PLC’s program. Of these two metrics, (attack baseline – delta

72

baseline), is proposed as having the most significant contributions to both the resilient

framework and to real-time hardware applications.

5.1.3 Summary of Meeting Goals

The metric, (attack baseline – delta baseline), is determined to be most applicable

to the research goals. The metric allows for self awareness by enabling the detection of

deviations from nominal input-output state behavior. The metric may also quantify the

absorptive performance of PLCs. Finally, the metric supports the adaptive, and recovery,

qualities of resilience and it may enable potential mechanisms for triggers in real-world

hardware applications.

5.2 Future Work

This section proposes three topics that may progress the findings from this

research. The proposals include real-time hardware execution, benchmark utilization and

an alternate view for the Petri net modeling of processes.

5.2.1 Real-time Application of Metrics in Hardware

The metric, (delta baseline – attack baseline), may be applicable to real-time

hardware solutions to improve SCADA security. At the micro-level, it can be applied to

PLCs identified as critical nodes of the system. Application of the metric requires that an

additional hardware device operate concurrently with the baseline PLC. The additional

hardware device would execute nominal processes exactly the same as the baseline;

however, it implements additional logic that may trigger protective actions. The trigger

73

is initiated when a delta between the input-output characteristics of the baseline PLC and

additional hardware is detected. Potential issues that may arise in real-world

experimentation are related to timing delays between the two devices. This is due to the

synchronous differentiation that the metric, (delta baseline – attack baseline), leverages.

The potential for false negatives (e.g., attack to baseline not detected properly) is

unlikely; however, false positives may result in excessive triggering of the protective

actions.

5.2.2 Enhancing Benchmark Tools for Resilience

The metric, (delta baseline – attack baseline), provides a triggering mechanism to

quantify changes to a system. This result may be integrated with the resilience curve

presented by Wei (2009). The ability to measure aspects of the resilient curve is directly

applicable to other work based on benchmarking tools for assessing resilience in systems

(Almeida, 2010). The findings from this research for detecting change and quantifying

absorptive rates between PLCs may apply to assessing resilience of similar systems at a

micro-level benchmark. Finally, the application of the metric as a triggering mechanism

may apply to assessing the adaptive and recovery aspects of resilience in a macro-level

benchmark.

5.2.3 Alternate Experimentation Method Strictly Utilizing Petri Nets

Petri nets offer a powerful method of modeling and analyzing system processes

(Peterson, 1981). SCADA system processes are deterministic in that they exhibit defined

state boundaries; however, there exists an infinite sequence of state execution within the

74

boundaries. Non-deterministic analysis of Petri nets for a defined state space may

provide an efficient method of modeling systems that execute discrete input-output states

(Peng, 2004).

The method used in this research defined PLC programs prior to characterization

into Petri nets. An alternate method is to solely define Petri nets as the basis for

representing potential PLC instances. This facilitates the creation of a magnitude

(complexity and quantity) of PLC instances which may result in more significant

statistical analysis. Automating the generation and analysis of Petri nets would also

eliminate potential sources of human error; the method utilized in this research consisted

of several manual processes where human error is likely to be introduced.

5.3 Concluding Remarks

The behavioral-based method provides a practical means of assessing the security

posture of a PLC against malicious code. The research demonstrates the means to

quantify resiliency on the basis of monitoring, detecting, and absorbing intentional

malicious actions. The ability to analyze the system in real-time, for nonconforming

behavior at the PLC, enables security solutions for detecting and mitigating attacks at the

system end points. Indeed, deriving metrics from input-out characterization incorporates

a true representation of system state that cannot be deceived via alteration at the HMI or

communication channel. This proposed method provides a measure of PLC performance

against malicious code and provides a baseline for quantitative analysis of the security

posture. Examining security at the micro level by focusing on field device and system

functions provides a means for addressing and preparing for future Stuxnet-like attacks.

75

Appendix A

Baseline Program

Figure 18 illustrates the baseline program ladder logic and Figure 19 shows the

baseline Petri net for all ten instances.

Figure 18: Ladder Logic for Baseline (all)

76

Figure 19: Petri Net for Baseline (all)

The formal definition for the Petri net illustrated in Figure 19 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 0) = {deliver container (5)}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {deliver container (5)}

 I(10 to 2) = {ship container (21)}

 I(10 to 8) = {fill container (14), ship container (21)}

 I(10 to 11) = {stop fill (0), stop ship (0)}

 I(10 to 26) = {fill container (14)}

 I(26 to 10) = {depart silo (21), container full (20)}

77

 I(26 to 24) = {depart silo (21)}

 I(26 to 27) = {stop depart (0)}

 O(2 to 0) = {stop deliver (0)}

 O(2 to 3) = {deliver container (5)}

 O(2 to 10) = {fill container (14)}

 O(10 to 2) = {deliver container (5)}

 O(10 to 8) = {stop fill (0), stop ship (0)}

 O(10 to 11) = {fill container (14), ship container (21)}

 O(10 to 26) = {depart silo (21), container full (20)}

 O(26 to 10) = {ship container (21)}

 O(26 to 24) = {stop depart (0)}

 O(26 to 27) = {depart silo (21)}

78

Attack Baseline Program for Instance 1

Figure 20 illustrates the attack baseline program ladder logic and Figure 21 shows

the Petri net for instance 1.

