13 research outputs found

    A New Voltage Control Method for Single-Phase PWM Inverters

    Full text link
    A new voltage control method for single-phase full-bridge PWM inverters that having an output LC filter is proposed in this paper. The proposed voltage controller has a capability to realize a zero steadystate output voltage error with fast response. The zero steady-state output voltage error is achieved by using a controller that is derived by using the virtual LC resonant circuit. Fast response is obtained by using a virtual resistance that is connected in parallel with the filter capacitor. The validity of the proposed method is verified by experimental results

    A New Voltage Control Method for Single-Phase PWM Inverters

    Get PDF
    A  new  voltage  control  method  for  single-phase  full-bridge PWM inverters  that having an output LC filter  is proposed in this paper. The proposed voltage  controller has a capability to realize a zero steadystate output voltage error with fast response. The zero steady-state output voltage error is achieved by using a controller that is derived by using the virtual LC resonant circuit. Fast response is obtained by using a virtual resistance  that  is  connected  in  parallel  with  the  filter  capacitor.  The validity of the proposed method is verified by experimental results

    A New Voltage Control Method for Single-Phase PWM Inverters

    Full text link

    Review on decomposed fuzzy PID structure for power inverters regulation

    Get PDF
    The aim of this paper is to critically review prominent decomposed Fuzzy PID control structures. Structural construction and output control laws of these controllers will be discussed. Their merits and drawbacks are highlighted. Based on the critical discussions, a new structure of Fuzzy PID controller is proposed. It is based on cascaded structure, which yields simpler design flow and parameters tuning. Other advantages of the proposed Fuzzy PID structure are the reduction of tuning parameters and rules of the Fuzzy controller. In addition, the proposed structure allows the usage of signed distance method. The application of the method reduces the computation burden significantly as the power inverter regulation needs very fast and precise computation

    Control of Distributed Uninterruptible Power Supply Systems

    Get PDF
    In the last years, the use of distributed uninterruptible power supply (UPS) systems has been growing into the market, becoming an alternative to large conventional UPS systems. In addition, with the increasing interest in renewable energy integration and distributed generation, distributed UPS systems can be a suitable solution for storage energy in micro grids. This paper depicts the most important control schemes for the parallel operation of UPS systems. Active load-sharing techniques and droop control approaches are described. The recent improvements and variants of these control techniques are presented

    Uncertainty and disturbance estimator design to shape and reduce the output impedance of inverter

    Get PDF
    Power inverters are becoming more and more common in the modern grid. Due to their switching nature, a passive filter is installed at the inverter output. This generates high output impedance which limits the inverter ability to maintain high power quality at the inverter output. This thesis deals with an impedance shaping approach to the design of power inverter control. The Uncertainty and Disturbance Estimator (UDE) is proposed as a candidate for direct formation of the inverter output impedance. The selection of UDE is motivated by the desire for the disturbance rejection control and the tracking controller to be decoupled. It is demonstrated in the thesis that due to this fact the UDE filter design directly influences the inverter output impedance and the reference model determines the inverter internal electromotive force. It was recently shown in the literature and further emphasized in this thesis that the classic low pass frequency design of the UDE cannot estimate periodical disturbances under the constraint of finite control bandwidth. Since for a power inverter both the reference signal and the disturbance signal are of periodical nature, the classic UDE lowpass filter design does not give optimal results. A new design approach is therefore needed. The thesis develops four novel designs of the UDE filter to significantly reduce the inverter output impedance and maintain low Total Harmonic Distortion (THD) of the inverter output voltage. The first design is the based on a frequency selective filter. This filter design shows superiority in both observing and rejecting periodical disturbances over the classic low pass filter design. The second design uses a multi-band stop design to reject periodical disturbances with some uncertainty in the frequency. The third solution uses a classic low pass filter design combined with a time delay to match zero phase estimation of the disturbance at the relevant spectrum. Furthermore, this solution is combined with a resonant tracking controller to reduce the tracking steady-state error in the output voltage. The fourth solution utilizes a low-pass filter combined with multiple delays to increase the frequency robustness. This method shows superior performance over the multi-band-stop and the time delayed filter in steady-state. All the proposed methods are validated through extensive simulation and experimental results

    A simple control method for high-performance UPS inverters through output-impedance reduction

    No full text
    10.1109/TIE.2007.909053IEEE Transactions on Industrial Electronics552888-898ITIE

    Bidirectional Three-Phase AC-DC Power Conversion Using DC-DC Converters and a Three-Phase Unfolder

