60 research outputs found

    Bisimulation of Labeled State-to-Function Transition Systems of Stochastic Process Languages

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, admit multiple transition schemes from states to functions of finite support over general semirings. As such they constitute a convenient modeling instrument to deal with stochastic process languages. In this paper, the notion of bisimulation induced by a FuTS is proposed and a correspondence result is proven stating that FuTS-bisimulation coincides with the behavioral equivalence of the associated functor. As generic examples, the concrete existing equivalences for the core of the process algebras ACP, PEPA and IMC are related to the bisimulation of specific FuTS, providing via the correspondence result coalgebraic justification of the equivalences of these calculi.Comment: In Proceedings ACCAT 2012, arXiv:1208.430

    Bisimulation of Labelled State-to-Function Transition Systems Coalgebraically

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, are characterized by transitions which relate states to functions of states over general semirings, equipped with a rich set of higher-order operators. As such, FuTS constitute a convenient modeling instrument to deal with process languages and their quantitative extensions in particular. In this paper, the notion of bisimulation induced by a FuTS is addressed from a coalgebraic point of view. A correspondence result is established stating that FuTS-bisimilarity coincides with behavioural equivalence of the associated functor. As generic examples, the equivalences underlying substantial fragments of major examples of quantitative process algebras are related to the bisimilarity of specific FuTS. The examples range from a stochastic process language, PEPA, to a language for Interactive Markov Chains, IML, a (discrete) timed process language, TPC, and a language for Markov Automata, MAL. The equivalences underlying these languages are related to the bisimilarity of their specific FuTS. By the correspondence result coalgebraic justification of the equivalences of these calculi is obtained. The specific selection of languages, besides covering a large variety of process interaction models and modelling choices involving quantities, allows us to show different classes of FuTS, namely so-called simple FuTS, combined FuTS, nested FuTS, and general FuTS

    Semiring-based Specification Approaches for Quantitative Security

    Get PDF
    Our goal is to provide different semiring-based formal tools for the specification of security requirements: we quantitatively enhance the open-system approach, according to which a system is partially specified. Therefore, we suppose the existence of an unknown and possibly malicious agent that interacts in parallel with the system. Two specification frameworks are designed along two different (but still related) lines. First, by comparing the behaviour of a system with the expected one, or by checking if such system satisfies some security requirements: we investigate a novel approximate behavioural-equivalence for comparing processes behaviour, thus extending the Generalised Non Deducibility on Composition (GNDC) approach with scores. As a second result, we equip a modal logic with semiring values with the purpose to have a weight related to the satisfaction of a formula that specifies some requested property. Finally, we generalise the classical partial model-checking function, and we name it as quantitative partial model-checking in such a way to point out the necessary and sufficient conditions that a system has to satisfy in order to be considered as secure, with respect to a fixed security/functionality threshold-value

    A coalgebraic perspective on linear weighted automata

    Get PDF
    Weighted automata are a generalization of non-deterministic automata where each transition, in addition to an input letter, has also a quantity expressing the weight (e.g. cost or probability) of its execution. As for non-deterministic automata, their behaviours can be expressed in terms of either (weighted) bisimilarity or (weighted) language equivalence. Coalgebras provide a categorical framework for the uniform study of state-based systems and their behaviours. In this work, we show that coalgebras can suitably model weighted automata in two different ways: coalgebras on Set (the category of sets and functions) characterize weighted bisimilarity, while coalgebras on Vect (the category of vector spaces and linear maps) characterize weighted language equivalence. Relying on the second characterization, we show three different procedures for computing weighted language equivalence. The first one consists in a generalizion of the usual partition refinement algorithm for ordinary automata. The second one is the backward version of the first one. The third procedure relies on a syntactic representation of rational weighted languages
    • …
    corecore