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Preface

The 16th International Workshop on Coalgebraic Methods in Computer Science (CMCS) was held
on April 2-3, 2022 in Munich, Germany, as a satellite event of the Joint Conference on Theory and
Practice of Software, ETAPS 2022. In more than two decades of research, it has been established
that a wide variety of state-based dynamical systems, like transition systems, automata (includ-
ing weighted and probabilistic variants), Markov chains, and game-based systems, can be treated
uniformly as coalgebras. Coalgebra has developed into a field of its own interest presenting a deep
mathematical foundation, a growing field of applications, and interactions with various other fields
such as reactive and interactive system theory, object-oriented and concurrent programming, for-
mal system specification, modal and description logics, artificial intelligence, dynamical systems,
control systems, category theory, algebra, analysis, etc. The aim of the CMCS workshop series is
to bring together researchers with a common interest in the theory of coalgebras, their logics, and
their applications.

Previous workshops have been organised in Lisbon (1998), Amsterdam (1999), Berlin (2000),
Genoa (2001), Grenoble (2002) Warsaw (2003), Barcelona (2004), Vienna (2006), Budapest (2008),
Paphos (2010), London (2012), Grenoble (2014), Eindhoven (2016), Thessaloniki (2018), Dublin
(2020, held online because of the COVID pandemic). Starting in 2004, CMCS has become bien-
nial, alternating with the International Conference on Algebra and Coalgebra in Computer Science
(CALCO), which, in odd-numbered years, has been formed by the union of CMCS with the Inter-
national Workshop on Algebraic Development Techniques (WADT).

This volume contains the short contributions presented at CMCS 2022, complementing the
proceedings volume presenting the regular papers. Short contributions describe work in progress,
summarise work submitted to a conference or workshop elsewhere, or in some other way appeal to
the CMCS audience. They underwent a light reviewing process. As for regular papers, contributions
that describe the application of coalgebraic methods in areas that are not the central focus of the
community have been particularly welcome.

May 20, 2022
Groningen and London Helle Hvid Hansen and Fabio Zanasi
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Nominal Topology for Data Languages

Henning Urbat
Friedrich-Alexander-Universität Erlangen-Nürnberg

One of the striking features of the theory of regular languages is the host
of equivalent but fundamentally different ways to approach it: finite automata
in various flavours, regular expressions, monadic second-order logic, algebra,
and topology. For instance, the algebraic perspective rests on the fact that a
language L ⊆ Σ∗ is regular iff it is recognizable by a finite monoid. Here, a finite
monoid M is said to recognize L if there exists a monoid morphism h : Σ∗ →M
and a subset P ⊆M such that L = h−1[P ].

For the closely related topological perspective, one considers the cofiltered
diagram of all monoid morphisms h : Σ∗ → M with finite codomain M , and
forms its limit Σ̂∗ in Pro(Setf), the free completion of the category of finite
sets under cofiltered limits. This category can be shown to be equivalent to
the category of Stone spaces (compact Hausdorff spaces with a basis of clopen

sets). In particular, Σ̂∗ can be regarded as a Stone space whose elements are
called profinite words. Regular languages then correspond precisely to clopen
subsets of Σ̂∗. This topological characterization paves the way to a topological
and duality-theoretic account of regular languages, see e.g. [5].

In the following we outline the first steps towards a generalization of the
above to data languages, i.e. languages over infinite alphabets. Elements of such
alphabets are regarded as data values (e.g. nonces, object identities, or URLs).
Traditionally, data languages are modelled by register automata that can mem-
orize data values and test them for equality. A more recent approach is based
on the theory of nominal sets. Here data languages are defined to be equivariant
subsets L ⊆ Σ∗ where the alphabet Σ is a nominal set, and the role of finite
monoids is played by orbit-finite nominal monoids (i.e. monoids in the category
Nom of nominal sets and equivariant maps with finitely many orbits), with an
ensuing notion of language recognition analogous to the classical one [1]. For ex-
ample, letting A denote the (countably infinite) nominal set of names, the data
language L = {vaaw ∈ A∗ : v, w ∈ A∗, a ∈ A} is recognizable by an orbit-finite
monoid with three orbits. Similar to classical regular languages, recognizable
data languages admit equivalent characterizations in terms of automata [2] and
logic [3]. However, a topological perspective is missing so far.

A straightforward approach would be to simply mimic the above construction
of the space of profinite words: take the diagram of all equivariant monoid
morphisms Σ∗ → M with M orbit-finite, and form its limit Σ̂∗ in Pro(Nomof),
the free completion of the category of orbit-finite nominal sets under cofiltered
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limits. Unfortunately, it turns out that this category is of little use: it fails to
be concrete over Nom, that is, the canonical functor U : Pro(Nomof) → Nom is
not faithful. Consequently, Pro(Nomof) cannot be characterized as a category
of nominal topological spaces. The latter is ultimately not surprising given that
the equivalence Pro(Setf) ' Stone uses the axiom of choice (in the disguise of
Tychonoff’s theorem), which fails in the topos of nominal sets.

One remedy to this negative result is to restrict to bounded nominal sets. A
nominal set is said to be n-bounded if each of its elements is supported by a set of
names of cardinality n. On the level of automata, this amounts to imposing an
upper bound to the number of registers. Using judicious nominal generalizations
of topological concepts (including compactness and the Hausdorff property), we
obtain a notion of nominal Stone space and the following

Theorem. The category Nomof,n of n-bounded orbit-finite nominal sets has a
free completion under cofiltered limits given by

Pro(Nomof,n) ' n-bounded nominal Stone spaces.

For n = 0 we recover classical Stone spaces. We remark that our notion of nomi-
nal Stone space differs substantially from that of Gabbay, Litak, and Petrişan [4].
In fact, orbit-finite spaces with discrete topology are generally not nominal Stone
spaces in their sense, which suggests that the approach of op. cit. to nominal
topology and Stone duality is not amenable for studying data languages.

The above theorem serves as the starting point of a topological theory of
data languages. For instance, we obtain a characterization of recognizable data
languages as clopen subsets of the space of pro-orbit-finite words, a Reiterman-
style equational characterization of pseudovarieties of orbit-finite monoids, and
a duality theory in the spirit of [5] based on a duality between nominal Stone
spaces and a suitable category of nominal Boolean algebras.