Figure 20: Ladder Logic for Attack Baseline (1)

79

Figure 21: Petri Net for Attack Baseline (1)

The formal definition for the Petri net illustrated in Figure 21 is C = {P, T, I, O},

such that:

 P = {*deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 0) = {*deliver container (15)}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {*deliver container (15)}

 I(10 to 2) = {ship container (21)}

 I(10 to 8) = {fill container (14), ship container (21)}

 I(10 to 11) = {stop fill (0), stop ship (0)}

 I(10 to 26) = {fill container (14)}

80

 I(26 to 10) = {depart silo (21), container full (20)}

 I(26 to 24) = {depart silo (21)}

 I(26 to 27) = {stop depart (0)}

 O(2 to 0) = {stop deliver (0)}

 O(2 to 3) = {*deliver container (15)}

 O(2 to 10) = {fill container (14)}

 O(10 to 2) = {*deliver container (15)}

 O(10 to 8) = {stop fill (0), stop ship (0)}

 O(10 to 11) = {fill container (14), ship container (21)}

 O(10 to 26) = {depart silo (21), container full (20)}

 O(26 to 10) = {ship container (21)}

 O(26 to 24) = {stop depart (0)}

 O(26 to 27) = {depart silo (21)}

81

Attack Baseline Program for Instance 2

Figure 22 illustrates the attack baseline program ladder logic and Figure 23 shows

the Petri net for instance 2.

Figure 22: Ladder Logic for Attack Baseline (2)

82

Figure 23: Petri Net for Attack Baseline (2)

The formal definition for the Petri net illustrated in Figure 23 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, *container full,
*depart silo, stop depart}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 8, 10 to 11, 10 to 26, 26 to 24, 26 to 27,
reset}

 I(2 to 0) = {deliver container (5)}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {deliver container (5)}

 I(10 to 8) = {fill container (14)}

 I(10 to 11) = {stop fill (0)}

 I(10 to 26) = {fill container (14)}

 I(26 to 24) = {*depart silo (14)}

 I(26 to 27) = {stop depart (0)}

83

 I(reset) = {*depart silo (14), *container full (14)}

 O(2 to 0) = {stop deliver (0)}

 O(2 to 3) = {deliver container (5)}

 O(2 to 10) = {fill container (14)}

 O(10 to 8) = {stop fill (0)}

 O(10 to 11) = {fill container (14)}

 O(10 to 26) = {*depart silo (14), *container full (14)}

 O(26 to 24) = {stop depart (0)}

 O(26 to 27) = {*depart silo (14)}

 O(reset) = {stop deliver (0)}

84

Attack Baseline Program for Instance 3

Figure 24 illustrates the attack baseline program ladder logic and Figure 25 shows

the Petri net for instance 3.

Figure 24: Ladder Logic for Attack Baseline (3)

85

Figure 25: Petri Net for Attack Baseline (3)

The formal definition for the Petri net illustrated in Figure 25 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 3) = {*stop deliver (0)}

 I(2 to 10) = {deliver container (5)}

 I(10 to 2) = {ship container (21)}

 I(10 to 26) = {fill container (14)}

 I(26 to 10) = {depart silo (21), container full (20)}

 I(reset) = {ship container (20)}

 O(2 to 3) = {deliver container (5)}

 O(2 to 10) = {fill container (14)}

 O(10 to 2) = {deliver container (5)}

86

 O(10 to 26) = {depart silo (21), container full (20)}

 O(26 to 10) = {ship container (21)}

 O(reset) = {*stop deliver (0)}

87

Attack Baseline Program for Instance 4

Figure 26 illustrates the attack baseline program ladder logic and Figure 27 shows

the Petri net for instance 4.

Figure 26: Ladder Logic for Attack Baseline (4)

88

Figure 27: Petri Net for Attack Baseline (4)

The formal definition for the Petri net illustrated in Figure 27 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 0) = {deliver container (5)}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {deliver container (5)}

 I(10 to 2) = {*ship container (31)}

 I(10 to 8) = {fill container (14), *ship container (31)}

 I(10 to 11) = {stop fill (0), stop ship (0)}

 I(10 to 26) = {fill container (14)}

89

 I(26 to 10) = {*depart silo (31), *container full (30)}

 I(26 to 24) = {*depart silo (31)}

 I(26 to 27) = {stop depart (0)}

 O(2 to 0) = {stop deliver (0)}

 O(2 to 3) = {deliver container (5)}

 O(2 to 10) = {fill container (14)}

 O(10 to 2) = {deliver container (5)}

 O(10 to 8) = {stop fill (0), stop ship (0)}

 O(10 to 11) = {fill container (14), *ship container (31)}

 O(10 to 26) = {*depart silo (31), *container full (30)}

 O(26 to 10) = {*ship container (31)}

 O(26 to 24) = {stop depart (0)}

 O(26 to 27) = {*depart silo (31)}

90

Attack Baseline Program for Instance 5

Figure 28 illustrates the attack baseline program ladder logic and Figure 29 shows

the Petri net for instance 5.

