
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Undergraduate Theses Theses and Dissertations 

5-1-2016 

All Your BASE Are Belong To You: Improved Browser Anonymity All Your BASE Are Belong To You: Improved Browser Anonymity 

and Security on Android and Security on Android 

Peter Saisi 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Saisi, Peter, "All Your BASE Are Belong To You: Improved Browser Anonymity and Security on Android" 
(2016). Dartmouth College Undergraduate Theses. 108. 
https://digitalcommons.dartmouth.edu/senior_theses/108 

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at 
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an 
authorized administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/108?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


All Your BASE Are Belong To You:
Improved Browser Anonymity and Security on Android

Author: Peter Saisi
Advisor: Charles C Palmer

Dartmouth College
Dartmouth Computer Science Technical Report TR2016-800

Abstract

Android is the most popular [1] mobile operating sys-
tem in the world. Android holds a marketshare of 82%
with iOS, its nearest rival, managing a distant 13.9%.
Android’s unparalleled ubiquity makes it a popular tar-
get for malware and malvertising. Specifically, Android
browsers have been targeted because many users spend
great durations of time browsing the Internet. Unfor-
tunately, as ways to track, fingerprint, and exploit un-
suspecting users have increased, Browsing Anonymity
and Security (BASE) has contrastingly stalled. Third
party apps seeking to displace the oft-maligned stock
browser tend to focus on user privacy and defer mal-
ware defense to default operating system protections.
This thesis introduces a novel browser - Congo. Congo’s
recursive definition, Congo’s Obeism Negates Gentile
Occurrences, hints at an augmented browser with a hard-
ened sandbox(malware deterrent) and reinforced privacy
protection (malvertising deterrent). Importantly, Congo
requires no kernel modification thus making it readily
available to Android OS versions later than Froyo. A
reference mechanism, by the name Kinshasa, underpins
the integrity and security of Congo.

1 Introduction

BASE is not an issue solely restricted to individual users.
The explosion of mobile devices has not spared corpo-
rate institutions. In 2015, 80% [2] of global businesses
self-reported that mobile phones were a medium-to-high
security priority. Despite the fact that some businesses
may mitigate exposure by providing locked down de-
vices, about 59% of businesses employ a BYOD pol-
icy. Since 2011, there have been about 70 [3] reported
Android botnets discovered. Contrastingly, iOS has had
only 2 [4] recorded botnets. This huge difference in fates
is partly because of Android’s Bazaar [5] ethos. An-
droid espouses an open constitution that undergirds user

freedom, but unfortunately also exposes itself to attack
through the very channel of openness. The emergence of
bots highlights the gradual, but expected, commercial-
ization of Android malware.

Contribution: In this thesis, Congo, a hardened An-
droid mobile browser is introduced. Congo is sandboxed
by the OS similar to any other Android app. However,
unlike most Android apps, Congo is further restricted
within the default sandbox by another bespoke sandbox
enforced by Kinshasa. The extra sandbox employs the
principle of least privilege. Consequently, Congo has
bare and time-constrained privileges. The sandbox is
achieved through sideloading a custom library that in-
jects and hooks into Congo’s Procedure Linking Table.
Library injection and hooking is not particularly novel
on Android. However, what makes Congo’s approach in-
teresting is that it:
(a) Works on all Android versions later than Froyo
(b) Requires no rooting or kernel modification
(c) Requires no separate application for ancillary work

such as parsing Android Parcels
(d) Implements a refined means of intercepting binder

communications and parsing Parcels

At the time of writing, no available formal research
on application sandboxing achieves all the enumerated
above propositions. Interestingly, some of the injection
tactics used are reminiscent of persistent Android mal-
ware [6]. Dynamic instrumentation, linking and loading
of executables, and Android overloaded interprocess
communication are all leveraged to create a reference
monitoring mechanism that invigilates application
activity. Availability of Android source code provided
great insight into the ARM linker [7] as implemented
through the aptly named crazy linker [8] suite of files.
Given how resource constrained mobile devices are,
Congo’s overhead is also a point of focus. Congo’s



main advantage over other mobile browsers is that it not
only minimizes a user’s fingerprint, but also proactively
guards against malware. The Congo sandbox’s edge over
other implementations is its undemanding installation
i.e., a person need only download and install the APK
with no need to resort to rooting or flashing device
firmware.

2 Background on Android

2.1 Introduction to Android
Android is an open source operating system [9]. Its stack
comprises

• Android Kernel - a patched version of the main-
stream Linux kernel (often with the same version
number). It is the core of the operating system and
provides fundamental low-level services.