    Get PDF
    Strategic use of energy storage systems alleviates imbalance between energy generation and consumption. Battery storage of various chemistries is favorable for its relatively high energy density and high charge and discharge rates. Battery voltage is in dc, while the distribution of electricity is still predominantly in ac. To effectively harness the battery energy, a dc-ac inverter is required. A conventional inverter contains two high-frequency switching stages. The battery-interfacing stage provides galvanic isolation and switches at high frequency to minimize the isolation transformer size. The grid-interfacing stage also operates at high frequency to obtain sinusoidal grid currents and the desired power. Negative consequences of high-frequency switching include increased switching loss and the generation of large voltage harmonics that require filtering. This dissertation proposes an alternative two-stage inverter topology aimed at reducing converter size and weight. This is achieved by reducing the number of high-frequency switching stages and associated filter requirements. The grid-interfacing stage is operated at the line frequency, while only the battery-interfacing stage operates at high frequency to shape the line currents and control power flow. The line-frequency operation generates negligible switching loss and minimal current harmonics in the grid-interfacing stage. As a result, the required filter is reduced in size. Hardware designs are performed and compared between the conventional and proposed converters to quantify expected size reduction. Control methods are developed and verified in simulation and experiment to obtain high-quality line currents at all power factors

    Decentralized control techniques applied to electric power distributed generation in microgrids

    Get PDF
    Distributed generation of electric energy has become part of the current electric power system. In this context a new scenario is arising in which small energy sources make up a new supply system: The microgrid.The most recent research projects show the technical difficulty of controlling the operation of microgrids, because they are complex systems in which several subsystems interact: energy sources, power electronic converters, energy storage systems, local, linear and non-linear loads and of course, the main grid. In next years, the electric grid will evolve from the current very centralized model toward a more distributed one. At the present time the generation, consumption and storage points are very far away one from each other. Under these circumstances, relatively frequent failures of the electric supply and important losses take place in the transport and distribution of energy, so that it can be stated that the efficiency of the supply system is low.In another context, electric companies are aiming at an electric grid, formed in a certain proportion by distributed generators, where the consumption points are near the generation points, avoiding high losses in the transmission lines and reducing the rate of shortcomings. Summing up, it is pursued the generation of small quantities of electric power by the users (this concept is called microgeneration in the origin), considering them not only as electric power consumers but also as responsible for the generation, becoming this way an integral part of the grid.In this context it is necessary to develop a new concept of flexible grid, i.e., with reconfiguration capability for operation with or without connection to the mains. The future microgrids should incorporate supervision and control systems that allow the efficient management of various kinds of energy generators, such as photovoltaic panels, energy storage systems, and local loads. Hence, we are dealing with intelligent flexible Microgrids capable of import and export power from/to the grid reconfiguring its operation modes and making decisions in real time.The researching lineas that have been introduced in this thesis are focused on the innovation in this kind of systems, the integration of several renewable energy sources, the quality of the power supply, security issues, and the system behavior during faults.In order to carry out some solutions related within these characteristics, the main goal of this thesis is the application on new control stretegies and a power management analysis of a microgrid. Thus, thanks to the emerging of renewable energy, is possible to give an alternative to the decoupling of generation units connected to the utility grid.Likewise, a work methodology has been analyzed and developed based on the modeling, control parameters design, and power management control starting from a single voltage source inverter to a number of interconnected DG units forming flexible Microgrids. In addition, all the mencioned topics have been studied giving new system performances, viability and safe functioning, thanks to the small-signal analysis and introducing control loop design algorithms, improving the import/export of electric power and operating both grid connected mode and an island.This thesis has presented an analysis, simulation and experimental results focusing on modeling, control, and analysis of DG units, giving contributions according to the following steps:- Control-oriented modeling based on active and reactive power analysis- Control synthesis based on enhanced droop control technique.- Small-signal stability study to give guidelines for properly adjusting the control system parameters according to the desired dynamic responseThis methodology has been extended to microgrids by using hierarchical control applied to droop-controlled line interactive UPSs showing that:- Droop-controlled inverters can be used in islanded microgrids.- By using multilevel control systems the microgrid can operate in both grid-connected and islanded mode, in a concept called flexible microgrid.The proposed hierarchical control required for flexible Microgrids consisted of different control levels, as following:- Primary control is based on the droop method allowing the connection of different AC sources without any intercommunication.- Secondary control avoids the voltage and frequency deviation produced by the primary control. Only low bandwidth communications are needed to perform this control level. A synchronization loop can be added in this level to transfer from islanding to grid connected modes.- Tertiary control allows the import/export of active and reactive power to the grid
    corecore