Figure 28: Ladder Logic for Attack Baseline (5)

91

Figure 29: Petri Net for Attack Baseline (5)

The formal definition for the Petri net illustrated in Figure 29 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 0) = {*deliver container (15)}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {*deliver container (15)}

 I(10 to 2) = {*ship container (31)}

 I(10 to 8) = {fill container (14), *ship container (31)}

 I(10 to 11) = {stop fill (0), stop ship (0)}

 I(10 to 26) = {fill container (14)}

92

 I(26 to 10) = {*depart silo (31), *container full (30)}

 I(26 to 24) = {*depart silo (31)}

 I(26 to 27) = {stop depart (0)}

 O(2 to 0) = {stop deliver (0)}

 O(2 to 3) = {*deliver container (15)}

 O(2 to 10) = {fill container (14)}

 O(10 to 2) = {*deliver container (15)}

 O(10 to 8) = {stop fill (0), stop ship (0)}

 O(10 to 11) = {fill container (14), *ship container (31)}

 O(10 to 26) = {*depart silo (31), *container full (30)}

 O(26 to 10) = {*ship container (31)}

 O(26 to 24) = {stop depart (0)}

 O(26 to 27) = {*depart silo (31)}

93

Attack Baseline Program for Instance 6

Figure 30 illustrates the attack baseline program ladder logic and Figure 31 shows

the Petri net for instance 6.

Figure 30: Ladder Logic for Attack Baseline (6)

94

Figure 31: Petri Net for Attack Baseline (6)

The formal definition for the Petri net illustrated in Figure 31 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {*deliver container (15)}

 I(10 to 2) = {*ship container (31)}

 I(10 to 26) = {fill container (14)}

 I(26 to 10) = {*depart silo (31), *container full (30)}

 I(reset) = {*ship container (31)}

 O(2 to 3) = {*deliver container (15)}

 O(2 to 10) = {fill container (14)}

 O(10 to 2) = {*deliver container (15)}

95

 O(10 to 26) = {*depart silo (31), *container full (30)}

 O(26 to 10) = {*ship container (31)}

 O(reset) = {*stop deliver (0)}

96

Attack Baseline Program for Instance 7

Figure 32 illustrates the attack baseline program ladder logic and Figure 33 shows

the Petri net for instance 7.

Figure 32: Ladder Logic for Attack Baseline (7)

97

Figure 33: Petri Net for Attack Baseline (7)

The formal definition for the Petri net illustrated in Figure 33 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 0) = {deliver container (5)}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {deliver container (5)}

 I(10 to 2) = {*fill container (15)}

 I(10 to 8) = {*fill container (15)}

98

 I(10 to 11) = {stop fill (0)}

 O(2 to 0) = {stop deliver (0)}

 O(2 to 3) = {deliver container (5)}

 O(2 to 10) = {*fill container (15)}

 O(10 to 2) = {deliver container (5)}

 O(10 to 8) = {stop fill (0)}

 O(10 to 11) = {*fill container (15)}

99

Attack Baseline Program for Instance 8

Figure 34 illustrates the attack baseline program ladder logic and Figure 35 shows

the Petri net for instance 8.

Figure 34: Ladder Logic for Attack Baseline (8)

100

Figure 35: Petri Net for Attack Baseline (8)

The formal definition for the Petri net illustrated in Figure 35 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 3) = {*stop deliver (0)}

 I(reset) = {*deliver container (15)}

 O(2 to 3) = {*deliver container (15)}

 O(reset) = {*stop deliver (0)}

101

Attack Baseline Program for Instance 9

Figure 36 illustrates the attack baseline program ladder logic and Figure 37 shows

the Petri net for instance 9.

