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ARTICLE INFO ABSTRACT

This paper presents a structural health monitoring (SHM) method for in situ damage detection and local-
ization in carbon fiber reinforced plates (CFRPs). The detection is achieved using the electromechanical
impedance (EMI) technique employing piezoelectric transducers as high-frequency modal sensors.
Numerical simulations based on the finite element method are carried out so as to simulate more than
a hundred damage scenarios. Damage metrics are then used to quantify and detect changes between
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the electromechanical impedance spectrum of a pristine and damaged structure. The localization process
relies on artificial neural networks (ANNs) whose inputs are derived from a principal component analysis
of the damage metrics. It is shown that the resulting ANN can be used as a tool to predict the in-plane
position of a single damage in a laminated composite plate.

1. Introduction

Structural health monitoring (SHM) provide information regard-
ing the condition of a structure in terms of reliability and safety be-
fore the damage threatens the integrity of that structure [1,2]. In the
paradigm of SHM, there exist five major steps, (a) detection of dam-
age in a structure (b) localization of damage (c) damage identifica-
tion (d) quantification of damage severity and (e) prognostic of
remaining service life of the structure [3]. Aerospace structures
are very sensitive to damage since it can lead to major failure.
Therefore daily costly inspections are a part of regular maintenance
procedures. Nowadays commercial and military aircrafts are
increasingly using composite materials to take advantage of their
excellent specific strength and stiffness properties but impacts on
composites due to bird-strike, hail-storm cause barely visible im-
pact damage (BVID) that underscores the need for robust SHM
methods. Hence, damage identification in composites materials is
a widely researched area [4-6] that has to deal with problems com-
ing from the anisotropic nature of composites and the fact that
much of the damage occurs beneath the top surface of the laminate.

Conventional non-destructive testing (NDT) techniques such as
radiographic detection (X-ray) and ultrasound testing (C-Scan) are
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applicable on composites, but are impractical or very expensive for
large components and integrated vehicles. The major advantage of
SHM based techniques are their online implementation and their
mixed global/local approach (network of sensors).

Vibration based structural health monitoring (VBSHM) tech-
nique is also widely used by researchers as an NDT technique. This
is a global method to detect, characterize and, to a certain extent,
localize damage, based on changes in modal parameters of a struc-
ture [7,8]. Variations in the stiffness, mass and damping of a struc-
tural system change its frequency-response function and
consequently the modal parameters. Recently some authors [9-
11] have evaluated experimentally the modal parameters changes
due to impacts for several energies of impact. They also demon-
strate the sensibility of damping changes to detect delamination
in composites structures [9-11]. Frieden et al. proposed a detailed
numerical models that take into account damage patterns obtained
from X-ray computed topography images. They demonstrate that
most of the frequency changes are attributed to a delamination
type of damage. An important conclusion is that the total delami-
nated surface has an affine relation to the absorbed impact energy.
A homogenized damage model, including two damage factors al-
lows predicting the change of natural frequencies for a known
damage size [12].

Generally vibration-based techniques can be decomposed into
two classes [13-16]: data driven approach, and model based ap-
proach. Data-driven approaches treat damage identification as a
pattern recognition problem. Measured data from the system of



interest are assigned a damage class by a pattern recognition algo-
rithm (unsupervised or supervised learning). In supervised learn-
ing, examples of all damage classes are required. Model-driven
approaches treat damage identification as an inverse problem. First
a high-fidelity model of the undamaged structure or system is con-
structed using physical laws based on first principles. Changes in
the measured data are then related to modifications in the physical
parameters via system identification algorithms based on linear
algebra or optimization theory. Recent advances in SHM tend to
couple data-driven techniques with model driven data [17-22].
Especially in composites damage detection area, the current trend
is to track changes in damping [10,17] for delamination
localization.

