42,574 research outputs found

    Fusion process of Lennard-Jones clusters: global minima and magic numbers formation

    Full text link
    We present a new theoretical framework for modelling the fusion process of Lennard-Jones (LJ) clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing paths up to the cluster sizes of up to 150 atoms. We demonstrate that in this way all known global minima structures of the LJ-clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence on cluster size of the second derivative of the binding energy per atom calculated for the chain of LJ-clusters based on the icosahedral symmetry with the peaks in the abundance mass spectra experimentally measured for the clusters of noble gas atoms. Our method serves an efficient alternative to the global optimization techniques based on the Monte-Carlo simulations and it can be applied for the solution of a broad variety of problems in which atomic cluster structure is important.Comment: 47 pages, MikTeX, 17 figure

    Solving Shift Register Problems over Skew Polynomial Rings using Module Minimisation

    Get PDF
    For many algebraic codes the main part of decoding can be reduced to a shift register synthesis problem. In this paper we present an approach for solving generalised shift register problems over skew polynomial rings which occur in error and erasure decoding of ℓ\ell-Interleaved Gabidulin codes. The algorithm is based on module minimisation and has time complexity O(â„“ÎŒ2)O(\ell \mu^2) where ÎŒ\mu measures the size of the input problem.Comment: 10 pages, submitted to WCC 201

    A PCA-based automated finder for galaxy-scale strong lenses

    Get PDF
    We present an algorithm using Principal Component Analysis (PCA) to subtract galaxies from imaging data, and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimized to find full or partial Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting image is transformed in polar coordinates, centered on the lens galaxy center. In these coordinates, a ring is turned into a line, allowing us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images according to their orientation, multiplicity and elongation. We apply the two methods to a sample of simulated Einstein rings, as they would be observed with the ESA Euclid satellite in the VIS band. The polar coordinates transform allows us to reach a completeness of 90% and a purity of 86%, as soon as the signal-to-noise integrated in the ring is higher than 30, and almost independent of the size of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes

    Graph colouring for office blocks

    Get PDF
    The increasing prevalence of WLAN (wireless networks) introduces the potential of electronic information leakage from one company's territory in an office block, to others due to the long-ranged nature of such communications. BAE Systems have developed a system ('stealthy wallpaper') which can block a single frequency range from being transmitted through a treated wall or ceiling to the neighbour. The problem posed to the Study Group was to investigate the maximum number of frequencies ensure the building is secure. The Study group found that this upper bound does not exist, so they were asked to find what are "good design-rules" so that an upper limit exists

    Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology

    Get PDF
    Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules

    Equi-energy sampler with applications in statistical inference and statistical mechanics

    Get PDF
    We introduce a new sampling algorithm, the equi-energy sampler, for efficient statistical sampling and estimation. Complementary to the widely used temperature-domain methods, the equi-energy sampler, utilizing the temperature--energy duality, targets the energy directly. The focus on the energy function not only facilitates efficient sampling, but also provides a powerful means for statistical estimation, for example, the calculation of the density of states and microcanonical averages in statistical mechanics. The equi-energy sampler is applied to a variety of problems, including exponential regression in statistics, motif sampling in computational biology and protein folding in biophysics.Comment: This paper discussed in: [math.ST/0611217], [math.ST/0611219], [math.ST/0611221], [math.ST/0611222]. Rejoinder in [math.ST/0611224]. Published at http://dx.doi.org/10.1214/009053606000000515 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)

    Full text link
    Context. Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims. We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (Asexual Genetic Algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two examples: the orbits of exoplanets by taking a set of radial velocity data, and the spectral energy distribution (SED) observed towards a YSO (Young Stellar Object). Methods. The algorithm AGA may also be called genetic, although it differs from standard genetic algorithms in two main aspects: a) the initial population is not encoded, and b) the new generations are constructed by asexual reproduction. Results. Applying our algorithm in optimizing some complicated functions, we find the global maxima within a few iterations. For model fitting to the orbits of exoplanets and the SED of a YSO, we estimate the parameters and their associated errors.Comment: 10 pages, 8 figures, Astronomy and Astrophysics (in press
    • 

    corecore