Figure 36: Ladder Logic for Attack Baseline (9)

102

Figure 37: Petri Net for Attack Baseline (9)

The formal definition for the Petri net illustrated in Figure 37 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 0) = {deliver container (5)}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {deliver container (5)}

 I(10 to 2) = {*ship container (31)}

 I(10 to 8) = {fill container (14), *ship container (31)}

 I(10 to 11) = {stop fill (0), stop ship (0)}

 I(10 to 26) = {fill container (14)}

 I(26 to 10) = {depart silo (21), container full (20)}

103

 I(26 to 24) = {depart silo (21)}

 I(26 to 27) = {stop depart (0)}

 O(2 to 0) = {stop deliver (0)}

 O(2 to 3) = {deliver container (5)}

 O(2 to 10) = {fill container (14)}

 O(10 to 2) = {deliver container (5)}

 O(10 to 8) = {stop fill (0), stop ship (0)}

 O(10 to 11) = {fill container (14), *ship container (31)}

 O(10 to 26) = {depart silo (21), container full (20)}

 O(26 to 10) = {*ship container (31)}

 O(26 to 24) = {stop depart (0)}

 O(26 to 27) = {depart silo (21)}

104

Attack Baseline Program for Instance 10

Figure 38 illustrates the attack baseline program ladder logic and Figure 39 shows

the Petri net for instance 10.

105

Figure 38: Ladder Logic for Attack Baseline (10)

Figure 39: Petri Net for Attack Baseline (10)

The formal definition for the Petri net illustrated in Figure 39 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 0) = {*deliver container (15)}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {*deliver container (15)}

 I(10 to 2) = {ship container (21)}

 I(10 to 8) = {fill container (14), ship container (21)}

106

 I(10 to 11) = {stop fill (0), stop ship (0)}

 I(10 to 26) = {fill container (14)}

 I(26 to 10) = {depart silo (21), container full (20)}

 I(26 to 24) = {depart silo (21)}

 I(26 to 27) = {stop depart (0)}

 O(2 to 0) = {stop deliver (0)}

 O(2 to 3) = {*deliver container (15)}

 O(2 to 10) = {fill container (14)}

 O(10 to 2) = {*deliver container (15)}

 O(10 to 8) = {stop fill (0), stop ship (0)}

 O(10 to 11) = {fill container (14), ship container (21)}

 O(10 to 26) = {depart silo (21), container full (20)}

 O(26 to 10) = {ship container (21)}

 O(26 to 24) = {stop depart (0)}

 O(26 to 27) = {depart silo (21)}

107

Delta Baseline Program for Instance 1

Figure 40 illustrates the delta baseline program ladder logic for instance 1. The

equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 40: Ladder Logic for Delta Baseline (1)

108

Delta Baseline Program for Instance 2

Figure 41 illustrates the delta baseline program ladder logic for instance 2. The

equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 41: Ladder Logic for Delta Baseline (2)

109

Delta Baseline Program for Instance 3

Figure 42 illustrates the delta baseline program ladder logic for instance 3. The

equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 42: Ladder Logic for Delta Baseline (3)

110

Delta Baseline Program for Instance 4

Figure 43 illustrates the delta baseline program ladder logic for instance 4. The

equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 43: Ladder Logic for Delta Baseline (4)

111

Delta Baseline Program for Instance 5

Figure 44 illustrates the delta baseline program ladder logic for instance 5. The

equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 44: Ladder Logic for Delta Baseline (5)

112

Delta Baseline Program for Instance 6

Figure 45 illustrates the delta baseline program ladder logic for instance 6. The

equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 45: Ladder Logic for Delta Baseline (6)

113

Delta Baseline Program for Instance 7

Figure 46 illustrates the delta baseline program ladder logic for instance 7. The

equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 46: Ladder Logic for Delta Baseline (7)

114

Delta Baseline Program for Instance 8

Figure 47 illustrates the delta baseline program ladder logic for instance 8. The

equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 47: Ladder Logic for Delta Baseline (8)

115

Delta Baseline Program for Instance 9

Figure 48 illustrates the delta baseline program ladder logic for instance 9. The

equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 48: Ladder Logic for Delta Baseline (9)

116

Delta Baseline Program for Instance 10

Figure 49 illustrates the delta baseline program ladder logic for instance 10. The

equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 49: Ladder Logic for Delta Baseline (10)

117

Attack Delta Baseline Program for Instance 1

Figure 50 illustrates the attack delta baseline program ladder logic for instance 1.

The equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 50: Attack Ladder Logic for Delta Baseline (1)

118

Attack Delta Baseline Program for Instance 2

Figure 51 illustrates the attack delta baseline program ladder logic for instance 2.

The equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 51: Attack Ladder Logic for Delta Baseline (2)

119

Attack Delta Baseline Program for Instance 3

Figure 52 illustrates the attack delta baseline program ladder logic for instance 3.

The equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 52: Attack Ladder Logic for Delta Baseline (3)

120

Attack Delta Baseline Program for Instance 4

Figure 53 illustrates the attack delta baseline program ladder logic for instance 4.

The equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 53: Attack Ladder Logic for Delta Baseline (4)

121

Attack Delta Baseline Program for Instance 5

Figure 54 illustrates the attack delta baseline program ladder logic for instance 5.

The equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 54: Attack Ladder Logic for Delta Baseline (5)

122

Attack Delta Baseline Program for Instance 6

Figure 55 illustrates the attack delta baseline program ladder logic for instance 6.

The equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 55: Attack Ladder Logic for Delta Baseline (6)

123

Attack Delta Baseline Program for Instance 7

Figure 56 illustrates the attack delta baseline program ladder logic for instance 7.

The equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 56: Attack Ladder Logic for Delta Baseline (7)

124

Attack Delta Baseline Program for Instance 8

Figure 57 illustrates the attack delta baseline program ladder logic for instance 8.

The equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 57: Attack Ladder Logic for Delta Baseline (8)

125

Attack Delta Baseline Program for Instance 9

Figure 58 illustrates the attack delta baseline program ladder logic and Figure 59

shows the Petri net for instance 9.

Figure 58: Attack Ladder Logic for Delta Baseline (9)

126

Figure 59: Petri Net for Attack Delta Baseline (9)

The formal definition for the Petri net illustrated in Figure 77 is C = {P, T, I, O},

such that:

 P = {deliver container, stop deliver, fill container, stop fill, container full,
depart silo, stop depart, ship container, stop ship}

 T = {2 to 0, 2 to 3, 2 to 10, 10 to 2, 10 to 8, 10 to 11, 10 to 26, 26 to 10, 26 to
24, 26 to 27}

 I(2 to 0) = {deliver container (5)}

 I(2 to 3) = {stop deliver (0)}

 I(2 to 10) = {deliver container (5)}

 I(10 to 8) = {fill container (14)}

 I(10 to 11) = {stop fill (0)}

 I(10 to 26) = {fill container (14)}

 I(26 to 10) = {depart silo (21), container full (20)}

127

 I(26 to 24) = {depart silo (21)}

 I(26 to 27) = {stop depart (0)}

 I(reset) = {stop ship (0), *ship container (11)}

 O(2 to 0) = {stop deliver (0)}

 O(2 to 3) = {deliver container (5)}

 O(2 to 10) = {fill container (14)}

 O(10 to 8) = {stop fill (0)}

 O(10 to 11) = {fill container (14)}

 O(10 to 26) = {depart silo (21), container full (20)}

 O(26 to 10) = {stop ship (0), *ship container (11)}

 O(26 to 24) = {stop depart (0)}

 O(26 to 27) = {depart silo (21)}

 O(reset) = {stop deliver (0)}

128

Attack Delta Baseline Program for Instance 10

Figure 60 illustrates the attack delta baseline program ladder logic for instance 10.

The equivalent Petri net is similar to the baseline program shown in Figure 19.

Figure 60: Attack Ladder Logic for Delta Baseline (10)

129

Appendix B

Baseline Program

The following state table, reachability graph and matrix are representative of:

 The baseline program for PLC instances 1 through 10

 The delta baseline program for PLC instances 1 through 10

 The attack delta baseline program for PLC instances 1 through 8, and 10

Table 14: Tangible States for Baseline (all), Delta Baseline (all) and Attack Delta Baseline (1-8, 10)

Figure 61: Graph for Baseline (1-10), Delta Baseline (1-10) and Attack Delta Baseline (1-8,10)

130

Table 15: Matrix for Baseline (1-10), Delta Baseline (1-10) and Attack Delta Baseline (1-8,10)

PN

marking
m0 m1 m2 m3 m4 m5 m6 m7

stop

deliver
1

deliver

container
1

stop fi l l 1

fi l l

container
1

stop

depart
1

depart

silo
1

container

full
1 1

stop ship 1

ship

container
1

2 --> 0 1

2 --> 3 1

2 --> 10 1

10 --> 2 1

10 --> 8 1 1

10 --> 11 1 1

10 --> 26 1

26 --> 10 1

26 --> 24 1

26 --> 27 1

*input

Output

Places

Input

Transitions

131

Attack Delta Baseline Program (for PLC Instance 9)

The following state table, reachability graph and matrix are representative of

attack delta baseline program for PLC instance 9.

Table 16: Tangible States for Attack Delta Baseline (9)

Figure 62: Graph for Attack Delta Baseline (9)

132

Table 17: Matrix for Attack Delta Baseline (9)

PN
marking

m0 m1 m2 m3 m4 m5 m6

stop deliver 1

deliver
container

1

stop fill 1

fill
container

1

stop depart 1

depart silo 1

container
full

1 1

stop ship 1

*ship
container

1

2 --> 0 1
2 --> 3 1

2 --> 10 1
10 --> 2
10 --> 8 1
10 --> 11 1
10 --> 26 1
26 --> 10 1
26 --> 24 1
26 --> 27 1

*input 1

Output
Places

Input
Transitions

133

Attack Baseline Program (for PLC Instance 1)

The following state table, reachability graph and matrix are representative of

attack baseline program for PLC instance 1.