References
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Supported Sets – A New Foundation
For Nominal Sets And Automata

Thorsten Wißmann

Radboud University, Nijmegen, the Netherlands http://thorsten-wissmann.de

This proposes and discusses the category of supported sets which provides a
uniform foundation for nominal sets of various kinds. A full report containing all
mentioned results is available on: https://arxiv.org/abs/2201.09825

Introduction. Nominal sets provide an elegant framework to reason about
structures that involve names, the permutation of names, and name binding. The
corresponding nominal automata are capable of processing words over infinite
alphabets (data alphabets), while having good computational properties. Their
expressiveness is similar to that of register automata, which are automata with a
finite description processing infinite alphabets. This finiteness condition translates
into the notion of orbit-finiteness in the nominal world, which requires extra work
to obtain a finite description of nominal automata, because orbit-finite objects
are infinite in general. In recent years, more general concepts of nominal sets were
considered that generalize from the permutation of names to other operations,
such as renaming sets and symmetries on other data alphabets, e.g. monotone
bijections on rational numbers Q (total order symmetry).

Despite their rich categorical structure, it is known that the category of
nominal sets (in all above-mentioned flavours) is not monadic over sets, that is,
their theory is not an algebraic theory that can be described by a monad on sets.

Supported Sets. In order to still benefit from monadicity, we introduce the
category of supported sets and show that nominal sets are monadic over those.
The proposed category has a very simple definition:

Definition 1. For a fixed set A, the category of supported sets Supp(A) con-
tains the following data: a supported set (X, sX) is a set X equipped with a
map sX :X → Pf(A) (where Pf denotes finite powerset); a supported map
f : (X, sX) → (Y, sY ) is a map f :X → Y with sY (f(x)) ⊆ sX(x) for all x ∈ X.

This definition reflects basic principles when working with data alphabets A:

1. The structures x ∈ X of interest store finitely many data values sX(x) ⊆ A.
2. The computations f on such structures can not invent new data values, but

may decide to drop data values, e.g. by clearing a register: sY (f(x)) ⊆ sX(x).

Inspired by nominal set nomenclature, sX(x) is called the support of x. However,
the big difference to nominal sets is that the map sX is a structural property of
a supported set X and not a derived notion.

http://thorsten-wissmann.de
https://arxiv.org/abs/2201.09825
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Properties. In general, Supp(A) has nice categorical properties: it is a locally
finite category: a supported set is finitely presentable iff it is finite. Supp(A) is
complete, cocomplete, and cartesian closed (however, it is not a topos).

Binding. Despite the little structure, supported sets feature name binding as a
functor on Supp(A) (if A is countably infinite) reminiscent of de Bruijn indices.
This binding functor of Supp(A) in fact lifts to the category of nominal sets
(for equality symmetry) and is naturally isomorphic to the (permutation based)
abstraction functor on nominal sets.

Monadicity. The different flavours of nominal sets (with their different oper-
ations) can respectively be modelled as a monad on supported sets. If A is a
countable infinite set, the following categories are then monadic over Supp(A):

1. nominal sets (operations are permutations on the data alphabet A) [2].
2. nominal renaming sets (operations may identify elements of A) [3].
3. nominal sets for the total order symmetry (operations are monotone bijections

on Q) [1].

These monadicity results make general categorical machinery applicable:

Finite representation. Orbit-finite nominal set are infinite in general. But by
the monadicity, a nominal set is orbit-finite iff it can be described by a finite
supported set of generators and finitely many equations.

Determinization. Register automata can be modelled as finite coalgebras
in supported sets, for a functor involving binding and the above monad for
the reassignment of register contents as a side effect. The generalized powerset
construction [4] then turns the finite register automaton into an orbit-finite
nominal automaton on the configurations (with side effects internalized).

This determinization process shows that supported sets should not be under-
stood as a competitor to nominal sets, but as a foundation for nominal sets. And
moreover, it may serve as a categorical framework for data alphabets that do not
admit symmetries at all.
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Stateful Structural Operational Semantics

Stelios Tsampas
Joint work with Sergey Goncharov, Stefan Milius, Lutz Schröder,

Henning Urbat

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
name.surname@fau.de

Keywords: structural operational semantics, rule formats, distributive laws

1 Introduction

A key prerequisite for modular reasoning about process calculi and program-
ming languages is compositionality : A denotational semantics is compositional if
the associated semantic equivalence forms a congruence, that is, subterms of a
given process or program term may be replaced with equivalent subterms with-
out affecting the overall denotational meaning of the term. For instance, the
classical GSOS format of Bloom et al. [2] provides a unified formal representa-
tion of process languages interpreted over non-deterministic labelled transition
systems, and guarantees that bisimilarity is compositional. Similarly, syntactic
restrictions of the GSOS format due to Bloom [1] and van Glabbeek [5] guarantee
compositionality for coarser equivalences.

More abstractly, GSOS is captured in Turi and Plotkin’s bialgebraic frame-
work of mathematical operational semantics [4]. In particular, Turi and Plotkin
showed that GSOS rules correspond precisely to natural transformations of type

%X : Σ(X × (PωX)L)→ (PωΣ
?X)L,

where Σ is a polynomial functor on the category of sets (representing the sig-
nature of the process language at hand), L is a set of (transition) labels, Pω is
the finite power set functor, corresponding to finitary non-determinism, and Σ?

denotes the free (term) monad on Σ. This is an instance of an abstract GSOS
law, a natural transformation of type Σ(Id×T ) =⇒ TΣ?, with T , the behaviour
functor, instantiated to PL

ω .
There is long-standing interest in SOS style specifications of stateful pro-

gramming languages. The natural instantiation of mathematical operational se-
mantics to this setting would use TX = (S × (X + 1))S as the behaviour functor
(for a given set S of states). This gives rise to an extremely expressive rule for-
mat: In abstract GSOS laws of type Σ(Id × T ) =⇒ TΣ?, program constructs
receive their arguments as full-blown state transformers; in particular, they can
execute or probe on any number of input states. The semantic domain pro-
vided by mathematical operational semantics in this case is the final coalgebra
for T , which consists of possibly infinite S-branching, S-labelled trees, and thus
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is an instance of (coalgebraic) resumption semantics, originally developed for
concurrent settings. Evidently, the induced notion of semantic equivalence, for
which the format guarantees compositionality, is very fine-grained. Capturing
less sceptical semantics, such as standard sequential end-to-end net execution,
in a compositional manner has proved more challenging; generally speaking,
compositionality is harder for coarser equivalences because less information is
available about the behaviour of subterms [5].

