303 research outputs found

    Retrofitting privacy controls to stock Android

    Get PDF
    Android ist nicht nur das beliebteste Betriebssystem für mobile Endgeräte, sondern auch ein ein attraktives Ziel für Angreifer. Um diesen zu begegnen, nutzt Androids Sicherheitskonzept App-Isolation und Zugangskontrolle zu kritischen Systemressourcen. Nutzer haben dabei aber nur wenige Optionen, App-Berechtigungen gemäß ihrer Bedürfnisse einzuschränken, sondern die Entwickler entscheiden über zu gewährende Berechtigungen. Androids Sicherheitsmodell kann zudem nicht durch Dritte angepasst werden, so dass Nutzer zum Schutz ihrer Privatsphäre auf die Gerätehersteller angewiesen sind. Diese Dissertation präsentiert einen Ansatz, Android mit umfassenden Privatsphäreeinstellungen nachzurüsten. Dabei geht es konkret um Techniken, die ohne Modifikationen des Betriebssystems oder Zugriff auf Root-Rechte auf regulären Android-Geräten eingesetzt werden können. Der erste Teil dieser Arbeit etabliert Techniken zur Durchsetzung von Sicherheitsrichtlinien für Apps mithilfe von inlined reference monitors. Dieser Ansatz wird durch eine neue Technik für dynamic method hook injection in Androids Java VM erweitert. Schließlich wird ein System eingeführt, das prozessbasierte privilege separation nutzt, um eine virtualisierte App-Umgebung zu schaffen, um auch komplexe Sicherheitsrichtlinien durchzusetzen. Eine systematische Evaluation unseres Ansatzes konnte seine praktische Anwendbarkeit nachweisen und mehr als eine Million Downloads unserer Lösung zeigen den Bedarf an praxisgerechten Werkzeugen zum Schutz der Privatsphäre.Android is the most popular operating system for mobile devices, making it a prime target for attackers. To counter these, Android’s security concept uses app isolation and access control to critical system resources. However, Android gives users only limited options to restrict app permissions according to their privacy preferences but instead lets developers dictate the permissions users must grant. Moreover, Android’s security model is not designed to be customizable by third-party developers, forcing users to rely on device manufacturers to address their privacy concerns. This thesis presents a line of work that retrofits comprehensive privacy controls to the Android OS to put the user back in charge of their device. It focuses on developing techniques that can be deployed to stock Android devices without firmware modifications or root privileges. The first part of this dissertation establishes fundamental policy enforcement on thirdparty apps using inlined reference monitors to enhance Android’s permission system. This approach is then refined by introducing a novel technique for dynamic method hook injection on Android’s Java VM. Finally, we present a system that leverages process-based privilege separation to provide a virtualized application environment that supports the enforcement of complex security policies. A systematic evaluation of our approach demonstrates its practical applicability, and over one million downloads of our solution confirm user demand for privacy-enhancing tools

    ATTACKS AND COUNTERMEASURES FOR WEBVIEW ON MOBILE SYSTEMS

    Get PDF
    ABSTRACT All the mainstream mobile operating systems provide a web container, called ``WebView\u27\u27. This Web-based interface can be included as part of the mobile application to retrieve and display web contents from remote servers. WebView not only provides the same functionalities as web browser, more importantly, it enables rich interactions between mobile apps and webpages loaded inside WebView. Through its APIs, WebView enables the two-way interaction. However, the design of WebView changes the landscape of the Web, especially from the security perspective. This dissertation conducts a comprehensive and systematic study of WebView\u27s impact on web security, with a particular focus on identifying its fundamental causes. This dissertation discovers multiple attacks on WebView, and proposes new protection models to enhance the security of WebView. The design principles of these models are also described as well as the prototype implementation in Android platform. Evaluations are used to demonstrate the effectiveness and performance of these protection models

    All Your BASE Are Belong To You: Improved Browser Anonymity and Security on Android

    Get PDF
    Android is the most popular mobile operating system in the world. Android holds a marketshare of 82% with iOS, its nearest rival, managing a distant 13.9%. Android’s unparalleled ubiquity makes it a popular target for malware and malvertising. Specifically, Android browsers have been targeted because many users spend great durations of time browsing the Internet. Unfortunately, as ways to track, fingerprint, and exploit unsuspecting users have increased, Browsing Anonymity and Security (BASE) has contrastingly stalled. Third party apps seeking to displace the oft-maligned stock browser tend to focus on user privacy and defer malware defense to default operating system protections. This thesis introduces a novel browser - Congo. Congo’s recursive definition, Congo’s Obeism Negates Gentile Occurrences, hints at an augmented browser with a hardened sandbox(malware deterrent) and reinforced privacy protection (malvertising deterrent). Importantly, Congo requires no kernel modification thus making it readily available to Android OS versions later than Froyo. A reference mechanism, by the name Kinshasa, underpins the integrity and security of Congo