Table 18: Tangible States for Attack Baseline (1)

Figure 63: Graph for Attack Baseline (1)

134

Table 19: Matrix for Attack Baseline (1)

PN
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

*deliver
container

1

stop fill 1

fill
container

1

stop depart 1

depart silo 1

container
full

1 1

stop ship 1

ship
container

1

2 --> 0 1
2 --> 3 1
2 --> 10 1
10 --> 2 1
10 --> 8 1 1
10 --> 11 1 1
10 --> 26 1
26 --> 10 1
26 --> 24 1
26 --> 27 1

*input

Output
Places

Input
Transitions

135

Attack Baseline Program (for PLC Instance 2)

The following state table, reachability graph and matrix are representative of

attack baseline program for PLC instance 2.

Table 20: Tangible States for Attack Baseline (2)

Figure 64: Graph for Attack Baseline (2)

136

Table 21: Matrix for Attack Baseline (2)

PN
marking

m0 m1 m2 m3 m4 m5

stop deliver 1

deliver
container

1

stop fill 1

fill
container

1

stop depart 1

*depart
silo

1

*container
full

1 1

2 --> 0 1
2 --> 3 1
2 --> 10 1
10 --> 2
10 --> 8 1
10 --> 11 1
10 --> 26 1
26 --> 10
26 --> 24 1
26 --> 27 1

*input 1

Output
Places

Input
Transitions

137

Attack Baseline Program (for PLC Instance 3)

The following state table, reachability graph and matrix are representative of

attack baseline program for PLC instance 3.

Table 22: Tangible States for Attack Baseline (3)

Figure 65: Graph for Attack Baseline (3)

138

Table 23: Matrix for Attack Baseline (3)

PN
marking

m0 m1 m2 m3 m4

*stop
deliver

1

deliver
container

1

fill
container

1

depart silo 1

container
full

1

ship
container

1

2 --> 0
2 --> 3 1
2 --> 10 1
10 --> 2 1
10 --> 8

10 --> 11 1 1
10 --> 26 1
26 --> 10 1
26 --> 24
26 --> 27 1

*input 1

Output
Places

Input
Transitions

139

Attack Baseline Program (for PLC Instance 4)

The following state table, reachability graph and matrix are representative of

attack baseline program for PLC instance 4.

Table 24: Tangible States for Attack Baseline (4)

Figure 66: Graph for Attack Baseline (4)

140

Table 25: Matrix for Attack Baseline (4)

PN
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

deliver
container

1

stop fill 1

fill
container

1

stop depart 1

*depart
silo

1

*container
full

 1 1

stop ship 1

*ship
container

1

2 --> 0 1
2 --> 3 1
2 --> 10 1
10 --> 2 1
10 --> 8 1 1
10 --> 11 1 1
10 --> 26 1
26 --> 10 1
26 --> 24 1
26 --> 27 1

*input

Output
Places

Input
Transitions

141

Attack Baseline Program (for PLC Instance 5)

The following state table, reachability graph and matrix are representative of

attack baseline program for PLC instance 5.

Table 26: Tangible States for Attack Baseline (5)

Figure 67: Graph for Attack Baseline (5)

142

Table 27: Matrix for Attack Baseline (5)

PN
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

*deliver
container

1

stop fill 1

fill
container

1

stop depart 1

*depart
silo

1

*container
full

1 1

stop ship 1

*ship
container

1

2 --> 0 1
2 --> 3 1
2 --> 10 1
10 --> 2 1
10 --> 8 1 1
10 --> 11 1 1
10 --> 26 1
26 --> 10 1
26 --> 24 1
26 --> 27 1

*input

Output
Places

Input
Transitions

143

Attack Baseline Program (for PLC Instance 6)

The following state table, reachability graph and matrix are representative of

attack baseline program for PLC instance 6.

Table 28: Tangible States for Attack Baseline (6)

Figure 68: Graph for Attack Baseline (6)

144

Table 29: Matrix for Attack Baseline (6)

PN
marking

m0 m1 m2 m3 m4

*stop
deliver

1

*deliver
container

1

fill
container

1

*depart
silo

1

*container
full

1

*ship
container

1

2 --> 0
2 --> 3 1
2 --> 10 1
10 --> 2 1
10 --> 8

10 --> 11 1 1
10 --> 26 1
26 --> 10 1
26 --> 24
26 --> 27 1

*input 1

Output
Places

Input
Transitions

145

Attack Baseline Program (for PLC Instance 7)

The following state table, reachability graph and matrix are representative of

attack baseline program for PLC instance 7.

Table 30: Tangible States for Attack Baseline (7)

Figure 69: Graph for Attack Baseline (7)

146

Table 31: Matrix for Attack Baseline (7)

PN
marking

m0 m1 m2 m3

stop deliver 1

deliver
container

1

stop fill 1

*fill
container

1

2 --> 0 1
2 --> 3 1

2 --> 10 1
10 --> 2 1
10 --> 8 1
10 --> 11 1
10 --> 26
26 --> 10
26 --> 24
26 --> 27

*input

Output
Places

Input
Transitions

147

Attack Baseline Program (for PLC Instance 8)

The following state table, reachability graph and matrix are representative of

attack baseline program for PLC instance 8.