• Middleware - comprises application layer (Frame-
works i.e. Media Framework) and native libraries
(i.e. OpenSSL). This layer provides the core of Ap-
plication APIs available to Android applications

• Application layer - comprises both stock i.e. Clock
and third party applications i.e. Firefox Browser for
Android

1: Android Stack

2.2 Android Execution Model
Android applications are packaged using the eponymous
APK(Android application package) file format. An APK
is an archive that contains resources needed for execu-
tion of an application. Most importantly, it contains files

in dex. Dex files, platform independent executable byte-
code, are the principle entry point for execution. In An-
droid versions younger than 4.4, the Dalvik runtime per-
forms JIT(Just-In-Time) compilation of dex bytecode.
Android 4.4, introduced ART(Android Runtime). In
its contemporary form, ART performs AOT(Ahead-of-
Time) compilation that converts Dalvik bytecode into
system dependent binary. AOT’s advantage is that an
app is pre-compiled only once (when it is installed). JIT
does repeated and continual interpretation of the app ev-
ery time it runs. Consequently, JIT has a bigger memory
footprint because the app and JIT interpreter run con-
currently. AOT does not have such memory pressure
or latency because it is compile-once and executes na-
tively thereafter. AOT’s reduced footprint leads to re-
duced power consumption in portable devices.

2.3 Android Application Security Model

2.3.1 Installation

Android enforces the requirement that all apps are dig-
itally signed. This policy accommodates self-generated
certificates by developers. When the OS is about to up-
date an app, the update proceeds only if the proposed
update’s certificate matches the current app’s certificate.

Android versions after 2.3 include an opt-in Verify
Apps feature. This feature was first introduced for v4.2,
but later backported to earlier versions. Verify Apps scans
an app at install time for malicious signatures. Verifica-
tion is done mainly with a view to protect users from
malicious app sideloading. App sideloading, in this con-
text, is the installation of apps by channels other than the
officially sanctioned Google Play Store.

2.3.2 Execution

All apps and services run in individual sandboxes. Con-
sequently, system services are sandboxed, albeit with
elevated privileges. Outside the kernel ring, however,
there is no provision for root or superuser with uncon-
strained access. The virtual sandbox limits what the ap-
plication can access outside itself. Nevertheless, some
applications usually do require external resources. For
instance, a Phone Dialer application would need to ac-
cess android.telephony service. Android solves this
by instituting a permissions model. Whenever a user in-
stalls an app, Android reads the app manifest to deter-
mine which permissions the app has declared it needs.
When the app is launched, Android asks the user to ap-
prove granting permission(s) to the app. A benefit of this
is that the user can easily adjudge an app’s nefariousness
i.e. a Siren app, dedicated to only making siren sounds,
would be out of place asking for SMS permissions.
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Android’s process privileging and isolation is a de-
parture from Linux. Each app is assigned a unique
user ID (UID) and run as the user in a separate pro-
cess. Linux contrastingly has multiple applications run-
ning with same user permissions. The Android kernel en-
forces process isolation through standard means of user
and group IDs. Google defines the sandbox as “sim-
ple, auditable, and based on decades-old, UNIX-style
user separation of processes and file permissions” [10].
Discretionary Access Controls, such as file permissions,
ensure that an application A’s private data directory
is not accessible by an application B. Additionally,
Android employs Security Enhanced Linux (SELinux)
to ensure Mandatory Access Control over all processes,
even processes running as root and superuser. SELinux
on Android enforces restrictions and logs any violations
that may occur. The kernel-level sandbox has the im-
plication that all the layers above it (middleware, ap-
plication framework) run within the application sand-
box. Consequently, native code is as secure as interpreted
code. Additionally, C code written via the NDK(Native
Development Kit) can be just as secure as vanilla Java
code. Any local memory corruption only affords privi-
lege within the app’s sandbox.

Android 4.1 (Jelly Bean) introduced a new
android:isolatedProcess attribute for services.
This attribute allows for creation of a process entirely
separate from the parent with no privileges of its own.
Such a feature is particularly useful for creating un-
privileged independent processes dedicated to handling
untrusted data such as JavaScript or PDF files.

The primary sanctioned manner by which applica-
tions can communicate outside the sandbox is through
Android’s interprocess communication channel called
Binder. A client wishing to use a service cannot com-
municate directly with the process providing the service.
Binder acts as the middleperson that mediates such re-
quests. A client process issues a request, containing de-
tails such as method to execute and arguments, to the
binder. The binder adds extra information, such as the
client’s UID, to the request. Thereafter, the transaction is
relayed to the service. Addition of the UID is necessary
as it acts as a unique identifier. When a process requests a
service; the reference monitor ensures the process indeed
has relevant permissions. For instance, application
A with only telephony permissions making a request to
the location service will encounter an insufficient permis-
sions exception.

3 Requirements Analysis

The main objectives of Congo’s framework are:
• Version agnosticism: The sandbox works on ver-

sions of Android later than 2.3. Code accounting for

platform specific differences is fewer than 20 lines.
Most of the platform lines account for changes in
API and resource locations in the Android source

• No source modification: The sandbox requires not
root privilege nor does it require modification of
kernel. Resultantly, it is portable across the most
customized of Android images.

• Context aware: Unlike predominant security mod-
els that are context agnostic, the reference monitor
enforces policies with consideration of context pa-
rameters such as time and location.