    ANANAS - A Framework For Analyzing Android Applications

    Full text link
    Android is an open software platform for mobile devices with a large market share in the smartphone sector. The openness of the system as well as its wide adoption lead to an increasing amount of malware developed for this platform. ANANAS is an expandable and modular framework for analyzing Android applications. It takes care of common needs for dynamic malware analysis and provides an interface for the development of plugins. Adaptability and expandability have been main design goals during the development process. An abstraction layer for simple user interaction and phone event simulation is also part of the framework. It allows an analyst to script the required user simulation or phone events on demand or adjust the simulation to his needs. Six plugins have been developed for ANANAS. They represent well known techniques for malware analysis, such as system call hooking and network traffic analysis. The focus clearly lies on dynamic analysis, as five of the six plugins are dynamic analysis methods.Comment: Paper accepted at First Int. Workshop on Emerging Cyberthreats and Countermeasures ECTCM 201

    UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

    Get PDF
    We propose UserLoop, a system which makes use of sensor data and human feedback to enforce user awareness of sensitive actions performed by mobile Apps. We present the architecture of the system, describe our prototype implementation and report on the evaluation we run in order to assess its performance both with regards to its effectiveness and its runtime footprint. The results confirm the feasibility of the system and its ability to prevent permission abuses by malicious App

    Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers

    Full text link
    In this paper, we present a black-box attack against API call based machine learning malware classifiers, focusing on generating adversarial sequences combining API calls and static features (e.g., printable strings) that will be misclassified by the classifier without affecting the malware functionality. We show that this attack is effective against many classifiers due to the transferability principle between RNN variants, feed forward DNNs, and traditional machine learning classifiers such as SVM. We also implement GADGET, a software framework to convert any malware binary to a binary undetected by malware classifiers, using the proposed attack, without access to the malware source code.Comment: Accepted as a conference paper at RAID 201

    Fine-Grained Access Control for HTML5-Based Mobile Applications in Android

    Full text link
    HTML5-based mobile applications are becoming more and more popular because they can run on different platforms. Several newly introduced mobile OS natively support HTML5-based applications. For those that do not provide native sup-port, such as Android, iOS, and Windows Phone, developers can develop HTML5-based applications using middlewares, such as PhoneGap [17]. In these platforms, programs are loaded into a web component, called WebView, which can render HTML5 pages and execute JavaScript code. In order for the program to access the system resources, which are isolated from the content inside WebView due to its sand-box, bridges need to be built between JavaScript and the native code (e.g. Java code in Android). Unfortunately, such bridges break the existing protection that was origi-nally built into WebView. In this paper, we study the potential risks of HTML5-based applications, and investigate how the existing mobile systems ’ access control supports these applications. We fo-cus on Android and the PhoneGap middleware. However, our ideas can be applied to other platforms. Our studies indicate that Android does not provide an adequate access control for this kind of applications. We propose a fine-grained access control mechanism for the bridge in Android system. We have implemented our scheme in Android and have evaluated its effectiveness and performance. 1

    Android security framework : enabling generic and extensible access control on Android

    Get PDF
    We introduce the Android Security Framework (ASF),a generic, extensible security framework for Android that enables the development and integration of a wide spectrum of security models in form of code-based security modules. The design of ASF reflects lessons learned from the literature on established security frameworks (such as Linux Security Modules or the BSD MAC Framework) and intertwines them with the particular requirements and challenges from the design of Android’s software stack. ASF provides a novel security API that supports authors of Android security extensions in developing their modules. This overcomes the current unsatisfactory situation to provide security solutions as separate patches to the Android software stack or to embed them into Android’s mainline codebase. As a result, ASF provides different practical benefits such as a higher degree of acceptance, adaptation, and maintenance of security solutions than previously possible on Android. We present a prototypical implementation of ASF and demonstrate its effectiveness and efficiency by modularizing different security models from related work, such as context-aware access control, inlined reference monitoring, and type enforcement
    • …
    corecore