For real size industrial structure, the use of smart materials is
increasingly gaining popularity among engineering communities
[23-28]. In particular, the electromechanical impedance (EMI)
based SHM technique possesses distinct advantages, such as the
ability to detect incipient damage by using non-intrusive piezo-
electric transducers and potentially low-cost applications. The
advantage of using piezoelectric sensors for damage detection re-
sides in their high-frequency capability, which exceeds by orders
of magnitudes the frequency capability of conventional modal
analysis sensors. Thus, these piezoelectric sensors are able to de-
tect changes in the high-frequency structural dynamics at local
scale which are directly associated with the presence of incipient
damage. Regarding damage detection in composite materials, Gre-
sil et al. [29] applied the EMI method to damage detection in glass
fiber reinforced polymer and compared FEM modeling with exper-
imental measurements. In addition, Umesh et al. [30] have shown
promising results related to the interaction between the control
and diagnostics functions of smart structures equipped with piezo-
electricsensors/actuators. Damage indicators derived from the
measured electromechanical impedance (EMI) are commonly used
to either detect the presence of damage in any structure or provide
information about damage localization in a one-dimensional struc-
ture [31]. However, as soon as a two-dimensional structure is con-
sidered damage indicators based on EMI have difficulties to furnish
enough information regarding damage localization. Therefore, in
the present paper, artificial neural networks are implemented in
order to predict the in-plane damage position in a laminated com-
posite plate. These neural networks are trained using EMI signa-
tures relatives to different localized single damage.

The use of artificial neural networks for damage detection has
already been studied by several researchers [32-34]. For example,
Giurgiutiu and Kropas-Hughes [32]extracted from EMI resonance
frequencies and amplitudes contained in 3 high-frequency spectra
(10-40 kHz, 10-150 kHz, and 300-450 kHz). The feature vectors
were used as input to a probabilistic neural network. The training
was attained using one randomly selected member from each of
the 5 damage classes, while the validation was performed on all
the remaining members. When the feature vector had a small size,
some misclassifications were observed. Upon increasing the size of
the feature vector, excellent classification was obtained in all cases.
Min et al. [33] proposed the selection of optimal frequency ranges
for improving the sensitivity of damage detection, since an impro-
per frequency range can lead to erroneous damage detection re-
sults and provide false positive damage alarms. To tackle this
issue, they proposed an innovative technique for autonomous
selection of damage-sensitive frequency ranges using artificial
neural networks (ANNs). Pawar et al. [34] investigated the effect
of damage on beams using Fourier analysis of mode shapes in
the spatial domains and utilized ANNs trained with Fourier coeffi-
cients to detect the damage location and size. All previous works
have shown that the implementation of artificial neural networks
requires a considerably large set of data to learn a process and also
a good choice of inputs to predict the chosen output (in our case

the damage localization) with good accuracy. In case of large struc-
tures, the amount of required data is quite considerable.

Taking into account these limitations, this article focuses on
developing a simple damage model in order to limit the computa-
tion time (dependency between high frequency bandwidth and
mesh size of FEM model). The domain of damage parameters is ex-
plored with few points (100 damage scenario) using Latin Hyper-
cube Sampling for increasing the Neural Networks generalization
ability. The originality is to construct local expert (each ANN is con-
structed for one impact energy) depending on type/class of damage
and to study for each class the input parameters dependencies
(using classical Principal Components Analysis, PCA). The Probabi-
listic Neural Networks (PNNs) approach of this article is well
adapted to multiscale localization.

Depending on the objectives, focus can be made on global struc-
ture (e.g. aircraft door), a subpart (composite plate) or a structural
detail like a stiffener.

The proposed methodologyis synthetized in Fig. 1.

Step 1: In order to generate a significant dataset relative to dif-
ferent damage locations, a coupled-field finite-element (FE)
model of the structure with the piezoelectric transducers is first
developed in commercial software Abaqus [35]. The FE model is
created first for a pristine structure and then for a structure
with damage. It permits to compute the nodal electrical charges
over each transducer electrode, which are then imported into
the commercial software Matlab [36] to compute the electro-
mechanical impedance of the structure.

Step 2: The resulting impedance spectrum computed with Mat-
lab is then processed to derive damage indicators. Each damage
indicator is computed for each piezoelectric transducer.

