877 research outputs found

    Active power management of islanded interconnected distributed generation

    Get PDF
    Abstract: The present paper proposes a management of active power in distributed generation considering an islanded mode. Power system is a complex system from the point of view of its constitution, operation and management. Because of energy sources scarcity and energy increasing demand in most of the electrical power systems worldwide, renewable energy exploitation continue to attract researches and exploitation of this weather depending resources. When considering the island mode or without connection to the main grid, of the distributed generation its operation and control became more difficult or uncertain based their dependencies on the weather. Using optimal theory, this paper solve the management of interconnected microgrids operating in islanded mode. Matlab software is used to solve all optimisation problems

    Management of Islanded Operation of Microgirds

    Get PDF
    Distributed generations with continuously growing penetration levels offer potential solutions to energy security and reliability with minimum environmental impacts. Distributed Generations when connected to the area electric power systems provide numerous advantages. However, grid integration of distributed generations presents several technical challenges which has forced the systems planners and operators to account for the repercussions on the distribution feeders which are no longer passive in the presence of distributed generations. Grid integration of distributed generations requires accurate and reliable islanding detection methodology for secure system operation. Two distributed generation islanding detection methodologies are proposed in this dissertation. First, a passive islanding detection technique for grid-connected distributed generations based on parallel decision trees is proposed. The proposed approach relies on capturing the underlying signature of a wide variety of system events on a set of critical system parameters and utilizes multiple optimal decision tress in a parallel network for classification of system events. Second, a hybrid islanding detection method for grid-connected inverter based distributed generations combining decision trees and Sandia frequency shift method is also proposed. The proposed method combines passive and active islanding detection techniques to aggregate their individual advantages and reduce or eliminate their drawbacks. In smart grid paradigm, microgrids are the enabling engine for systematic integration of distributed generations with the utility grid. A systematic approach for controlled islanding of grid-connected microgrids is also proposed in this dissertation. The objective of the proposed approach is to develop an adaptive controlled islanding methodology to be implemented as a preventive control component in emergency control strategy for microgrid operations. An emergency power management strategy for microgrid autonomous operation subsequent to inadvertent islanding events is also proposed in this dissertation. The proposed approach integrates microgrid resources such as energy storage systems, demand response resources, and controllable micro-sources to layout a comprehensive power management strategy for ensuring secure and stable microgrid operation following an unplanned islanding event. In this dissertation, various case studies are presented to validate the proposed methods. The simulation results demonstrate the effectiveness of the proposed methodologies

    Modelado matemático de microred isla con cargas estáticas y dinámicas

    Get PDF
    Aumentar el nivel de penetración de las unidades de generación distribuida y de los dispositivos electrónicos de potencia añade más complejidad y variabilidad al comportamiento dinámico de las microrredes. Para tales sistemas, el estudio del modelado y la estabilidad transitorios es esencial. Una de las principales desventajas de la mayoría de los estudios sobre modelado de microrredes es su excesiva atención al período de estado estable y la falta de atención al rendimiento de la microrred durante el período transitorio. En la mayoría de los trabajos de investigación no se ha estudiado el comportamiento de diferentes cargas de microrredes. Uno de los mecanismos de los estudios de estabilidad de sistemas de potencia es la aplicación del modelado del espacio de estados. Estos estudios incluyen el desarrollo de modelos espaciales de estados de varios componentes del sistema de energía y luego linealizarlos alrededor de un punto de equilibrio. En este artículo, se presenta un método integral para el modelado de microrredes en islas con cargas dinámicas y estáticas. El paso básico del método propuesto es la transformación a un modelo basado en dq0. Para encontrar un modelo completo y preciso de microrred basada en inversor en isla, los submódulos de generación, red y carga deben modelarse en la referencia dq local y luego transferirse a una referencia común. Los resultados de la simulación muestran la efectividad del enfoque de modelado propuesto para estudios de estabilidad transitori

    An Islanding Detection Method for Micro-Grids With Grid-Connected and Islanded Capability

    Get PDF
    With the increasing prevalence of renewable energy and distributed generation (DG) in distribution systems, micro-grids are becoming more popular and an attractive option for enhancing system operation and reliability. This can be attributed to the micro-grid ability to operate in both connected and disconnected modes. Equally important, micro-grids are the best solution to meet the increasing demand of electric power in a cost effective manner due to the close proximity to the load demand and thus minimizing system losses. Islanding detection methods have been proposed for inverter based distributed generation with only grid-connected capability. Micro-grids are composed of DGs that are capable of operating in two modes: grid connected and islanded. This thesis introduces and proposes the concept of micro-grid transition detection where the status of the micro-grid is detected based on adaptively modifying the droop slope. The droop coefficient is chosen such that the micro-grid is stable while grid connected and in the contrary Unstable once an islanded micro-grid operation is initiated. The droop coefficient is adaptively modified, once the micro-grid transitions from grid-connected to islanded operation, to stabilize the micro-grid for the islanded mode of operation. The proposed method is capable of detecting micro-grid transition in less than 600 ms under various active and reactive power mismatches. The proposed micro-grid transition detection method is tested on a micro-grid equipped with inverter based DGs controlled using the droop approach. The main objective of this thesis is to develop a novel islanding detection method for micro-grids with grid connected and islanded capability. A micro-grid model was developed using power system computer aided design/ electromagnetic transient and DC (PSCAD/EMTDC) as a platform for testing the proposed method. Simulation results were conducted considering the Institute of Electrical and Electronics Engineers Standard 1547(IEEE Std. 1547) standard islanding detection testing procedure

