193 research outputs found

    Integrated Architecture for Configuration and Service Management in MANET Environments

    Full text link
    Esta tesis nos ha permitido trasladar algunos conceptos teóricos de la computación ubicua a escenarios reales, identificando las necesidades específicas de diferentes tipos de aplicaciones. Con el fin de alcanzar este objetivo, proponemos dos prototipos que proporcionan servicios sensibles al contexto en diferentes entornos, tales como conferencias o salas de recuperación en hospitales. Estos prototipos experimentales explotan la tecnología Bluetooth para ofrecer información basada en las preferencias del usuario. En ambos casos, hemos llevado a cabo algunos experimentos con el fin de evaluar el comportamiento de los sistemas y su rendimento. También abordamos en esta tesis el problema de la autoconfiguración de redes MANET basadas en el estándar 802.11 a través de dos soluciones novedosas. La primera es una solución centralizada que se basa en la tecnología Bluetooth, mientras la segunda es una solución distribuida que no necesita recurrir a ninguna tecnología adicional, ya que se basa en el uso del parámetro SSID. Ambos métodos se han diseñado para permitir que usuarios no expertos puedan unirse a una red MANET de forma transparente, proporcionando una configuración automática, rápida, y fiable de los terminales. Los resultados experimentales en implementaciones reales nos han permitido evaluar el rendimiento de las soluciones propuestas y demostrar que las estaciones cercanas se pueden configurar en pocos segundos. Además, hemos comparado ambas soluciones entre sí para poner de manifiesto las diferentes ventajas y desventajas en cuanto a rendimento. La principal contribución de esta tesis es EasyMANET, una plataforma ampliable y configurable cuyo objetivo es automatizar lo máximo posible las tareas que afectan a la configuración y puesta en marcha de redes MANET, de modo que su uso sea más simple y accesible.Cano Reyes, J. (2012). Integrated Architecture for Configuration and Service Management in MANET Environments [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14675Palanci

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Performance evaluation of cooperation strategies for m-health services and applications

    Get PDF
    Health telematics are becoming a major improvement for patients’ lives, especially for disabled, elderly, and chronically ill people. Information and communication technologies have rapidly grown along with the mobile Internet concept of anywhere and anytime connection. In this context, Mobile Health (m-Health) proposes healthcare services delivering, overcoming geographical, temporal and even organizational barriers. Pervasive and m-Health services aim to respond several emerging problems in health services, including the increasing number of chronic diseases related to lifestyle, high costs in existing national health services, the need to empower patients and families to self-care and manage their own healthcare, and the need to provide direct access to health services, regardless the time and place. Mobile Health (m- Health) systems include the use of mobile devices and applications that interact with patients and caretakers. However, mobile devices have several constraints (such as, processor, energy, and storage resource limitations), affecting the quality of service and user experience. Architectures based on mobile devices and wireless communications presents several challenged issues and constraints, such as, battery and storage capacity, broadcast constraints, interferences, disconnections, noises, limited bandwidths, and network delays. In this sense, cooperation-based approaches are presented as a solution to solve such limitations, focusing on increasing network connectivity, communication rates, and reliability. Cooperation is an important research topic that has been growing in recent years. With the advent of wireless networks, several recent studies present cooperation mechanisms and algorithms as a solution to improve wireless networks performance. In the absence of a stable network infrastructure, mobile nodes cooperate with each other performing all networking functionalities. For example, it can support intermediate nodes forwarding packets between two distant nodes. This Thesis proposes a novel cooperation strategy for m-Health services and applications. This reputation-based scheme uses a Web-service to handle all the nodes reputation and networking permissions. Its main goal is to provide Internet services to mobile devices without network connectivity through cooperation with neighbor devices. Therefore resolving the above mentioned network problems and resulting in a major improvement for m-Health network architectures performances. A performance evaluation of this proposal through a real network scenario demonstrating and validating this cooperative scheme using a real m-Health application is presented. A cryptography solution for m-Health applications under cooperative environments, called DE4MHA, is also proposed and evaluated using the same real network scenario and the same m-Health application. Finally, this work proposes, a generalized cooperative application framework, called MobiCoop, that extends the incentive-based cooperative scheme for m-Health applications for all mobile applications. Its performance evaluation is also presented through a real network scenario demonstrating and validating MobiCoop using different mobile applications

