2,003 research outputs found

    A semantic autonomous video surveillance system for dense camera networks in smart cities

    Get PDF
    Producción CientíficaThis paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network

    An intelligent surveillance platform for large metropolitan areas with dense sensor deployment

    Get PDF
    Producción CientíficaThis paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform’s control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coveraMinisterio de Industria, Turismo y Comercio and the Fondo de Desarrollo Regional (FEDER) and the Israeli Chief Scientist Research Grant 43660 inside the European Eureka Celtic project HuSIMS (TSI-020400-2010-102)

    Security and the smart city: A systematic review

    Get PDF
    The implementation of smart technology in cities is often hailed as the solution to many urban challenges such as transportation, waste management, and environmental protection. Issues of security and crime prevention, however, are in many cases neglected. Moreover, when researchers do introduce new smart security technologies, they rarely discuss their implementation or question how new smart city security might affect traditional policing and urban planning processes. This systematic review explores the recent literature concerned with new ‘smart city’ security technologies and aims to investigate to what extent these new interventions correspond with traditional functions of security interventions. Through an extensive literature search we compiled a list of security interventions for smart cities and suggest several changes to the conceptual status quo in the field. Ultimately, we propose three clear categories to categorise security interventions in smart cities: Those interventions that use new sensors but traditional actuators, those that seek to make old systems smart, and those that introduce entirely new functions. These themes are then discussed in detail and the importance of each group of interventions for the overall field of urban security and governance is assessed

    Fast and Accurate, Convolutional Neural Network Based Approach for Object Detection from UAV

    Full text link
    Unmanned Aerial Vehicles (UAVs), have intrigued different people from all walks of life, because of their pervasive computing capabilities. UAV equipped with vision techniques, could be leveraged to establish navigation autonomous control for UAV itself. Also, object detection from UAV could be used to broaden the utilization of drone to provide ubiquitous surveillance and monitoring services towards military operation, urban administration and agriculture management. As the data-driven technologies evolved, machine learning algorithm, especially the deep learning approach has been intensively utilized to solve different traditional computer vision research problems. Modern Convolutional Neural Networks based object detectors could be divided into two major categories: one-stage object detector and two-stage object detector. In this study, we utilize some representative CNN based object detectors to execute the computer vision task over Stanford Drone Dataset (SDD). State-of-the-art performance has been achieved in utilizing focal loss dense detector RetinaNet based approach for object detection from UAV in a fast and accurate manner.Comment: arXiv admin note: substantial text overlap with arXiv:1803.0111

    Vision-Based Semantic Segmentation in Scene Understanding for Autonomous Driving: Recent Achievements, Challenges, and Outlooks

    Get PDF
    Scene understanding plays a crucial role in autonomous driving by utilizing sensory data for contextual information extraction and decision making. Beyond modeling advances, the enabler for vehicles to become aware of their surroundings is the availability of visual sensory data, which expand the vehicular perception and realizes vehicular contextual awareness in real-world environments. Research directions for scene understanding pursued by related studies include person/vehicle detection and segmentation, their transition analysis, lane change, and turns detection, among many others Unfortunately, these tasks seem insufficient to completely develop fully-autonomous vehicles i.e. achieving level-5 autonomy, travelling just like human-controlled cars. This latter statement is among the conclusions drawn from this review paper: scene understanding for autonomous driving cars using vision sensors still requires significant improvements. With this motivation, this survey defines, analyzes, and reviews the current achievements of the scene understanding research area that mostly rely on computationally complex deep learning models. Furthermore, it covers the generic scene understanding pipeline, investigates the performance reported by the state-of-the-art, informs about the time complexity analysis of avant garde modeling choices, and highlights major triumphs and noted limitations encountered by current research efforts. The survey also includes a comprehensive discussion on the available datasets, and the challenges that, even if lately confronted by researchers, still remain open to date. Finally, our work outlines future research directions to welcome researchers and practitioners to this exciting domain.This work was supported by the European Commission through European Union (EU) and Japan for Artificial Intelligence (AI) under Grant 957339

    Intelligent and Energy-Efficient Data Prioritization in Green Smart Cities: Current Challenges and Future Directions

    Full text link
    [EN] The excessive use of digital devices such as cameras and smartphones in smart cities has produced huge data repositories that require automatic tools for efficient browsing, searching, and management. Data prioritization (DP) is a technique that produces a condensed form of the original data by analyzing its contents. Current DP studies are either concerned with data collected through stable capturing devices or focused on prioritization of data of a certain type such as surveillance, sports, or industry. This necessitates the need for DP tools that intelligently and cost-effectively prioritize a large variety of data for detecting abnormal events and hence effectively manage them, thereby making the current smart cities greener. In this article, we first carry out an in-depth investigation of the recent approaches and trends of DP for data of different natures, genres, and domains of two decades in green smart cities. Next, we propose an energy-efficient DP framework by intelligent integration of the Internet of Things, artificial intelligence, and big data analytics. Experimental evaluation on real-world surveillance data verifies the energy efficiency and applicability of this framework in green smart cities. Finally, this article highlights the key challenges of DP, its future requirements, and propositions for integration into green smart citiesThis work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. 2016R-1A2B4011712).Muhammad, K.; Lloret, J.; Baik, SW. (2019). Intelligent and Energy-Efficient Data Prioritization in Green Smart Cities: Current Challenges and Future Directions. IEEE Communications Magazine. 57(2):60-65. https://doi.org/10.1109/MCOM.2018.1800371S606557

    Sistema de vídeo vigilancia semántico basado en movimiento. Aplicación a la seguridad y control de tráfico

    Get PDF
    Se realiza el diseño y la arquitectura de un sistema de videovigilancia semántico orientado al control de tráfico. A partir de los datos provenientes de una red de sensores visuales inteligentes y basándose en el conocimiento definido en una ontología, el sistema automáticamente detecta e identifica las alarmas ocurridas en la escena. Este trabajo se ha desarrollado dentro del proyecto Europeo Celtic HuSIMS.Teoría de la Señal y Comunicaciones e Ingenieria TelemáticaMáster en Investigación en Tecnologías de la Información y las Comunicacione
    • …
    corecore