Table 32: Tangible States for Attack Baseline (8)

Figure 70: Graph for Attack Baseline (8)

Table 33: Matrix for Attack Baseline (8)

PN
marking

m0 m1

*stop
deliver

1

*deliver
container

1

2 --> 0
2 --> 3 1

2 --> 10
10 --> 2
10 --> 8
10 --> 11
10 --> 26
26 --> 10
26 --> 24
26 --> 27

*input 1

Output
Places

Input
Transitions

148

Attack Baseline Program (for PLC Instance 9)

The following state table, reachability graph and matrix are representative of

attack baseline program for PLC instance 9.

Table 34: Tangible States for Attack Baseline (9)

Figure 71: Graph for Attack Baseline (9)

149

Table 35: Matrix for Attack Baseline (9)

PN
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

deliver
container

1

stop fill 1

fill
container

1

stop depart 1

depart silo 1

container
full

1 1

stop ship 1

*ship
container

1

2 --> 0 1
2 --> 3 1
2 --> 10 1
10 --> 2 1
10 --> 8 1 1
10 --> 11 1 1
10 --> 26 1
26 --> 10 1
26 --> 24 1
26 --> 27 1

*input

Output
Places

Input
Transitions

150

Attack Baseline Program (for PLC Instance 10)

The following state table, reachability graph and matrix are representative of

attack baseline program for PLC instance 10.

Table 36: Tangible States for Attack Baseline (10)

Figure 72: Graph for Attack Baseline (10)

151

Table 37: Matrix for Attack Baseline (10)

PN
marking

m0 m1 m2 m3 m4 m5 m6 m7

stop deliver 1

*deliver
container

1

stop fill 1

fill
container

1

stop depart 1

depart silo 1

container
full

1 1

stop ship 1

ship
container

1

2 --> 0 1
2 --> 3 1
2 --> 10 1
10 --> 2 1
10 --> 8 1 1
10 --> 11 1 1
10 --> 26 1
26 --> 10 1
26 --> 24 1
26 --> 27 1

*input

Output
Places

Input
Transitions

152

Bibliography

Abhishek, N. (2005). Time Augmented Petri Nets for Modeling Discrete Event Dynamic
Systems. Durham NC: Duke University.

Almeida, R. M. (2010). Benchmarking the Resilience of Self-Adaptive Systems: A New
Research Challenge. 29th IEEE International Symposium on Reliable Distributed
Systems (pp. 348-352). New Delhi: IEEE Computer Society.

Bolboaca, S. J. (2006). Pearson versus Spearman, Kendall's Tau Correlation Analysis on
Structure-Activity Relationships of Biologic Active Compounds. Leonardo Journal
of Sciences, 179-200.

Bonet, P. L. (2007). PIPE v2.5: a Petri Net Tool for Performance Modeling. 23d Latin
American Conference on Informatics. San Jose, Costa Rica.

Cutter, S. B. (2008). A place-based model for understanding community resilience to
natural disasters. Global Environmental Change, 598-606.

Falliere, N. M. (2011). W32.Stuxnet Dossier. Cupertino CA: Symantec Corporation.

Germanus, D. K. (2010). Increasing the Resilience of Critical SCADA Systems Using
Peer-to-Peer Overlays. Architecting Critical Systems, First International Symposium.
Prague, Czech Republic: ISARCS.

Johnson, A. M. (1988). Survey of Software Tools for Evaluating Reliability, Availability,
and Serviceability. ACM Computing Surveys , 227-269.

Minkel, J. (2008, Aug 13). The 2003 Northeast Blackout--Five Years Later. Retrieved 02
29, 2012, from Scientific American:
http://www.scientificamerican.com/article.cfm?id=2003-blackout-five-years-later

National Infrastructure Advisory Council. (2009). Critical Infrastructure Resilience Final
Report and Recommendations. Washington DC: Department of Homeland Security.

Niland, M. (2009, Feb 11). Virus Disrupts Train Signals. Retrieved Feb 29, 2012, from
cbsnews: http://www.cbsnews.com/stories/2003/08/21/tech/main569418.shtml

Peng, S. Z. (2004). Ladder Diagram and Petri-Net-Based Discrete-Event Control Design
Methods. IEEE Transactions on Systems, Man, and Cybernetics, 523-531.

153

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. New Jersey:
Prentice Hall.

Peterson, J. L. (1977). Petri Nets. ACM Computing Surveys, 223-252.

Poulsen, K. (2003, Aug 19). Slammer worm crashed Ohio nuke plant network. Retrieved
Feb 29, 2012, from SecurityFocus: http://www.securityfocus.com/news/6767

Queiroz, C. M. (2010). An analytical framework using performance modeling. IEEE
Globecom 2010. Melbourne, Australia: IEEE Communication Society.