Step 3: These damage indicators are used as inputs to train, val-
idate and test the PNN. PNN is used as a classification tool from
an a priori zone decomposition of the plate. Several studies with
different number and types of inputs have been carried out in
order to select the relevant inputs. Final result is a damage loca-
tion map, which indicates the most probable zone of damage
presence.

2. Description on the EMI experimental SET-UP

The structure under study is a composite plate
(200 x 290 mm?). The composite layup is composed of 12 plies

Measured piezolectric parameters

Databasegenerati Scientific
onusing FEA computation Experimental
solver software results
EMI computation
Nodal piezoelectric Damage indicators
charge A

Probabilistic
Neural Network

Damage location: map of probabilities

Fig. 1. Flow chart of the proposed method. Finite element models of damage
composite plates are used to provide EMI measurements. These EMI signatures are
then used to build a database comprised of various damage indicators used as
inputs by the probabilistic neural network (PNN). The PNN is then used to predict
the damage location in the specimen based on new indicators computed from
experimental results.



of carbon/epoxy prepreg T700/M21 with a stratification [45/—45/
0/90/0/90]S for a total thickness of 3 mm (Table 1).

Three PI  ceramics® type PIC151 of dimensions
10 % 10 % 0.5 mm? are glued on the plate with an electrical conduc-
tive structural glue type EPO-TEK®E4110. The plates are tested
clamped on all sides. The location of the piezoelectric transducers
is given in Fig. 2.

Five composite plates with piezoelectric ceramics have been
manufactured in order to investigate different locations of impact.

Damages are generated by a drop-weight impact tower that
permits to measure the velocity and the impact force. Five loca-
tions of damage (one per plate) will be investigated. Each plate is
impacted between the three transducers with energy of 20]. It
should be noticed that the impact tower forces the impact position
to be in the vicinity of the center of the plate (Fig. 3).

The impactor tip has a hemispherical head with a diameter of
12.7 mm. The drop-weight impact tower used in these experi-
ments allows an impact area of 80 x 40 mm? so that all the impact
points have the same boundary conditions and all the four ends are
clamped. A force sensor (type 9051A) provided by Kistler is placed
between the impactor tip and the free falling mass of 2 kg. The im-
pact velocity is measured with the help of an optical sensor. The
combined weight of the impact head, freefalling mass, force sensor
and the accelerometer is 2.03 kg. Further details on the impact test
methodology of this drop tower can be found in the reference [6]
(see Figs 4 and 5).

In parallel, Ultrasonic control C-scan is carried out for every im-
pact position in order to validate the proposed method. The US-
controller is a KRAUTKMARER model USD30 with a frequency scan
of 3.5 MHz and a scan resolution of 0.3 mm.

Experimental measurements of the electromechanical imped-
ance are performed before and after the damage for each plate
using impedance meter PSM1700.

3. Multiphysics FE model and EMI computation
3.1. Principle of EMI computation from FE model

The finite element model is computed with software Abaqus/
Standard and takes into account the composite plate, the piezo-
electric transducers, the glue between each sensor and damage.

The composite plate model is comprised of 9300 quadrilateral
shell elements with reduced integration and linear interpolation
function (S4R element). Low energy impact damage is considered
in this article and introduced into the plate model by locally reduc-
ing by 80% or 90% both transverse elastic modulus E, and E3 as well
as the shear modulus Gz, Gi3, Ga3.

In Abaqus [35], the piezoelectric behavior is described by
equations:

o = Dfe — e®E = Df (¢ — d"E) (1)

Q =e®:—DE 2)

with ¢ the stress vector (GPa), g the electrical displacement vector
(C/m?), ¢ the strain vector, E the electrical field vector (V/m), Dt the
elasticity matrix (GPa), D® the electric permittivity matrix (F/m)
and e® and d® the piezoelectric matrices respectively defined in

The properties of the piezoelectric transducer material (PIC151)
given by the supplier are listed in Table 2. The piezoelectric trans-
ducers are meshed using 384 C3D20RE quadratic piezoelectric so-
lid elements.

