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Abstract—The present paper proposes a management of 
active power in distributed generation considering an 
islanded mode. Power system is a complex system from the 
point of view of its constitution, operation and management. 
Because of energy sources scarcity and energy increasing 
demand in most of the electrical power systems worldwide, 
renewable energy exploitation continue to attract researches 
and exploitation of this weather depending resources. When 
considering the island mode or without connection to the 
main grid, of the distributed generation its operation and 
control became more difficult or uncertain based their 
dependencies on the weather. Using optimal theory, this 
paper solve the management of interconnected microgrids 
operating in islanded mode. Matlab software is used to solve 
all optimisation problems.   

Index Terms—Microgrid, active power, power system 

I. INTRODUCTION 

Renewable energy resources (RER) demonstrated to 
be one of the most promising and useful energy model. In 
interconnected mode, more advantages can be cited: 
reliability and stability enhancement [1], [2]. When the 
connection of the renewable energy generation (REGEN) 
to the main grid is not made possible, or is not feasible, 
its operation and management are serious issues that can 
face a “stand alone renewable energy system”. Based on 
the energy generated from the PV and wind farm, the 
system could not be meet the energy demand because on 
their variable nature. In most of the remote renewable 
energy system (RES), the battery energy system storage 
(BESS) and diesel generator (DGEN) support the 
operation and the management of the constituted system 
[1]. Both are uses to mitigate the issues of active power 
demand and active power generation fluctuations of 
weather depending energy generation resources as usual 
used in remote area power system applications.  

The medium and low voltage networks are 
undergoing a lot of transformations because of the 
integration of power flow of energies coming from 
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renewable sources or depending on the weather [3]. With 
an uncertain production and a variable demand power, the 
power flow becomes frequently reversed and difficult to 
handle or to manage. Some authors in the existing 
literature have proposed control and management models 
to solve this issue. Researchers in [4] have proposed a 
control strategies for multi microgrids (MGs) islanding 
operation by means of a smart transformers.  In their 
research smart transformer was used within the context of 
multi MGs in order to enhance the possibility of islanding 
operation via the identification of new control 
functionalities. A fuzzy-based approach for MGs islanded 
operation was presented in [5]. Marei and Soliman [6] 
have proposed a coordinated voltage and frequency 
control of inverter based distributed generation (DG) and 
distributed ESS for autonomous MGs. One advantage of 
the proposed control system was its unified structure for 
the different operating modes. The research proposed a 
methodology for MG management in islanded conditions 
aiming to maximise the duration of power supply taking 
into account the availability of renewable sources and 
stored energy.  

Researchers [7] have proposed a study on the 
operation optimisation of an isolated island MG with 
renewable energy layout planning. The proposed 
operation plan obtained the effect of a planned utilization 
rate of annual renewable energy of 40% or more. The 
authors [8] have implemented a multiple slack terminal 
direct current DGs for smooth transitions between grid-
tied and islanded states. A counter was used to ensure bus 
voltages at both sides of contactor have been matched 
stably minimize inrush current. Stochastic energy 
management of MGs during unscheduled islanding 
period was proposed in [9]. According to this framework, 
the probability distribution of islanding duration needs to 
be estimated, instead of predicting its exact value. 
Bayhan and Rub [10] have proposed a simple control 
technique for DGs in grid connected and islanded modes. 
Each DG unit was controlled by the voltage control 
technique in islanded mode whereas the DGs controlled 
by feed forward based control technique in grid 
connected mode so as to ensure the seamless transition.   

Researchers [11] have proposed regulation of voltage 
in islanded DGs using distributed constraint satisfaction. 
Several cases studies are simulated to evaluate the 
performance. Research [12] has proposed a local energy 
supply possibilities, with islanding DG case study. Based 
on the measurements and operational experience, a 
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calculation method has been established to compare the 
traditional solution and the island operation possibilities. 
Control for grid connected and intentional islanded 
operation of distributed generation was presented in [13]. 
The paper has presented a control algorithm to detect grid 
supply failure and the intentional islanding operation of 
distributed generations. Energy and frequency 
hierarchical management system using information gap 
decision theory for islanded MGs was proposed in [14]. 
To address a robust hierarchical energy and frequency 
reserve management architecture, the problem was 
transmitted into a single-level mixed integer linear 
programming model and solved appropriately over 24-h 
scheduling time horizon. Athira and Ravikumar [15] have 
presented an energy management in islanded DC MG 
using fuzzy controller to improve performance. The 
research have developed and implemented a prototype 
model of the energy management system of DC MG in 
islanding mode. 

