26,055 research outputs found

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    A General Bayesian Framework for Ellipse-based and Hyperbola-based Damage Localisation in Anisotropic Composite Plates

    Get PDF
    This paper focuses on Bayesian Lamb wave-based damage localization in structural health monitoring of anisotropic composite materials. A Bayesian framework is applied to take account for uncertainties from experimental time-of-flight measurements and angular dependent group velocity within the composite material. An original parametric analytical expression of the direction dependence of group velocity is proposed and validated numerically and experimentally for anisotropic composite and sandwich plates. This expression is incorporated into time-of-arrival (ToA: ellipse-based) and time-difference-of-arrival (TDoA: hyperbola-based) Bayesian damage localization algorithms. This way, the damage location as well as the group velocity profile are estimated jointly and a priori information taken into consideration. The proposed algorithm is general as it allows to take into account for uncertainties within a Bayesian framework, and to model effects of anisotropy on group velocity. Numerical and experimental results obtained with different damage sizes or locations and for different degrees of anisotropy validate the ability of the proposed algorithm to estimate both the damage location and the group velocity profile as well as the associated confidence intervals. Results highlight the need to consider for anisotropy in order to increase localization accuracy, and to use Bayesian analysis to quantify uncertainties in damage localization.Projet CORALI

    Perturbation Analysis for Robust Damage Detection with Application to Multifunctional Aircraft Structures

    Get PDF
    The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.FUI MSIE (Pole Astech

    Principal component analysis and perturbation theory–based robust damage detection of multifunctional aircraft structure

    Get PDF
    A fundamental problem in structural damage detection is to define an efficient feature to calculate a damage index. Furthermore, due to perturbations from various sources, we also need to define a rigorous threshold whose overtaking indicates the presence of damages. In this article, we develop a robust damage detection methodology based on principal component analysis. We first present an original damage index based on projection of the separation matrix, and then, we drive a novel adaptive threshold that does not rely on statistical assumptions. This threshold is analytic, and it is based on matrix perturbation theory. The efficiency of the method is illustrated using simulations of a composite smart structure and experimental results performed on a conformal load-bearing antenna structure laboratory test

    Characterization of the modal parameters of composite laminates using innovative ultrathin polymer waveguide sensor foils

    Get PDF
    The use of composite materials, like glass- and carbon- fiber reinforced polymers, is expected to increase exponentially in the coming years. Consequently, in order to monitor the structural health of these materials, the development of new sensing devices is rapidly accelerating. For this purpose, our research groups have recently developed new ultra-thin polymer waveguide sensors which can be exploited to measure both uniaxial and multiaxial strains occurring in composite components. These sensing foils are manufactured by creating Bragg gratings in waveguides realized in flat polymeric substrates, which makes their placement and alignment easier compared to traditional fiber optic sensors. Moreover, using a non-straight waveguide it is possible to spatially multiplex the sensing gratings in such a way that an optical strain rosette can be created. This paper investigates the suitability of the proposed polymer waveguide sensors for the estimation of the modal parameters of composite components

    On-orbit damage detection and health monitoring of large space trusses: Status and critical issues

    Get PDF
    The long lifetimes, delicate nature and stringent pointing requirements of large space structures such as Space Station Freedom and geostationary Earth sciences platforms might require that these spacecraft be monitored periodically for possible damage to the load carrying structures. A review of the literature in damage detection and health monitoring of such structures is presented, along with a candidate structure to be used as a testbed for future work in this field. A unified notation and terminology is also proposed to facilitate comparisons between candidate methods

    Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks

    Get PDF
    This paper presents a structural health monitoring (SHM) method for in situ damage detection and localization in carbon fiber reinforced plates (CFRPs). The detection is achieved using the electromechanical impedance (EMI) technique employing piezoelectric transducers as high-frequency modal sensors. Numerical simulations based on the finite element method are carried out so as to simulate more than a hundred damage scenarios. Damage metrics are then used to quantify and detect changes between the electromechanical impedance spectrum of a pristine and damaged structure. The localization process relies on artificial neural networks (ANNs) whose inputs are derived from a principal component analysis of the damage metrics. It is shown that the resulting ANN can be used as a tool to predict the in-plane position of a single damage in a laminated composite plate
    corecore