In the present work, we approach this problem by restricting the rule format
to various degrees. We first note that the operational rules typically associated to
imperative languages resemble GSOS rules with an additional input parameter,
the present state. We correspondingly introduce the stateful SOS format for the
specification of stateful languages, and show that stateful SOS specifications are
in an one-to-one correspondence with natural transformations of type

δX : S ×Σ(X × S × (X + 1))→ S × (Σ?X + 1).

We give a resumption semantics (over the final coalgebra for T as above) for
stateful SOS, and show that this semantics agrees with the one obtained by con-
verting δ into a GSOS law, in particular is compositional. We then go on to define
two successive coarsenings of resumption semantics: Trace semantics, which uses
the semantic domain (S+ + Sω)S , the set of functions expecting an initial state
and returning a possibly terminating S-stream and the yet coarser termination
semantics, which is defined over the semantic domain (S + 1)S , the set of func-
tions expecting an initial state and returning either a final state or divergence.
As our first main result, we show that despite the restricted expressiveness, it
is undecidable whether the coarser program equivalences are compositional for
a given stateful SOS specification. In a subsequent step, we thus introduce two
sets of syntactic restrictions in the spirit of Bloom [1] and van Glabbeek [5], and
show that these guarantee that stateful SOS specifications have compositional
trace semantics or termination semantics, respectively.

About this abstract This manuscript is our entry for short contributions for
CMCS 2022. It summarizes our latest work, which can be accessed online [3].
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Reductive Logic, Proof-search, and Coalgebra
(Extended Abstract)⋆

Alexander V. Gheorghiu and David J. Pym

University College London, London WC1E 6BT, United Kingdom
{alexander.gheorghiu.19,d.pym}@ucl.ac.uk

Traditionally, logic proceeds by inferring a conclusion from established pre-
misses using inference rules. This is the paradigm of deductive logic:

Established Premiss1 ... Established Premissn
Conclusion

⇓

The dual of deductive logic is the paradigm known as reductive logic (RL).
Here one proceeds from a putative conclusion, called the goal, to a collection of
premisses that suffice to witness the conclusion by means of a reduction operator,

Sufficient Premiss1 ... Sufficent Premissn
Putative Conclusion

⇑

Reductions may correspond to inference rules, read from conclusion to premisses,
or may have other forms (e.g., see [6]). The process of constructing a proof in
RL is known as proof-search.

Reductive logic more closely resembles the way in which mathematicians ac-
tually prove theorems and, more generally, the way in which people solve prob-
lems, especially when using formal representations. For example, it encompasses
diverse applications of logic to computer science such as, inter alia, logic pro-
gramming (LP), program verification, and model-checking. Despite the ubiquity
of reductive reasoning, it currently has little unified meta-theory. Developing a
general metatheory of RL (i.e., proof theory and semantics, with results such
as soundness and completeness) is an ongoing project. Some models have been
considered, especially for classical and intuitionistic logic (IL) (e.g., see [7]).1

In general, the proof-search space for a goal can be regarded as a state space
whose one-step dynamics is given by the reduction operators. It follows that
an appropriate model of reduction is provided by a coalgebraic construction;
specifically, let ℘f be the finite powerset functor, then reduction operators are
coalgebras ρ : GOALS → ℘f ℘f (GOALS). Using this perspective, the authors [2]
have developed a general coalgebraic model of reduction in sequent calculi, gen-
eralizing earlier work in [4] on Horn clause LP (HcLP).

Let I be the identity function on GOALS, and Yk and ρk be defined as follows:
Y0 := GOALS, Yα+1 :=GOALS×℘f ℘f (Yα) and ρ0 := I, ρα+1 :=I×℘f ℘f (ρα◦ρ).
⋆ This work has been partially supported by the UK’s EPSRC through research grant
EP/S013008/1. The work discussed herein has been presented in [2].

1 For example, uniform proof [5], while complete for the hereditary Harrop fragment of
IL, does not specify an operational semantics (OS) for proof-search. Rather, it gives
an RL basis relative to which an OS, specifying controls such as clause selection and
backtracking, can be defined.
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Let C be the co-free comonad of the ℘f℘f functor. The resulting coalgebra (e.g,
see [1]) λ : GOALS → C(GOALS) maps a goal to its proof-search space (a more
accurate bi -algebraic model was given for HcLP in [1]).

This coalgebraic semantics is a model of reduction, but not of proof-search.
Here, proof-search is distinguished from reduction by a control régime determin-
ing precisely what reductions are made at what time. In general, control mani-
fests as a choice (e.g., to backtrack). One control problem that can be handled in
this coalgebraic semantics is choice of premisses. One applies a choice function

σ after applying a reduction operator: GOALS
ρ→ ℘f ℘f (GOALS)

σ→ ℘f (GOALS)
Choice could also be described using a structural OS for proof-search. In general,
such systems admit co- and bi-algebraic models; see, for example, [8].

One approach to a general theory of control is to simulate proof-search in
one logic as proof-search in another logic that is enriched by some algebra such
that solutions to equations on the algebra represent various control choices; for
example, this is the approach in [3] for the context-management problem of
proof-search in linear, bunched, and relevant logics. At the abstract level, this
approach could represent control as the algebra component of a bialgebra, whose
coalgebra components are essentially the reduction operators provided. This co-
heres with the bialgebraic model of structural OS provided in [8] (regarding
controls as constructors for explorations of a proof-search space).