The proposed model deals with two microgrids; the 
first is composed by a wind and photovoltaic generation 
and a battery energy storage system. The second 
microgrid is made by two engine generators. The 
configuration is completed with five loads. Three sections 
constituted the rest of this paper as follows: Section II 
highlights the modelling of the problem. Section III 
presents the proposed optimisation model and Section IV 
gives the data used and experimental results, finally 
Section V summarises the founding of this paper. The 
main contribution of this article is the proposition of the 
control-management model and experimental results 
obtained after simulations.  

II. MODELLING OF THE PROBLEM 

A. Proposed Model 
The system of study is composed of two networks 

interconnected via one tie-line. Network 2 is essentially 
powered by two generators that operate on a well-
established schedule. This is often the case of areas 
inaccessible to electrical energy via the natural network. 
If one of the generator works, the other is at rest and/or it 
can be used as the energy reserve in case of the active 
power demand increases (load demand). In order to 
reduce the operation cost related to the generators 
(Generator 1 and Generator 2), the interconnection with a 
microgrid 2, composed by a PV and wind generating 
systems with the battery energy storage, to relieve the 
functioning of Microgrid 1. When the diesel generators in 
Microgrid 1 working in their limits, Microgrid 2 brings 
an active power via a tie-line, that have as objective to 
relieve the operation of the two diesel generators and to 
allow a good loads management of the interconnected  
system (electrical network). The rated power of the two 
engines generator are fixed, the active power from wind 
farm and photovoltaic generations are given and used 
under profile forms.  

B. Mathematical Model 
The proposed system given in Fig. 1, described two 

areas or microgrids. Microgrid 2 is constituted by a PV 

arrays (PS(k)), wind farm (PW(k)), an energy storage 
system ( ( )kPB

+ discharging mode) and ( ( )kPB
− charging 

mode) and two loads: one critical (PL2(k)) and one no 
critical (PL2(k)). Microgrid 1 is made up with a two diesel 
generators (PE1(k) and PE2(k)), two critical loads (PL3(k) 
and PL4(k)) and one normal load (PL5(k)). The power flow 
giving the stability of the proposed system is given as 
follows: 

( )kPW
( )kPS

( )kPB1 ( )kPB2 ( )kPL1
( )kPL2

( )kPL3 ( )kPL4 ( )kPL5

( )kPE1 ( )kPE 2

( )kPT

Microgrid 2Microgrid 2

Microgrid 1Microgrid 1
 

Fig. 1. Interconnected microgrid systems 

From Microgrid 2 

PW(k)+PS(k)+PB
+(k) ≥ PB

− (k)+PL1(k)+PL2(k)     (1) 

From Microgrid 1 

PE1(k)+PE2(k) ≥ PL3(k)+PL4(k)+PL5(k)             (2) 

From these Equations we can deduct: 
• The total load:  

PLT(k) = PL1(k)+PL2(k)+PL3(k)+PL4(k)+PL5(k)  (3) 

• Total active power generated: 

PGT(k)=PW(k)+PS(k)+PB
+(k)+PE1(k)+PE2(k)       (4) 

• The following constraints are considered for the 
proposed system:  

PE1(k)=PE2(k)=20 MW                       (5)  

According to the constituted system, the following 
information should be taken into account: 

PL3(k) Critical load high level (alimented 24 hours); 
PL4(k) Critical load average level 1 (alimented 24 
hours when power is available); 
PL2(k) Critical load average level 2 (alimented 24 
hours when power is available) 



PL1(k) No-critical load 
PL5(k) No-critical load  

The active power flowing in the tie-line is determined as 
follows: 

( )∫ ∫ ∆−∆=∆ dtdtPP STL 21 ωω                 (6) 

where ∆PTL, PS, ∆ω1, ∆ω2 are respectively the power flow 
variation between Microgrid 1 and Microgrid 2; the 
synchronizing power and the frequency difference for 
Microgrid 1 and Microgrid 2. 