    Effective bootstrapping of Peer-to Peer networks over Mobile Ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) and Peer-to-Peer (P2P) networks are vigorous, revolutionary communication technologies in the 21st century. They lead the trend of decentralization. Decentralization will ultimately win clients over client/server model, because it gives ordinary network users more control, and stimulates their active participation. It is a determinant factor in shaping the future of networking. MANETs and P2P networks are very similar in nature. Both are dynamic, distributed. Both use multi-hop broadcast or multicast as major pattern of traffic. Both set up connection by self-organizing and maintain connection by self-healing. Embodying the slogan networking without networks, both abandoned traditional client/server model and disclaimed pre-existing infrastructure. However, their status quo levels of real world application are widely divergent. P2P networks are now accountable for about 50 ~ 70% internet traffic, while MANETs are still primarily in the laboratory. The interesting and confusing phenomenon has sparked considerable research effort to transplant successful approaches from P2P networks into MANETs. While most research in the synergy of P2P networks and MANETs focuses on routing, the network bootstrapping problem remains indispensable for any such transplantation to be realized. The most pivotal problems in bootstrapping are: (1) automatic configuration of nodes addresses and IDs, (2) topology discovery and transformation in different layers and name spaces. In this dissertation research, we have found novel solutions for these problems. The contributions of this dissertation are: (1) a non-IP, flat address automatic configuration scheme, which integrates lower layer addresses and P2P IDs in application layer and makes simple cryptographical assignment possible. A related paper entitled Pastry over Ad-Hoc Networks with Automatic Flat Address Configuration was submitted to Elsevier Journal of Ad Hoc Networks in May. (2) an effective ring topology construction algorithm which builds perfect ring in P2P ID space using only simplest multi-hop unicast or multicast. Upon this ring, popular structured P2P networks like Chord, Pastry could be built with great ease. A related paper entitled Chord Bootstrapping on MANETs - All Roads lead to Rome will be ready for submission after defense of the dissertation

    Energy-efficiency media access control in wireless ad hoc networks

    Get PDF

    Design Methodology for Self-organized Mobile Networks Based

    Get PDF
    The methodology proposed in this article enables a systematic design of routing algorithms based on schemes of biclustering, which allows you to respond with timely techniques, clustering heuristics proposed by a researcher, and a focused approach to routing in the choice of clusterhead nodes. This process uses heuristics aimed at improving the different costs in communication surface groups called biclusters. This methodology globally enables a variety of techniques and heuristics of clustering that have been addressed in routing algorithms, but we have not explored all possible alternatives and their different assessments. Therefore, the methodology oriented design research of routing algorithms based on biclustering schemes will allow new concepts of evolutionary routing along with the ability to adapt the topological changes that occur in self-organized data networks

    Modeling and simulation of routing protocol for ad hoc networks combining queuing network analysis and ANT colony algorithms

    Get PDF
    The field of Mobile Ad hoc Networks (MANETs) has gained an important part of the interest of researchers and become very popular in last few years. MANETs can operate without fixed infrastructure and can survive rapid changes in the network topology. They can be studied formally as graphs in which the set of edges varies in time. The main method for evaluating the performance of MANETs is simulation. Our thesis presents a new adaptive and dynamic routing algorithm for MANETs inspired by the Ant Colony Optimization (ACO) algorithms in combination with network delay analysis. Ant colony optimization algorithms have all been inspired by a specific foraging behavior of ant colonies which are able to find, if not the shortest, at least a very good path connecting the colony’s nest with a source of food. Our evaluation of MANETs is based on the evaluation of the mean End-to-End delay to send a packet from source to destination node through a MANET. We evaluated the mean End-to-End delay as one of the most important performance evaluation metrics in computer networks. Finally, we evaluate our proposed ant algorithm by a comparative study with respect to one of the famous On-Demand (reactive) routing protocols called Ad hoc On-Demand Distance Vector (AODV) protocol. The evaluation shows that, the ant algorithm provides a better performance by reducing the mean End-to-End delay than the AODV algorithm. We investigated various simulation scenarios with different node density and pause times. Our new algorithm gives good results under certain conditions such as, increasing the pause time and decreasing node density. The scenarios that are applied for evaluating our routing algorithm have the following assumptions: 2-D rectangular area, no obstacles, bi-directional links, fixed number of nodes operate for the whole simulation time and nodes movements are performed according to the Random Waypoint Mobility (RWM) or the Boundless Simulation Area Mobility (BSAM) model. KEYWORDS: Ant Colony Optimization (ACO), Mobile Ad hoc Network (MANET), Queuing Network Analysis, Routing Algorithms, Mobility Models, Hybrid Simulation
    • …
    corecore