In conclusion, RL proof-searches are important phenomena within philoso-
phy, mathematics, and computing, but currently lack a uniform meta-theory.
The proof-search space for a goal can be understood as a state space, for which
coalgebra provides an suitably general technology for a mathematical theory of
reduction. Further work is to characterize fully control in this setting.
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1 Introduction

Mixed distributive laws of type λ : WM ⇒ MW from a comonad W over a monad M in the category C
provide a sufficent condition for composing morphisms of type WA → MB in C. Inspired by recent work
on no-go theorems for monad-monad distributive laws [ZM19], we present a family of no-go theorems for
mixed distributive laws λ. In particular, we start by showing that there is no distributive law λ : NP ⇒ PN
from the prefix list comonad N [Orc14] over the power set monad P [Per19]. We then generalise this result
to show that there is no distributive law λ : WM ⇒ MW where W is any ‘list-like’ comonad and M
is the either the multiset MS or distribution monad DS [Jac10,Jac21] for any commutative semiring S.
For this generalization, we develop a characterization of the Kleisli category for MS which generalises the
characterization of the Kleisli category of P as Rel. We also use string diagrams to prove two transfer
theorems that relate distributive laws over different (co)monads which are linked by (co)monad morphisms
satisfying certain conditions.

2 First no-go theorem

Given a comonad (W, ε, δ) and monad (M,η, µ), a mixed distributive law from comonad W to monad M is a
natural transformation λ : WM ⇒MW of satisfying four compatiblity axioms, one for each of ε, δ, η, and µ.
Removing the compatibility axiom for the counit ε and compatiblity axiom for the comultiplication δ defines
a Kleisli law from the endofunctor W over the monad M . It follows from the work in [CKVW98,Jac04,Rut98],
that for every weak-pullback preserving endofunctor T : Set→ Set there is a unique Kleisli law of T over the
powerset monad P. As the underlying endofunctor N of the prefix list comonad is weak-pullback preserving,
we can show that any distributive law must satisfy the equation

λX(l) = {[x1, . . . , xn] | xi ∈ Xi} (1)

where X ∈ Set and l = [X1, . . . , Xn] ∈ NPX. However, with an explicit counterexample3, we can show that
this definition of λ fails to satisfy the comultiplication axiom. We use this first no-go theorem as a starting
point for obtaining our more general no-go theorems.

3 Generalising Rel

In order to generalise this no-go theorem to λ : NMS ⇒ MSN where MS is the multiset monad over
commutative semiring S we must prove an analogue of equation 1. In particular, the proof of that every
distributive law must satisfy equation 1 relied on the fact that every weak-pullback preserving endofunctor
T : Set→ Set determines a unique extension of T̂ : Rel→ Rel [CKVW98,Rut98]. As Rel is isomorphic to
the Kleisli category of P, we are able to obtain a unique Kleisli law of T over monad P. Generalising this
argument, we concretely describe the Kleisli category of MS as a category S-Rel of certain spans in Set.
Using this characterization, we prove that every weak-pullback preserving functor satisfying some additional
conditions has a unique Kleisli law over MS .

3 For X = {a, b, c}, consider element [{a}, {b, c}] ∈ NPX



4 Transfer theorems
In order to generalise our results to a wider class of no-go theorems, instead of constructing specific coun-
terexamples which show that a unique Kleisli law fails to be compatible with the counit or comultiplication,
we use so-called transfer theorems. These transfer theorems provide conditions under which the existence of
a distributive law of a comonad W over a monad M implies the existence of a distributive law of a different
comonad W ′ over a different monad M ′. These theorems are analogous to [MM07, Theorem 3.1] which
provides similar conditions for the existence of monad-monad distributive laws.

Theorem 1. Let (W, ε, δ), (W ′, ε′, δ′) be comonads, (M,η, µ), (M ′, η′, µ′) be monads, τ : W ′ → W be a
comonad map, σ : M → M ′ be a monad map, and let λ : WM ⇒ MW , λ′ : W ′M ′ ⇒ M ′W ′ be natural
transformations such that στ ◦ λ′ = λ ◦ τσ. Then the following hold:

1. If λ is a comonad-monad distributive law and σ, τ are monic, λ′ is a comonad-monad distributive law.
2. If λ′ is a comonad-monad distributive law, M,M ′,W,W ′ preserve epics, and σ, τ are epic, λ is a

comonad-monad distributive law.

These theorems can be proved elegantly using string diagrams (see e.g [HM16]), where they can be
interpreted as dragging (co)monad morphisms across a distributive law. For instance, in item 1 above, the
fact that λ′ satisfies the distributive law unit axiom is a consequence of the following equalities, and the
monotonicity of σ and τ .

λ′

η′

M W

W ′

=

σ τ

= =

M W

W

ηλ

η′

M W

W ′

τ σ

λ

η

M W

W ′

τ τ

=

M W

W

η

τσ

Using theorem 1 we can further generalise our no-go result to ‘list-like’ comonads. Consider for instance
the stream comonad S : Set → Set. We can show that S is weak-pullback preserving and therefore has
a unique Kleisli law ω : SP ⇒ PS. We can also show that there is a monic morphism from N to S which
satisfies the equation in theorem 1. This allows us to conclude the following by the no-go theorem of section 2.

Example 1. There is no distributive law ω : SP ⇒ PS from comonad S over monad P.
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Background: Property directed reachability (PDR). Property directed
reachability (PDR) (also called IC3 ) introduced in [2, 3] is a model checking
algorithm for proving/disproving safety problems. It has been successfully ap-
plied to software and hardware model checking, and later it has been extended
in several directions, including fbPDR [4] that uses both forward and backward
predicate transformers and PrIC3 [1] for probabilistic systems.

The original PDR assumes that systems are given by binary predicates repre-
senting transition relations. The PDR algorithm maintains data structures called
frames and proof obligations—these are collections of predicates over states—and
updates them. While this logic-based description immediately yields automated
tools using SAT/SMT solvers, it limits target systems to qualitative and nonde-
terministic ones. This limitation was first overcome by PrIC3 [1] whose target is
probabilistic systems. This suggests room for further generalization of PDR.

Lattice-Theoretic PDR. In this paper, we propose the first lattice theory-
based generalization of PDR; we call it LT-PDR. This makes the PDR algorithm
apply to a wider class of safety problems, including qualitative and quantitative.