Reza, H. P. (2009). A Safety Analysis Method Using Fault Tree Analysis and Petri Nets.
Sixth International Conference on Information Technology: New Generations (pp.
1089-1094). Las Vegas NV: IEEE Computer Society.

Roberts, P. (2005, Aug 18). Zotob, PnP Worms Slam 13 DaimlerChrysler Plants.
Retrieved 02 29, 2012, from eWEEK: http://www.eweek.com/c/a/Security/Zotob-
PnP-Worms-Slam-13-DaimlerChrysler-Plants/

Shah, A. P. (2008). Mechanisms to Provide Integrity in SCADA and PCS devices.
International Conference on distributed computing in sensor systems. Sontorni
Greece.

Smith, T. (2001, Oct 31). Hacker jailed for revenge sewage attacks. Retrieved Feb 29,
2012, from The Register:
http://www.theregister.co.uk/2001/10/31/hacker_jailed_for_revenge_sewage/

Stouffer, K. F., Falco, J., Scarfone, K. (2008). Guide to Industrial Control Systems (ICS)
Security. Gaithersburg MD: National Institute of Standards and Technology.

Thomas, P. (1998, Mar 18). Teen hacker faces federal charges. Retrieved 02 29, 2012,
from CNN:
http://www.cnn.com/TECH/computing/9803/18/juvenile.hacker/index.html

Tierney, K. B. (2007). Conceptualizing and Measuring Resilience. TR News, 14-17.

Trivedi, K. K. (2009). Resilience in Computer Systems and Networks. Computer-Aided
Design-Digest of Technical Papers (pp. 74-77). San Jose CA: IEEE.

VanBreda, A. (2001). Resilience Theory: A Literature Review. Gezina, South Africa:
Military Psychological Institute.

154

Wei, D. J. (2009). Resilient Industrial Control System (RICS): Concepts, Formulation,
Metrics, and Insights. 2d International Symposium on Resilient Control Systems.
Idaho Falls ID: Resilient Control Systems.

Zurawski, R. M. (1994). Petri Nets and Industrial Applications. IEEE Transactions on
Industrial Electronics, 567-582.

155

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

22 Mar 2012
2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Sept 2010 – Mar 2012

4. TITLE AND SUBTITLE
Towards Quantifying Programmable Logic Controller Resilience Against

Intentional Exploits

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Bushey, Henry W., Capt, USAF

5d. PROJECT NUMBER
N/A
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way, Building 640
WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCO/ENG/12-03

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
POC: Eric Cornelius, Department of Homeland Security Industrial Control
Systems Cyber Emergency Response Team Technical Lead
ATTN: NPPD/CS&C/NCSD/US-CERT
Mailstop: 0635, 245 Murray Lane, SW, Bldg 410
Washington, DC 20528

ics-cert@dhs.gov; (877)776-7585

10. SPONSOR/MONITOR’S ACRONYM(S)
 DHS ICS-CERT

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution Statement A. Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This material is declared a work of the United States Government and is not subject to copyright protection in the United
States.
14. ABSTRACT
Supervisory Control and Data Acquisition (SCADA) systems control and monitor services for the nation’s critical infrastructure. Recent
cyber induced events (e.g., Stuxnet) provide an example of a targeted, covert cyber attack against a SCADA system that resulted in
physical effects. Of particular note is how Stuxnet exploited the trust relationship between the human machine interface (HMI) and
programmable logic controllers (PLCs). Current methods for validating system operating parameters rely on message exchange and
network communications protocols, generally observed at the HMI. Although sufficient at the macro level, this method does not provide
detection of malware that exhibits physical effects via covert manipulation of the PLC, as demonstrated by Stuxnet. In this research, an
alternative method that leverages direct analysis of PLC input and output to derive the true state of SCADA end-devices is introduced. The
behavioral input-output characteristics are modeled using Petri nets to derive metrics for quantifying resilient properties of systems against
malicious exploits. The results yield metrics that are applicable towards quantifying resilience in PLCs and implementing real-time
security solutions. These findings enable detecting programming changes that affect input and output relationships, identifying the degree
of deviation from a baseline program, and minimizing performance losses against disruptive events.

15. SUBJECT TERMS

Behavioral-based security, resilience, SCADA security, Petri net
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

 ABSTRACT

UU

18. NUMBER
OF PAGES

172

19a. NAME OF RESPONSIBLE PERSON

Butts, Jonathan, Maj, Ph.D., USAF
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, x 4332
(jonathan.butts@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Air Force Institute of Technology
	AFIT Scholar
	3-22-2012

	Towards Quantifying Programmable Logic Controller Resilience Against Intentional Exploits
	Henry W. Bushey
	Recommended Citation

	AFIT Thesis Template (2012)