The glue has a Storage Modulus of 3.75 GPa and is 40 pum thick.
The Poisson ratio is chosen equal to 0.35 and the structural damp-
ing to 10%. The finite-element model of the glue is comprised of
192 3D-quadratic solid elements.

The method for the electromechanical impedance computation
is based on the performing a “direct” steady-state linear dynamic
analysis available in software Abaqus/Standard.

In the present case the harmonic analysis is run within the fre-
quency range 10-20 kHz (bandwidth where resonant frequencies
can be easily distinguished and measurable), as many times as
there are piezoelectric transducers. For each simulation, one trans-
ducer is fed with constant voltage V of 1V in magnitude and the
others are maintained to ground. After each simulation, the nodal
electric charges at the top electrode of activated piezoelectric patch
k are extracted, exported to Matlab and then summed to compute
total electrical charge Q. Finally intensity in transducer I, and
structure electromechanical impedance Z, viewed from each acti-
vated transducer are derived from the following equations:

I = i®Qy 3)

and

z-{ @)
I

The real part and the imaginary part of the electromechanical
impedance can be easily extracted from Eq. (4).

3.2. Model updating

In SHM one of the major issues is the quality of the baseline
state in order to compare the dynamic behavior at successive steps
(monitoring). In our case, as the baseline is extracted from a FE
model, it can be useful to update the model thanks experimental
dynamic. Model updating can be defined as adjustment (fit) of an
existing FE model which represents the structure under study,
using experimental data, so that it more accurately reflects the dy-
namic behavior of that structure. Model updating can be divided
into three steps: (a) comparison and correlation of two sets of data,
(b) locating the errors and (c) correcting the errors. Correlation can
be defined as the initial step to assess the quality of the FE model. If
the difference between the FE model and experimental data is
within some preset tolerances, the model can be judged to be accu-
rate and no updating is necessary. A good overview of updating of
FE models in structural dynamics has been provided by Friswell
and Mottershead [37]. The combination of physical and virtual
data plays therefore a relevant role for improved damage diagnos-
tic, mainly if a physical model based approach is performed.

As mentioned in [36] piezoelectric ceramics properties exhibit
statistical fluctuations within a given batch and a variance of the
order of 5-20% in properties is not uncommon. Therefore model
updating is really important to predict the mechanical impedance
of the structure with accuracy.

For this purpose, as suggested in [38,39], on one hand the

stress (C/m?) and strain (m/V) formulation. impedance spectrum of every piezoelectric transducer in
Table 1
T700/M21 Properties.
Young Modulus (MPa) Poisson Ratio Shear Modulus Density
E1 E2 E3 M2 H13 H23 G2 Gi3 Ga3 14
130324 7680 7680 0.33 0.33 0.4 4750 4750 2742 1550
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Fig. 2. (a) Schematic representation of the composite structure under study with the unsymmetrical sensors placement (3 PWASs in green squares); and (b) Actual composite

plate with clamped edges.
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Fig. 3. Distribution of 5 experimental impacts over 5 distinct (but identical)
composite plates. 6 clusters (6 squared zones of 100 « 100 mm?) for the PNN
recognition of damage are also highlighted.
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“free-free” condition is recorded and on the other hand, the com-
plex electromechanical admittance for an unbounded piezoelectric
wafer active sensor (PWAS) [38,40] is computed:

= P . 2d%,YE(1 + nj) (tanCkl
Yiree = 4CUJH &33(1 - 0j) + 31(1 Ev) Ll ( kT 1)

()

where [ and h are the length and thickness of the patch, Y its Young
Modulus, v the Poisson coefficient, ¢!, the dielectric permittivity, §
the dielectric loss factor, 1 the mechanical loss factor, d3; a

piezoelectric strain coefficient, k the 2D wave number and C a cor-
rection factor.