We generalize the PDR algorithm so that it operates over an arbitrary com-
plete lattice L. This generalization recasts the PDR algorithm to solve a general
problem µF ≤? α of over-approximating the least fixed point of an ω-continuous
function F : L → L by a safety property α. This lattice-theoretic generaliza-
tion signifies the relationship between the PDR algorithm and the theory of
fixed points. This also allows us to incorporate quantitative predicates suited for
probabilistic verification.

More specifically, we reconstruct the original PDR algorithm as a combina-
tion of two constituent parts. They are called positive LT-PDR and negative
LT-PDR. Positive LT-PDR comes from a witness-based proof method by the
Knaster–Tarski fixed point theorem, and aims to verify µF ≤? α. In contrast,
negative LT-PDR comes from the Kleene fixed point theorem and aims to refute
µF ≤? α. The two algorithms build up witnesses in an iterative and nondeter-
ministic manner, where nondeterminism accommodates guesses and heuristics.
We identify the essence of PDR to be an ingenious combination of these two
algorithms, in which intermediate results on one side (positive or negative) give
informed guesses on the other side.
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Categorical Derivation of µF ≤? α. As we announced earlier, LT-PDR
solves a general problem µF ≤? α formulated in lattice theory, while existing
PDR algorithms study safety problems of state-based dynamics. We provide a
bridge from the latter to the former, that is, a general construction of a problem
µF ≤? α from a given categorical specification of state-based dynamics.

The construction is given by a structural theory of state-based dynamics and
predicate transformers. We formulate the structural theory in the language of
category theory—using especially coalgebras and fibrations to specify state-based
dynamics and predicates, respectively. More specifically, for a suitable fibration
E → B, a state-based transition system is described as a coalgebra δ : S → T S
in B, and a predicate transformer F as an endofunctor of the fibre ES .

The structural theory tells us which safety problems arise under what con-
ditions; it can therefore suggest that certain safety problems are unlikely to be
formulatable, too. The structural theory is important because it builds a math-
ematical order in the PDR literature, in which theoretical developments tend to
be closely tied to implementation and thus theoretical essences are often not very
explicit. For example, the theory is useful in classifying a plethora of PDR-like
algorithms for Kripke structures (the original, Reverse PDR, fbPDR, etc.).

Instances of LT-PDR. We discuss several instances of our general theory
of PDR mainly in the categorical derivation mentioned above. We discuss three
concrete settings: Kripke structures (where we obtain two instances of LT-PDR),
Markov decision processes (MDPs), and Markov reward models. The two in
the first setting essentially subsume many existing PDR algorithms, such as
the original PDR [2, 3] and Reverse PDR [4], and the one for MDPs resembles
PrIC3 [1]. The last one (Markov reward models) is a new algorithm that fully
exploits the generality of our framework.

Furthermore, we implemented the general algorithm LT-PDR in Haskell.
Deriving concrete instances for various types of systems is easy. We conducted
an experimental evaluation, which shows that these easily-obtained instances
have at least reasonable performance.
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Differential 2-rigs
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Our work starts from a simple speculation: what is a pair (C , ∂), where C is a ‘categorified ring’
and ∂ : C → C a ‘linear functor’ satisfying the ‘Leibniz rule’? Adapting terminology from classical ring
theory, we call such a structure a differential 2-rig, and the functor ∂ a derivation thereof; the study of
such structures could be termed ‘categorified differential algebra’.

A comprehensive treatment of such categories with a differential operator is still missing, and yet
examples and applications abound: a notable early example of categorified calculus is Joyal’s theory of
species and analytic functors [Joy86, Joy81]. Combinatorial species (also called structure types or S-
modules) are by now a permanent fixture of the mathematical landscape, and the category [P,Set] is but
one example of a 2-rig. Roughly speaking, for us, a 2-rig is a category (possibly enriched over a base
V ) with a class of colimits including coproducts (playing the role of ‘addition’) and a monoidal structure
(playing the role of multiplication) that distributes over the designated colimits.

Such 2-rigs (under one or another of such forms) are objects of increasing interest for all users of cat-
egory theory: see e.g. Brandenburg’s thesis [Bra14], where it is shown how categories of coherent sheaves
or quasicoherent sheaves over important geometric objects (e.g., projective spaces, Grassmannians) can
be characterized as ‘classifying 2-rigs’ for various theories expressible in the language that is native to the
particular doctrine of 2-rig at hand. Elsewhere, there has been much interest in ‘polynomial functors’, as
expounded in a spate of recent papers by Kock, Spivak, and others [GK13, Koc17, Spi20] which provide
a unifying setting for studying numerous structures in pure and applied category theory.

Now, derivations over the above examples of 2-rig have been widely used: mostly in the theory of
species, in extensive work of the ‘Montreal school of combinatorics’; but also in algebraic topology, there
exists a widely developed theory of ‘derivatives’ of endofunctors F : Sp→ Sp on the category of spectra,
[Goo90, AC20] and more recently [Lur17, Ch. 6].

Despite all this activity, and the importance of derivations in classical commutative algebra, the notion
of derivation on a 2-rig, i.e. a functor preserving coproducts and satisfying a ‘Leibniz rule’, has not yet
been studied per se.

The present work aims to address this gap in the current state of the art.
After having carefully defined the notion of 2-rig we’re interested in, adapting from the early work

of Laplaza on coherence for distributive categories [Lap72], we define a derivation on a 2-rig C as an
endofunctor of C that preserves coproducts and is endowed with a family of maps

lAB : ∂A⊗B ∪A⊗ ∂B → ∂(A⊗B)

subject to certain coherence conditions. We then show that a derivation on a 2-rig is the same thing as a
coproduct-preserving endofunctor D equipped with a pair of tensorial strengths, one on the left and one
on the right, with the property that the sum

DA⊗B ∪A⊗DB // D(A⊗B)

is an isomorphism. We extend this kind of characterisation to derivations ‘valued in a bimodule’, i.e.
functors D : C → M , where M is an actegory [JK01], and D(A ·X) ∼= FA ·X +A ·DX, naturally in all
arguments, and where F is a ‘twist’ endofunctor. This paves the way to some of the main examples and
obstructions to the existence of nontrivial derivations on a 2-rig, while drawing an interesting connection
with the already well-understood theory of tensorial strengths.