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    Electric Power Conversion and Micro-Grids

    Get PDF
    This edited volume is a collection of reviewed and relevant research chapters offering a comprehensive overview of recent achievements in the field of micro-grids and electric power conversion. The book comprises single chapters authored by various researchers and is edited by a group of experts in such research areas. All chapters are complete in themselves but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on electric power conversion, micro-grids, and their up-to-the-minute technological advances and opens new possible research paths for further novel developments

    An effective passive islanding detection algorithm for distributed generations

    Get PDF
    Different issues will be raised and highlighted by emerging distributed generations (DGs) into modern power systems in which the islanding detection is the most important. In the islanding situation, a part of the system which consists of at least one DG, passive grid, and local load, becomes fully separated from the main grid. Several detection methods of islanding have been proposed in recent researches based on measured electrical parameters of the system. However, islanding detection based on local measurements suffers from the non-detection zone (NDZ) and undesirable detection during grid-connected events. This paper proposes a passive islanding detection algorithm for all types of DGs by appropriate combining the measured frequency, voltage, current, and phase angle and their rate of changes at the point of common coupling (PCC). The proposed algorithm detects the islanding situation, even with the exact zero power mismatches. Proposed algorithm discriminates between the islanding situation and non-islanding disturbances, such as short circuit faults, capacitor faults, and load switching in a proper time and without mal-operation. In addition, the performance of the proposed algorithm has been evaluated under different scenarios by performing the algorithm on the IEEE 13-bus distribution system.fi=vertaisarvioitu|en=peerReviewed

    Evolution of microgrids with converter-interfaced generations: Challenges and opportunities

    Full text link
    © 2019 Elsevier Ltd Although microgrids facilitate the increased penetration of distributed generations (DGs) and improve the security of power supplies, they have some issues that need to be better understood and addressed before realising the full potential of microgrids. This paper presents a comprehensive list of challenges and opportunities supported by a literature review on the evolution of converter-based microgrids. The discussion in this paper presented with a view to establishing microgrids as distinct from the existing distribution systems. This is accomplished by, firstly, describing the challenges and benefits of using DG units in a distribution network and then those of microgrid ones. Also, the definitions, classifications and characteristics of microgrids are summarised to provide a sound basis for novice researchers to undertake ongoing research on microgrids

    Energy management of micro-grid using cooperative game theory

    Get PDF
    Micro-grid (MG) has been introduced as a low voltage and a very small power system connected to a distribution grid through the point of common coupling. It consists of distributed energy resources (DERs) such as solar Photovoltaic (PV), wind turbine, fuel cell, etc.), interconnected load and energy storage sources. It can operate in grid-connected (i.e. when connected to the main grid) or islanded (i.e. when not connected to the main grid) mode. It has an advantage of utilizing low carbon sources and the possibility of its use in the remote local environment, which means that the transmission infrastructures and their associated costs may be deferred. Although there has been a proliferation of optimization methods of energy management in the MG, most of these methods consider self-interest of the players in profit distribution. Moreover, only a few of them consider a fair profit distribution using Nash bargaining solution (NBS) (i.e. when utility function is linear) leading to even profit distribution and high degree of dissatisfaction. For the MG to achieve better economic outcomes, a novel method based on weighted fair energy management among the participants (i.e. building of different types, such as residential buildings, schools, and shops) is proposed. The novelty of the proposed method lies in the new profit sharing method to favour certain participant by assigning a weight to each participant with cooperative game theory (CGT) approach using generalized Nash bargaining solution (GNBS). The proposed approach achieves a fair (reasonable or just) profit allocation with negotiating power indicator. In this work, a case study of six different participant sites is proposed using the CGT method of energy management. The proposed method is able to cope with the drawbacks of the existing independent method, which negotiate directly with other participants for selfish profit distribution. It is demonstrated that the independent method results in (1) a reduction in the profit of each participant of MG when compared with CGT approach and (2) the variation of transfer prices in some participants having profit below the specified lower bound profit since the method does not take into consideration the lower profit bounds. The use of CGT method (i.e. when participants form a coalition) to finding multi-partner profit level subject to specified lower bounds is demonstrated. This results in (1) increase in the profit of the MG participants (2) maintaining the profit level of all the participants above status-quo profit (lower specified profit bounds) with variation in transfer prices and (3) allowing certain participant to be favoured by assigning higher negotiating power to such participant. To achieve the optimal solution in the proposed method, a teaching-learning-based optimization (TLBO) algorithm is presented to efficiently solve the problem. For TLBO algorithm, no specific control parameters are needed except the number of generations and population size. This is in contrast with other heuristic algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) that require other control parameters (i.e. GA requires selection and crossover operation, while PSO makes use of social parameters and cognitive weight). To demonstrate the effectiveness of the proposed TLBO method, the profit allocations are tested in the grid-connected and the islanded mode using both the CGT and the independent method. In this work, the proposed TLBO method is compared with one traditional method, i.e. Lambda iteration method and two heuristic methods, i.e. PSO and GA. Thus, by using TLBO a considerable amount of computation time is saved. Using the same parameter setting for all the heuristic algorithms used, 20 trials are performed to be able to compare the quality of solution and convergence characteristics. The investigation reveals that TLBO gives the highest quality solutions and better convergence characteristics compared to PSO and GA
    corecore