For low frequencies (typically under 10 kHz), @K tends to 1 and
the electromechanical admittance becomes:

2 2

VvV T : T
Yfree—lawfrequencies =40+ 833 0 + 4(1)] T 633 .

h A (6)

Then, using Eq. (6) and the experimental impedance spectrum, both
parameters &I, and ¢ can thus be identified at low frequencies since
the spectrum of the imaginary part is proportional to &, and the
one of the real part to ¢I,4. In Abaqus, the piezoelectric parameter
used in the dielectric matrix is &, and not &l,. From Eq. (7) derived
from matrix relation 8 allows one to compute &3;.

(6] — [¢°] = [d][e]" (7)
which leads to Eq. (8):
&35 = 33 — (2d31€31 + dxzex) (8)

Concerning parameters ds1, # and C, they are identified near the
natural frequency of each piezoelectric transducer - which is in
the present case close to 170 kHz - using a non-linear curve fitting
technique based on the Levenberg—-Marquardt algorithm.

This updating method has been performed for every transducer
of the experimental set-up. It is illustrated in Fig. 5 for the trans-
ducer no.1.

The results of the identification stage are listed for the three
transducers in Table 3.

Finally Fig. 6 shows the EM impedance signatures for a pristine
structure acquired during an experimental measurement with an
impedance analyzer and predicted by the FE model.

Electromechanical resonance peaks are well distinguished. It is
also apparent that the simulation results compare very well with
the experimental measurements, especially in case of frequency.
However, a shift in magnitude can be observed. This can be ex-
plained by the inaccuracy in modeling damping and bonding layer
[42] and also by the fact that dielectric losses are not taken into ac-
count in the FE model as this phenomenon is not yet implemented
in the commercially FE package Abaqus.
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Table 2

PIC151 properties (PI data).

Elasticity matrices

rcE E E
& E 0 0 o
%2 é] ‘1:_2
Df] = Cs G G 2 0 0 GPa
o 0 o0 C, o0 o0
0 0 0 0 C& o
Lo o 0 0 0 C&
[107.6 63.12 6385 0 0 0
63.12 1076 6385 0 0 0
£ |63.85 6385 1004 0 0 0
DI=1"0" "0~ 0o 2224 o o |°P@
0 0 0 0 1962 0
0 0 0 0 0 1962

Dielectric matrices

g&j; O 0 9.8235 0 0
D®=| 0 & 0 |= 0 98235 0 |10°F/m
0 0 &8s 0 0 7.54
Piezoelectric matrices
0 0 0 0 ds O 0 0 0 0 610
d=[0 0 0 ds 0 Ol=| 0 0 0 61 0 0[10°CN
dy; dy dz 0O 0 O 214 -214 423 0 0 O

0 0 0 0 es O 0 0 0 0 120
d={0 0 0 es 0 0|=]| 0 0 0 12 0 0|C/m?
€51 es es3 0 0 O 96 -96 151 0 0 0O

Density
p =7760 kg/m*

4. Localization of damage using PNN
4.1. Understanding the damage effect through parametric tests

The E/M impedance method is especially effective at ultrasonic
frequencies, which properly capture the changes in local dynamics
due to incipient structural damage. In a complex aeronautical
structures like aircraft door for example, such changes are too
small to affect the global dynamics and hence cannot be readily de-
tected by conventional low-frequency vibration methods. Theoret-
ical developments [41] and experimental demonstrations have
shown that the real part of the high frequency impedance spec-
trum is directly affected by the presence of damage or defects in
the monitored structure.

Fig. 7 compares the plots of impedance spectra predicted by FE
simulations between a pristine and a damage composite plate for
two different surfaces of damage - 225 mm? and 600 mm? - along
with two damage severities (elastic properties reduction of 80% or
90%).