We then submit our definition to a series of sanity checks: from the simplest ones (the derivative
∂(A⊗n) of a power, the derivative of an n-fold tensor of a tuple ∂(A1⊗· · ·⊗An), and the n-fold derivative

1



of a product X ⊗ Y all behave as expected), to the less trivial ones (there exists a ‘universal 2-rig’ C [ε]
playing the same rôle of the ring of Kähler differentials in the 2-category of differential 2-rigs).

We then provide a series of examples of differential 2-rigs, drawing from various parts of category
theory. Notable examples come

• from formal language theory (cf. [Brz64] and the Brzozowski derivative of a string in a language);

• from the case where C = [A,V] is a presheaf category, endowed with Day convolution, and in
particular from the theory of symmetric and nonsymmetric combinatorial species, i.e. the presheaf
categories [Fin, Set] and [P,Set], where we can rediscover by simple means the well-known ‘chain
rule’ for species, discuss natural extensions of the derivation of species to the multi-variable case
and a ‘Taylor-Maclaurin’ expansion theorem for species: F (X +A) ∼=

∑∞
n=0

∂nF (A)
n! Xn.

Finally, we draw a series of open problems, aiming at a future investigation: one can likely extend the
theory of coalgebras for polynomial functors adding a derivation operation, to speak about differential
polynomial endofunctors (DPE); an example of such an equation is

F : X 7→ A⊗X(2) ∪B ⊗X(1) + C ⊗X

where A,B,C ∈ C are fixed objects of a differential 2-rig (C , ∂), and X(n) is a shorthand for ∂nX. A
solution for F is a fixed point, when it is regarded as an endofunctor of C . The universal solution for a
DPE is a terminal coalgebra.
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Abstract. We show that quantitative fixpoint logics for coalgebras with branching can be given
an equivalent measure-theoretic semantics, assigning to each formula and each state the measure of
the set of paths from that state which satisfy the formula in the qualitative sense. Since branching
is modelled using weighted monads, with the weights taken from a partial semiring, defining this
semantics requires extending basic results in measure theory to semiring-valued measures.

We consider coalgebras whose type incorporates both branching behaviour (captured by a weighted
monad TS : Set→ Set, with the weights taken from a partial semiring (S,+, 0, •, 1)) and linear behaviour
(modelled using a polynomial endofunctor F : Set→ Set). The monad TS is given by TSX = {f : X →
S | f has finite support}. We assume that F =

∐
λ∈Λ

Idar(λ), with Λ a (modal) signature.

A path from a state c in a TS ◦F -coalgebra (C, γ) then corresponds to a sequence of branching choices
made along the infinite unfolding of γ at c:

Definition 1. A path from c ∈ C in a TS ◦F -coalgebra (C, γ) is an element p of the final C×F -coalgebra
(ZC , ζC), such that π1(ζC(p)) = c and such that p is ”realised” in (C, γ): if π2(p) = ιλ(p1, . . . , par(λ)),
then γ(c)(ιλ(π1(ζC(p1)), . . . , π1(ζC(par(λ))))) 6= 0 and moreover, each pi is ”realised” in (C, γ). (Here,
ar(λ) denotes the arity of λ ∈ Λ.) The set of all paths from c in (C, γ) is denoted Pathsc.

Thus, paths in coalgebras with branching generalise standard paths in non-deterministic labelled tran-
sition systems. A path fragment from c in (C, γ) is defined similarly, except it has finite depth: it is
an element q of the initial C × ({∗} + F )-algebra (IC , ιC) which is either the empty path fragment εc
(with π1(ι−1C (εc)) = c and π2(ι−1C (εc)) = ι1(∗)) or is ”realised” in (C, γ). It follows immediately from the
definition of TS that there are finitely many path fragments of any given depth from each state of (C, γ).

Since paths in (C, γ) have F -coalgebra structure, qualitative properties of paths can be formalised in
a modal fixpoint logic for F -coalgebras:

µLΛ 3 ϕ ::= ⊥ | > | x | 〈λ〉(ϕ1, . . . , ϕar(λ)) | µx.ϕ | νx.ϕ

whose semantics is as expected; in particular, a formula 〈λ〉(ϕ1, . . . , ϕar(λ)) holds in a state c of an F -
coalgebra (C, γ) if γ(c) = ιλ(c1, . . . , car(λ)) and moreover, ϕi holds in ci for each i ∈ {1, . . . , ar(λ)}. While
standard boolean operators are not part of µLΛ, guarded disjunctions, of the form 〈λ〉(ϕ1, . . . , ϕar(λ)) t
〈λ′〉(ϕ′1, . . . , ϕ′ar(λ′)), with λ 6= λ′ and the expected interpretation, can easily be incorporated.

The same fixpoint language can now be interpreted over TS ◦ F -coalgebras (C, γ), but this time the
semantics is intended to measure (as a value in the semiring S) the extent with which a property ϕ of
F -behaviours holds on the paths from some c in (C, γ). Formally, JϕKγ : C → S is an S-valued predicate,
and the key ingredient required to define this quantitative semantics is a choice of an S-valued predicate
lifting JλK for each λ ∈ Λ. Specifically, JλK takes p : C → S to the S-valued predicate on TSFC given by:

JλK(p)(
∑
i∈I

siιλ(ci1, . . . , c
i
ar(λ))) =

∑
i∈I

si • p(ci1) • . . . • p(ciar(λ))

Here, • is the semiring multiplication. The resulting semantics ”amalgamates” the extents with which
ϕ holds on different branches from a given state. Yet, this semantics is a ”step-wise” semantics (in

? Part of this work was funded by the Leverhulme Trust Research Project Grant RPG-2020-232.
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particular, it does not make reference to the paths from a given state of (C, γ)), and the intuition that
JϕKγ(c) measures the extent with which ϕ holds on the paths from c in (C, γ) is not made formal.

In what follows we summarise the results in [1] which link this step-wise semantics with an equivalent
measure-theoretic semantics for these quantitative logics. The equivalence of the two semantics then
justifies the term ”linear-time” to describe these logics.

Defining the measure-theoretic semantics requires extending basic results from standard measure
theory to semiring-valued measures, including formulating a measure extension theorem.