C. Objective Functions 
The objective function to be considered for this model 

is given in three parts: 
1) Maximisation of the renewable energy production; 
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2) Minimisation of the diesel consumption; 
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3) Active power demand control; 

( )( )[ ]tBfkPtJ T ∆×+×∆×= min3                 (9)   

The multi-objective function is defined as follows: 

332211 JwJwJwJ ++=                       (10) 

where a, b and c are parameters from the manufacturer, 
wi are the weight factors, Bf×∆t parameter depending to 
the frequency deviation. 

III. PROPOSED ALGORITHM 

To solve the proposed model and take into account 
the nonlinearity characterisics, the power system 
Fmincon solver in Matlab was used. The optimisation 
model is given as follows [1]-[3], [16], [17]: 

min f 
Tx                                  (11) 

Subject to the following constraints 


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where Lb≤X≤Ub is the variables bounds; AX≤B is the 
inequality constraint of the proposed system; AeqX=Beq is 
the battery dynamics equality constraint.  

The power flow characterising the studied system 
from different elements is represented by X, which is a 
binary integer vector. All the optimal process is related to 
this variable and it is given under vector representation as 
follows:  

[ ]T
NxxxX ,.......,, 21=                           (13) 

Nine steps were used when solving the problem with 
Fmincon as follows: 

1. Variables definitions 
2. Formulations of matrices giving the linear 

inequality; 
3. Determination of the equality constraints 

matrices; 
4. Lower and upper bounds formulations; 
5. State of charge matrix formulation; 
6. Starting point serching; 
7. Evaluation process using the objective function 

and the set of constraints. 
8. Iterations and decision process 
9. End  process and results collection. 
 
The battery energy storage system is characterised by 

its state of charge (giving the battery dynamic), for the 
proposed model, the SOC of the storage system is 
represented as follows in (14), for the purpose of it 
control, using the linear equality constraint:  
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where h is a coefficient taking into account the charging 
and discharging of the battery. 

IV. EXPERIMENTAL ANALYSIS OF THE PROPOSED MODEL 

A. System Data 
Engines Diesel 1 and Diesel 2 constituted the main 

energy generator sources (E1 and E2) having the 
following rating power PE1(k)=PE2(k)=20 MW, rated 
frequency is 50 Hz. The characteristics of PV arrays 
(PS(k)) and wind farm (PW(k)) and a group of loads are 
given and used under profile form. PV arrays, wind farm 
in Microgrid 1 and Microgrid 2, and for the loads are 
used as profile form. Optimal control using Fmincon was 
implemented in Matlab 2010a with a processor Genuine 
Intel (R) CPUT2250 Duo 1.73GHz and a RAM of 1 GB. 
For the two engine generators the following coefficients 
(data) used are [2], [3], [16], [19]-[21]:  

a = 0.00435,   b = −0.002675,   c = 1.41195      (15) 

B. Result and Discussion 
The results from this model is summarizes in the 

following figures. Fig. 2 and Fig. 3 show the maximum 
active power output and the available active power from 
PV and wind generation system, respectively. Fig. 4 and 
Fig. 5 show the active power variation from the battery 
energy storage system (BESS) and its state of charge 
(SOC), respectively. Active power deviations in the tie-
line are show in Fig. 6 and Fig. 7. The frequency 
deviations of the interconnected system monitored on the 
tie-line are show in Fig. 8 and Fig. 9.  

The exam of Fig. 2 and Fig. 3 shows a high 
production of active power from the renewable energy at 
the following time: from 1h00 to 3h00; 5h00 to 6h00 and 



from 8h0 to 00h00. A good average of active power 
generation can be seen from 8h00 to 00h00 which is ±36 
MW Three times have characterized the loads supply 
according to their importance, Table I summarizes the 
three times or scenarios. The supplementary active power 
from the BESS, stored when the system was operating in 
normal or balance condition, is used to compensate power 
deficit of interconnected system while the it going under 
disturbance condition (due to the load variations from one 
area).  
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Fig. 2. Active power from photovoltaic generation systems 
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Fig. 3. Active power from wind generation systems 

TABLE I. LOADS MANAGEMENT OF THE INTERCONNECTED SYSTEM (IN 
%) 

PLi(k)/h 1h to 7h 8h to 13h 14h to 00h 
PL3(k) 100 100 100 
PL4(k) 100 100 80 
PL2(k) 100 100 80 
PL1(k) 80 80 100 
PL5(k) 80 80 100 
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Fig. 4. Active power from battery 