This figure clearly demonstrates the ability of the E/M imped-
ance technique to detect the presence of a defect within the

Table 3
Results of the identification of the piezoelectric properties for each sensor.
PWAS no.1 PWAS no.2 PWAS no.3
853(“078) 1.991 2.034 2.009
) 0.0203 0.0207 0.0204
n 0.0224 0.0185 0.0219
ds( x 10719) -1.837 -1.772 -1.772
C 0.868 —-.859 0.881
0.999 1.055 1.03
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Fig. 6. Comparison of the real part of the impedance frequency response (exper-
imental vs. numerical model) for a pristine composite plate measured from PWAS
no.1l.

structure. Parametric tests help us to understand the EMI varia-
tions due to damage. For example complex phenomena such as
resonant frequency shifts, peaks splitting as well as appearance
of new resonances appeared in our tests.

A way to simply quantify EMI variations is to compute damage
indicators extracted from the electromechanical impedance varia-
tion between a pristine and damaged structure. Our feature-based
method inspired from Giurgiutiu and Kropas-Hughes [32] use a
two-stage approach: first, the spectral features (so called damage
indictors or damage metrics) that are likely to be affected by dam-
age are extracted. The second step, the features vectors associated
with each spectrum are compared using a vector classification
technique. We propose a method based on probabilistic neural net-
work (PNN) in order to localize a single damage from features ex-
tracted from EMI spectrums. The originality is to train different
database in order to be able in a next research works to the damage
severity and energy of impact.
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Fig. 8. Comparison of two localization method. (a) ANN produces an estimation (green square) of the real damage localization (red square) from a database of examples. (b)
PNN is a problem of classification: the output is the probability that the damage belong to a zone (2 in this example). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

4.2. PNN method

PNNs are commonly used for classification problems and they
constitute a direct continuation of the work on Bayes classifiers.
PNN differs from ANN. In our case, for the prediction of the locali-
zation of a single damage, ANN would give a discrete prediction (a
couple of coordinates for the damage center) and it has been
shown that they may induce large errors for small delamination
zones [41]. PNN (from an a priori clustering of the damage loca-
tion) give a probability map with a zone where the damage belongs
(Fig. 8).

PNN have been chosen for the damage localization method be-
cause the PNN algorithm is more robust and well adapted to indus-
trial constraints and to our multilevel approach [41]. Moreover,
examples close to the cluster border zones are deleted from the
database in order to avoid appearance in numerous clusters at
the same time.

Basically, a PNN is comprised of two hidden layers: a radial ba-
sis layer and a competitive layer. The former computes the dis-
tance from the input vector to the training input vectors and
produces a vector whose elements indicate how closely the input
is matched to a training input. These contributions are then
summed for each class of inputs to produce a vector of probabili-
ties. The second layer picks the maximum of these probabilities
and returns the associated class.

PNNs possess some useful characteristics such as:

e learning capacity: it captures the relationships between given
training examples and their given classification;

e generalization ability: it identifies the commonalities in the
training examples and allows to perform classification of
unseen examples from the predefined classes.

A simple illustrative example is presented on Fig. 9.

4.3. Damage metrics

A critical point in the generalization process of PNN is the selec-
tion of pertinent inputs. First, 7 damage indicators have been se-
lected from bibliography [41] to measure the deviation between
the EMI spectra in 2 successive states (damaged/pristine). They
are all computed for each of the three piezoelectric ceramic, so
21 indicators are available as inputs of the network.

The 7 damage indicators are defined as:

o Correlation Coefficient of Re(Z).

e Area substraction on both Re(Z) and Im(Z).

e RMS or quadratic mean on both Re(Z) and Im(Z).

e Root Mean Square Deviation on Re(Z) and Im(Z)) defined as:

Su[Re(Zi) ~ Re(@))) o)
SulRe@)))

RMSD =

For instance, RMSD coefficients provided by each PWAS relative to
three surfaces of damage - located at the same position - are de-
picted in Fig. 10.
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corresponding learning vector are very close, involves an output value from the RBL close to unity. The multiplication of the RBL outputs by a classification matrix provides a
probability vector. The transfer function C of the competitive layer retains the highest probability that indicates the localization of the input in the plate.

40

Bl D30%
Bl D90%

>

35}

600mny?
600mm?
00mm

2

25¢

225mm
225mm?