Definition 2 ([1]). An S-valued measure on a σ-algebra A is a function µ : A → S such that (i)
µ(∅) = 0, and (ii) if Ai ∈ A for i ∈ ω are pairwise disjoint, then

∑
i∈ω µ(Ai) is defined and moreover,

µ(
⋃
i∈ω Ai) =

∑
i∈ω µ(Ai).

Definition 2 uses an extension of the (partial) semiring sum to a (partial) countable sum. The reader is
referred to [1] (Assumptions 2.3 and 4.3) for the assumptions needed for this and the next results.

Theorem 1 ([1]). Let R be a field of sets and let µ : R → S be an S-valued measure on R. (This
is defined similarly to Definition 2, see [1] for details.) Then, µ extends to an S-valued measure on the
σ-algebra generated by R.

The proof of Theorem 1 constructs the measure on the generated Σ-algebra by means of an outer-measure.
We now use cylinder sets, induced by path fragments, to derive a σ-algebra structure on the set Pathsc,

with c a state in a TS ◦ F -coalgebra.

Definition 3 ([1]). The cylinder set associated to a path fragment q from a state c in (C, γ) is given by
Cyl(q) = { p ∈ Pathsc | q is a prefix of p }.
Cylinder sets form a semi-ring of sets, and moreover, they can be measured according to the weights of
relevant transitions in (C, γ) (see Definition 5.7 of [1]). Informally, the weights of the transitions present in
q, along with the measures of the cylinder sets Cyl(εc) for each leaf c of q, are multiplied (using •) to assign
a value in S to Cyl(q). The notion of extent of a state in a coalgebra with branching (as defined in [2]) is
used to measure cylinder sets of the form Cyl(εc) with εc the empty path fragment from c. In other words,
the weights of all transitions along paths which ”match q” (and not just the weights of those transitions
which overlap with q) are taken into account when measuring Cyl(q). This yields an S-valued measure
µγ : Rc → S on the field generated by the semi-ring {∅}∪{Cyl(q) | q is a path fragment from c in (C, γ) },
for each c ∈ C. It can then be proved that, for c ∈ C and ϕ ∈ µLΛ, the set Pathsc(ϕ) = {p ∈ Pathsc |
p |=π2◦ζC ϕ}, consisting of paths from c which qualitatively satisfy ϕ, belongs to the σ-algebra generated
by Rc. This justifies the following definition.

Definition 4 ([1]). Let (C, γ) be a TS ◦ F -coalgebra. The path-based semantics LϕMγ : C → S of a
formula ϕ ∈ µLΛ in (C, γ) is given by LϕMγ(c) = µγ(Pathsc(ϕ)) for c ∈ C, where µγ is the extension of
the measure µγ : Rc → S arising from Theorem 1.

Our main result can now be stated as follows.

Theorem 2 ([1]). The step-wise semantics for µLΛ and the path-based semantics for µLΛ coincide.
That is, given a TS ◦ F -coalgebra (C, γ) and ϕ ∈ µLΛ, JϕKγ = LϕMγ .

Instances of the partial semiring (S,+, 0, •, 1) to which the above result applies include:

1. the boolean semiring ({0, 1},∨, 0,∧, 1), in which case our logics are similar in spirit to the logic LTL,
with JϕKγ(c) = 1 if and only if ϕ holds on some path from c;

2. the (partial) probabilistic semiring ([0, 1],+, 0, ∗, 1), in which case JϕKγ(c) measures, in the standard
sense, the set of paths from c which satisfy ϕ (this is similar to the probabilistic variant of LTL);

3. the tropical semiring (N ∪ {∞},min,∞,+, 0), in which case JϕKγ(c) gives the minimal weight (cost)
of a path from c which satisfies ϕ.
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In his article “How True It Is = Who Says It’s True’ [2], Fitting constructs
a modal logic with truth values in the powerset 2A for some set A of ‘agents’.
This logic generalises two-valued modal logic and has a natural interpretation
suggested by the title of the article: the truth value of a formula is the set of
agents for whom the formula is true.

This can naturally be made precise through an equation, referred to by Fit-
ting [2] as a Slicing Theorem. For each formula ϕ ∈ Form of modal logic with
a �-modality, and state x ∈ X in a labelled Kripke model M = (X,Ra)a∈A, it
holds that

JϕKAM(x) = {a ∈ A | x ∈ JϕKMa}, (1)

where J−KAM : Form → (2A)
X

is the semantics of Fitting’s logic, and J−KMa
:

Form → 2X is the semantics of two-valued modal logic over Ma = (X,Ra). This
logic also comes with a natural notion of agent-indexed bisimulations, which is
similar in spirit to Equation (1).

We show how coalgebraic logic generalises Fitting-style logics to agent-in-
dexed Set-coalgebras parametric in a functor T . We also generalise to coalgebras
over Pos, in which the set A of agents carries an ordering of ‘expertise’ (cf. [1])
or ‘ability’.

Recall the (dual) adjunction between Set and BA, consisting of contravariant
functors P : Set→ BA (taking powersets) and S : BA→ Set (taking ultrafilters).
Let T and L be functors as indicated in

SetT ��
P

++
BA

S

kk L�� (2)

The set of formulas of the coalgebraic modal logic is given by the initial L-algebra
I. Given a T -coalgebra (X, ξ), we algebraify it into an L-algebra (PX, δX ◦ Pξ)
by way of a so-called one-step semantics δ : LP ⇒ PT . By initiality, we then
get the semantics J−Kξ : I → PX.

To extend this to Fitting-style agent-indexing, we extend this adjunction to
the (co-)Kleisli categories formed from the Set-comonad A × (−) and the BA-
monad (−)A. We denote their corresponding (co-)Kleisli categories by ASet and
ABA.

The adjunction given by P and S lifts to a corresponding adjunction P̄ , L̄ for
ASet − ABA by way of obvious natural transformations P (A × (−)) ⇒ (PX)A

and A × S(−) ⇒ S((−)A). The functors L and T lift to L̄ and T̄ on ABA and
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ASet by way of distributive laws L((−)A)⇒ (L−)A and A×T (−)⇒ T (A×(−)).
The former is guaranteed to exist here by the universal property of the product
(LB)A ∼=

∏
a∈A LB; we are unsure whether the latter generally exists, although

we have not found a T for which this is not the case. Note that all of these lifted
functors are defined on objects as the original functors.