Charging (when the BESS taking power from the 
MG) and discharging (when the BESS supply the MG) as 
showed in Fig. 4, gives it dynamic (Fig. 5). This figure 
show how the BESS was working during the simulation 
process. Two limit values or constraints were set up for 
the BESS dynamic: SOC min and SOC max. The 
variations were comprised between (0.3 to 0.9%).  
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Fig. 5. SOC of the battery during 24Hours 

Time (s)

0 2 4 6 8 10 12 14 16 18 20 22 24

Fr
eq

ue
nc

y 
D

ev
ia

tio
n 

(H
z)

-1.5

-1

-0.5

0

0.5

1

1.5

Tie-Line Frequency deviation

 
Fig. 6. Frequency deviation in the tie-line 
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Fig. 7. Frequency deviation on the tie-line 

When the MG is working under disturbances, active 
power and frequency deviation occurs. This mean when 
these deviations are not controlled, power quality and 
system reliability become low and the MG may go under 
load schedding or unexpected blackout may occurs. To 
avoid these scenarios (load schedding and blackout)  the 
active control and load management of the proposed 
system working in islanded modes should be achieve 
with a good active power demand (load) schedule. Based 
on the proposed model after simulation results show in 



Fig. 6 and Fig. 7 the frequency deviation in the tie-line, 
this mean the active power from MG 1 going to MG 2 
and from MG 2 to MG 1 without any control strategy.  

This situation is dangerous beacause the load 
management is not applied to regulate the load frequency 
and to keep the stability of the interconnected system. 
Based on the proposed control and management approach 
strategy, Fig. 7 show the output the results obtained after 
simulation. The load frequency variations in the tie-line 
were controlled during 24 seconds, simutation time. The 
performance of the proposed controller can be seen, this 
mean the way the frequency variations goes to decreasing 
until reaching zero from 7th second. 
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Fig. 8 Active power deviation in the tie-line 
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Fig. 9. Active power deviation on the tie-line 

The active power transfer between the two 
interconnected microgrids without any control system 
during 24 seconds simulation time, is given in Fig. 8, 
while the Fig. 9 gives the simulation output of the 
proposed controller. The exam of the simulation results 
given in Figs. 8 and 9 show the differences between the 
controllled and no-controlled interconnected system. 
When controlling the active power deviations in MG 1 
and MG 2 through the flow of power in the tie-line, the 
same scenarios can be seen when comparing with the 
frequency control given in Figs. 6 and 7. For instance, the 
ripples giving the variations of the active power in Fig. 9 
are degreasing starting from the 7th and 8th second, from 
9th second it ca be seen a constant attenuation of the wave 
of frequency variation until the end of the simulation 
period. The overshoot and the settling times when 
considering Fig. 9 are considerably reduced.  

V. SUMMARY 

The study proposed dealt with the management of 
active power considering an islanded interconnected of 
distributed generation. The scarcity and the increasing 
demand of energy nowadays remains the main reason of 
exploitation of renewable energy resources because of its 
availability and easy transformation. When considering 
the island mode or without connection to the main grid, 
of the distributed generation its operation and control 
became more difficult or uncertain based on their 
dependencies on the weather. Their control in this 
situation should be handling with care to avoid unplanned 
load shedding or a blackout. From the proposed research 
simulation shown that the operating cost of the two diesel 
generators has decreased significantly due to the 
contribution of the active power from the renewable 
energy sources, this can see from the proposed simulation 
results. The proposed model reduced consirably the 
overshoot and the settling times, this can be seen from the 
simulation results. 

From the obtained simulations results, it can be 
concluded that the proposed method has show the 
effectiveness while controlling the active power in 
distributed generations working in islanded mode. 
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Dear Prof. Sun, 
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I still have a queation on Eq. (14). 
From the form of (14), it is a set of equations which 
consists of two quations: the first is  
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and the second is  
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Obviously, (14b) is an inequation, but the (14a) is neither 
an equation nor an inequation! 
Please give a reasonable explanation. 
 
Do you think Eq. (14) might be the form as below? 
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However, Dr. Diambomba H. Tungadio insists the right 
form is  
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Please give your full explanation here. 
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