225mm?

15|

RMSD Re(Z) (%)
n
(=]

100mm?

10}

100mm?
100mm?

PZT n°3

PZT n°1 PZT n°2

Fig. 10. As it can be expected, the higher the surface of damage, the higher the
RMSD index is. The same conclusion can be drawn as regard the damage severity.

As it can be expected, the higher the surface of damage, the
higher the RMSD index is. The same conclusion can be drawn
regarding the damage severity. The other selected indicators have
more complex behavior that will help PNN to distinguish between
damages having similar RMSD value but different locations
(Fig. 11).

5. Numerical validation

In the following three damage surfaces of 100 mm?, 225 mm?
and 600 mm? and two damage severities (elastic properties reduc-
tion of 80% or 90%) are considered. Hence three PNNs (each dedi-
cated to one damage surface) are created. For each case, more
than 150 positions of damage are generated using a Latin Hyper-
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Fig. 11. The other selected indicators more complex behavior that will help PNN to
distinguish between damages having similar RMSD value but different localization.

cube Sampling (LHS) method to ensure a random distribution
(Fig. 12).

Numerical simulations associated to each damage position are
then carried out to generate a database consisting of numerical
E/M impedance signatures. Subsequently, each PNN is trained
and validated using random input vectors taken from the dataset
so as to ensure a good capability of generalization. Finally, the
trained neural networks are tested using samples partitioned from
the main dataset. The testing data is not used in training and hence
provides an “out-of-sample’ dataset to test the network. This gives
a sense of how well the network is doing. In the present case 90%
and 10% of the data are used for the training and testing of the net-
work respectively (see Fig. 13).

It turns out that networks are able to correctly predict the posi-
tion of fifteen new “numerical” damages (10% of the dataset).
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Fig. 12. Example of damages repartition over the composite plate generated from a Latin hypercube sampling method. (a) Visualization of damage positions. (b) and (c)
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Fig. 13. A statistical approach (PCA) permits to reveal the most sensible variable on
the output response. It is shown that 20 principal components can be used to
capture 94% of the information (instead of using 43 indicators).

Table 4

Model Based sensitivity, Relationship between damage size and damage estimation
(Network performance) using 4 clusters (a quarter of plate). For example we test the
highest damage area with only 118 damages in the learning base, we do not use
frequency shifts as input vectors and for the test base of 20 unknown (new) cases, we
obtain 69% of the networks can predict 90% of the unknown (new) damage location
and 90% of the networks can predict 80% of the unknown (new) damage location.

Damage Learning/ Indicators  Network Network

area test performance at  performance at
(mm?) examples 90% 80%

600 118/20 21 69% 90%

225 245/20 43 61% 85%

100 165/20 43 35% -

Finally we evaluate the network performance using the 5 best net-
works over 100.

For high damage area, Table 4 reveals that, the network is able
with few exceptions to recognize new damage with good confi-

dence, for example, 90% of the networks can predict 80% of the un-
known (new) damage location. So in this case a high variation of
the 21 classical indicators can be achieved in which some indica-
tors are correlated.

For medium damage area, preliminary tests have shown that
47% of the networks are able to well classify 90% of new damage
with these 21 indicators. To increase the generalization abilities
of the network, we add 24 new indicators based on 8 resonant
peaks frequency shifts per PWAS:

The frequency shift is defined as:

AP (%) = If? — £PP1 /£ « 100% (10)

where fP is the modal frequency of the damaged structure for the
mode n, fP is the modal frequency of the undamaged structure
for the mode n.

In order to reduce the size of the input vector while keeping
maximum information, a Principal Component Analysis (PCA) is
conducted on our dataset. PCA involves a mathematical procedure
that transforms a number of possibly correlated variables into a
smaller number of uncorrelated variables called principal compo-
nents. The first principal component accounts for as much of the
variability in the data as possible, and each remaining succeeding
component accounts for as much of the remaining variability as
possible. As it is indicated in Fig. 14, twenty principal components
- instead of 45 inputs - can be used to well approximate the out-
puts (94.1% of the information provided by the 45 inputs is
captured).