Having extended (2) toASet andABA, we can now proceed as before, through
the initial L̄-algebra I (which has the same underlying set as that of L) and one-
step semantics δ̄ : L̄P̄ ⇒ P̄ T̄ defined by putting (δ̄X)a = δ for each a ∈ A,
where (δ̄X)a is the ‘slice’ of δ̄X : LPX → (PTX)A corresponding to a. The
algebraification of T̄ -coalgebras is defined analogously to before. By initiality
and the definition of ABA, we then finally get as the semantics a function J−KAξ :

I → (PX)A, satisfying (1) in which M is replaced by the T̄ -coalgebra ξ. It
is easily verified that this logic instantiated with T = P and with L-algebras
being modal algebras gives us precisely Fitting’s original logic, together with its
corresponding notions of bisimilarity.

This framework generalises beyond the Set-BA adjunction: tracing our steps
for the well-known Pos-DL (or Pre-DL) adjunction (and noting that the (co)mo-
nads we considered before are given through (co)powers which generalise to this
new setting), we obtain positive coalgebraic logics with truth values from 2A in
which an analogous version of (1) holds again. In this setting, the set A of agents
has an ordering �, akin to earlier work by Fitting [1]. By definition of the Pos-
DL adjunction, the semantics JϕKAξ must be upward-closed with respect to A: if

a � b, then JϕKAξ (a) ⊆ JϕKAξ (b). As in [1], this allows us to naturally interpret
the ordering on A as one of relative expertise: if a dominates b in expertise (i.e.
a � b), then everything considered true by a must also be considered true by b.

This framework is ripe for further generalisations exploring ways of exploit-
ing structure on agents. As noted by [3], including logical operators acting as
permutations on the set of agents can drastically increase these logics’ expressive
power. This could correspond to equipping the set of agents with a symmetric
group action. Taking this idea further, one may be interested in adding op-
erations that create and delete agents (by e.g. using a more general presheaf
model of agents). Moreover, topologies on agents could be used to account for
potentially infinite sets of agents.

Acknowledgements. Daniel Eckert suggested that [2] may have a coalgebraic
generalisation. We are grateful to Yde Venema, under whose supervision the
second author wrote his Master’s thesis [3], on which this note is based.
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The classical linear-time/branching-time spectrum [3] organizes a plethora of notions
of behavioural equivalence on labelled transition systems at various levels of granularity
ranging from (strong) bisimilarity to trace equivalence. Similar spectra appear in other
system types; e.g., the spectrum for (generative) probabilistic systems again ranges from
branching-time equivalences such as probabilistic bisimilarity to linear-time ones such as
probabilistic trace equivalence. Graded semantics [4] combines universal coalgebra and
graded monads [5] to yield a generalization of the above phenomena, at the level of
coalgebras, which subsumes large portions of the linear-time/branching-time spectrum
(notably including even intermediate equivalences such as ready simulation) [1]. Thus,
graded semantics opens the door to unifying perspectives on topics of interest in the
semantics of concurrent systems; e.g., graded monads afford a systematic approach to the
extraction of characteristic modal logics for behavioural equivalences [1, 4] and preorders [2].

Another established theme in concurrency theory is the characterization of behavioural
equivalences in terms of equivalence games (e.g. the bisimilarity game), which have played a
key rôle in theoretical and algorithmic developments. This note summarizes the essence of a
generic equivalence game in the setting of graded semantics described above. In particular,
under mild conditions, we extract a Spoiler-Duplicator game from a given graded monad
which characterizes the respective equivalence: it ensures that two states are equivalent
under the semantics iff Duplicator wins the game.

Equivalence games. As the name suggests, graded monads provide an algebraic per-
spective on system equivalence; they correspond to graded theories (i.e. algebraic theories
with a notion of depth on their operations). It was noticed early on [4] that many desirable
properties of a semantics depend on this theory being depth-1, i.e. having only equations
between terms that are uniformly of depth 1. Standard examples include distribution of
actions over non-deterministic choice (trace semantics) or monotonicity of actions w.r.t. the
choice ordering (similarity) [1]. Put simply, our generic equivalence game plays out an

1
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equational proof in a depth-1 equational theory in a somewhat nontraditional manner: Du-
plicator starts a round by playing a set of equational assumptions she claims to hold at the
level of successors of the present state, and Spoiler then challenges one of these assumptions.

In many concrete cases, the game can be rearranged in a straightforward manner to
let Spoiler move first as usual; in this view, the equational claims of Duplicator roughly
correspond to a short-term strategy determining the responses she commits to playing after
Spoiler’s next move. In particular, after such rearrangement, the game instantiates to the
standard pebble game for bisimilarity. In the case of trace semantics on labelled transition
systems, several natural variants of the game arise by imposing natural restrictions on the
strategies played by Duplicator.

Pre-determinization. It turns out that the game is morally played on a form of pre-
determinization of the given coalgebra, which lives in the Eilenberg-Moore category of the
zero-th level of the graded monad, and as such generalizes a determinization construction
that applies in certain instances of coalgebraic language semantics of automata. Under
suitable conditions on the graded monad, this pre-determinization indeed functions as an
actual determinization: it turns the graded semantics into standard coalgebraic behavioural
equivalence for a functor that we construct on the Eilenberg-Moore category. This construc-
tion simultaneously generalizes, for instance, the standard determinization of serial labelled
transition systems for trace equivalence and the identification of similarity as behavioural
equivalence for a suitable functor on posets (specialized to join semilattices).

Infinite-depth semantics. While graded semantics has so far been constrained to apply
only to finite-depth equivalences (finite-depth bisimilarity, finite trace equivalence, etc.), we
obtain, under the mentioned conditions on the graded monad, a new notion of infinite-depth
equivalence induced by a graded semantics via the (pre-)determinization described above.
The natural infinite version of our equivalence game captures precisely this infinite-depth
equivalence. This entails a fixpoint characterization of graded semantics on finite systems,
giving rise to a prospective generic algorithmic treatment.
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