Due to computational time limits only 200 scenarios were
undertaken, but the network performance has much increased:
85% of the networks are able to predict 80% of the 20 new un-
known damages.

For small damage area, lower performance of the networks is
obtained. Only 35% of the networks are able to localize the damage.
The major problem is a damage size dependency in the learning
process.



saN e sl iy 8 s B 8 3 R

:

88 s deys 3 A

Fig. 14. Ultrasound (Cscan) results for 2 different method (amplitude, deep) reveals the position of PWAS (3 circle) and the position of the D1 damage (center).
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between the two states: both are Inputs for the PNN approach.

Table 5
Results of localization predictions provided by the PNN trained for 600 mm? damage
surface.

Plate Damage center US surface Real Predicted
no. x,y) (mm?) zone zone

1 (150,145) ~280 2 2

2 (116,52) ~381 5 4

3 (110,87) ~399 5 5

4 (145,95) ~380 5 5

5 (177,105) ~366 2 4

It means that all our chosen damage indicators are in this case
uncorrelated. Two explanations can conduct to this poor general-

ization performance: the database is being too small, and more
generally very small indicators shifts are obtained.

6. Experimental validation

The primary objective is now to test the PNN approach with
experimental data, i.e. experimental damage metrics calculated
from experimental E/M impedance spectra. In order to compare
to supervised data, we did some Non-Destructive Tests (NDT) illus-
trated on Fig. 14.

Impedance measurements for each damaged plate are then per-
formed and the corresponding damage metrics are calculated.
Fig. 15 shows an example of measurements on the 2 states of the
structure (damaged, undamaged) and also 2 indicators shifts for
the 3 PWASs for damage case 1.



Finally, these experimental damage indicators are presented to
each of the PNN.

Regarding the PNN trained for 225 mm? damage surface, pre-
dictions in terms of localization were unsatisfactory. This is pri-
marily due to the fact that experimental delamination surfaces
are higher than 225 mm?. This causes experimental damage met-
rics to be out of bounds of the learned numerical damage indica-
tors. However, the PNN trained for 600 mm? surface damages is
able to accurately predict the location of 3 out of 5 experimental
damages, even for damage surfaces lower than 600 mm? (Table 5).
Hence, it can be concluded that the closer of the damage surface a
PNN is trained for, the better the predictions should be.

7. Conclusion

EMI measurements combined with PNN permit to detect and
localize damage in composites carbon fiber reinforced plates.
Method presented in this article is original as a coupled FEM ap-
proach for updating the baseline model using experimental/
numerical EMI correlation is used. This preprocessing limits the
potential errors and help us to have confidence in our baseline
model, so piezo updating is the most important phase in the mon-
itoring process.

From this realistic baseline model, numerical simulations are
then performed so as to generate a significant database relative
to various damage scenarios. Using damage indicators calculated
from the impedance signature of a pristine and damaged plate, it
is shown that the EMI technique performs very well for damage
detection. Subsequently, probabilistic neural networks are trained
using the numerical database and utilized to estimate the location
of a damage previously detected. An important conclusion is also
that damages due to small energy of impact needs a high database
of examples, in order to obtain a good localization using PNN.
Experimental results show that PNNs can be used as a tool to pre-
dict the in-plane position of a single damage in a laminated com-
posite plate, as long as real or experimental damage surfaces are
lower than numerical damage surfaces the PNN have been trained
for. As the damage surface is position dependent, another approach
consisting in training PNNs with iso-impact energy - instead of
iso-damage surface - should be carried out. However this would
require a large set of experimental impact trials to characterize
with accuracy the evolution of damages surface over the plate.
The damage recognition through PNN is dependent of the initial
clustering. Further works will also focus on the development of a
hierarchical PNN and in the enhancement of the diagnosis by add-
ing a second output - related to damage severity - to the network.
Another perspective resides in the localization of multiple site
damages within the structure.
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