• Light coupling: The sandbox is simple and
generic. It easily couples with existing code in no
more than 10 lines of code for basic integration.
Other methods would require rooting and installa-
tion of a third party framework such as xposed.

3.1 Threat Model

For full coverage, it is assumed that the host device:
• Is on stock Android
• Is not rooted

The proposition that stock and unrooted Android is
required for full coverage does not imply Congo is
inoperable on modified devices. Instead, the implication
is that rooting or flashing Android will reduce Congo’s
coverage. Rooting introduces glaring exploitable av-
enues, such as activation of superuser beyond the kernel,
in the underlying OS. Such avenues inductively weaken
Congo’s guarantee of security.

There are two assumed kinds of attackers :
• Trackers: Characteristic of advertisers who aggre-

gate device and behavioral information to create at-
tributable fingerprints of devices. Device informa-
tion includes media access control (MAC) address,
screen resolution, or browser user agent. Behav-
ioral information includes typing rate, scroll rate, or
browsing history.

• Crackers: Characteristic of malicious actors who
attempt code execution on target device. For in-
stance, a maladvert may load malicious JavaScript
that attempts Java method invocation. Kinshasa

works predominantly to mitigate this threat class.

3.2 Related Work

3.2.1 Tor

Tor-oriented browsers such as Orfox [11], Orbot [12]
focus primarily on privacy of the user. However, Tor
browsers that fail to consider app integrity as a security
focus are vulnerable to malicious attacks. Additionally,
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such apps provide little service to individuals resident in
countries censuring the Tor service. Admittedly, privacy
offered by Tor is remarkably sophisticated to Congo’s at-
tempt. However, Congo provides coverage for both pri-
vacy and security.

3.2.2 Multi-Process Architecture

Browsers such as Chrome for Android [13] use a multi
process architecture for tabs. Tabs run as deprivileged
independent processes. Compromise of a tab does not
daisychain into corruption of the parent or sibling pro-
cesses. However, the deprivileged process is still suscep-
tible to privilege escalation attacks that exploit its access
to Java reflection APIs, shell, and native code [14]. Con-
sequently, isolation is important yet not comprehensive.
Contrastingly, Congo is able to block reflection attacks
or shell code run attempts.

3.2.3 Sandbox + App Architecture

There have been a number of papers on permission reg-
ulation and sandboxing on Android. The most robust so-
lutions such as Apex [15], POLUS [16], CRePE [17],
Saint [18] require modification of Android source to
achieve unparalleled extension of the operating system.
The number of distinct Android flavors to support ex-
plodes in complexity when fragmentation is considered.
Over 24,000 distinct Android devices [19] were encoun-
tered in 2015 (Contrastingly, no more than 30 distinct
iOS device types are currently active). Consequently,
portability is hampered as accommodations not only
span across different Android versions, but also consider
variations within a version. Moreover, user cognitive
friction is increased because installation of augmented
source requires flashing - an act that exceeds most users’
modest technical abilities.

Alternatives that require extensive binary rewriting,
such as miAdBlocker [20] or AppGuard [21], are par-
ticularly limited in efficacy. Such techniques intimate fa-
miliarity with the target application. Additionally, mal-
ware can easily sidestep protections through dynamic
loading of modules. Certain protective measures, such
as PatchDroid [22], rely on function hooking enabled
through ptrace. Unfortunately, such techniques have
great overhead accrued from the tracing of function calls
and subsequent redirection. Use of ptrace also requires
root privileges.

Techniques that enforce supervision through separate
apps are highly portable [23]. However, such techniques
incur runtime overheads because the reference monitor is
a fully fledged independent application. Additionally, la-
tency is increased as service requests have to be relayed
to and from the mediating monitor application. Conse-

quently, a sandbox for a browser would involve running
two apps concurrently: the sandboxing reference mon-
itor and subordinate browser. Furthermore, timing at-
tacks can exploit race conditions to hook malware be-
fore the reference monitor fully initializes. Most Android
anti-virus applications [24, 25] are less sophisticated im-
plementations of the independent invigilator. Antivirus
apps pattern match against malware signatures. Conse-
quently, certain classes of exploitation that rely on data-
execution-as-code are undetected. In browsers, data-
execution-as-code is a prominent attack vector employed
in specially crafted JavaScript or embedded files.

4 Congo Architecture

The Sandbox comprises:
• Interposition Mechanism
• Reference Monitor (Kinshasa)

4.1 Formal Realization of Framework
1. REQUEST

A request, τ , is a 2-tuple (requester,resource) that
associates a resource with the requester.

A page, www.bing.com, requesting location ac-
cess is denoted (www.bing.com,android.location)

2. ACCESS
access is a singleton of the set {allow,deny}.

3. RULE
A rule, R, is a tuple (resource,access) that describes
the availability of a resource as governed by access.

A rule, R′, denying access to the
camera would be denoted as the tuple
(android.hardware.camera,deny).

Contrastingly, a system with no defined rule for
camera access is governed by the implicative rule
(android.hardware.camera, /0)

A targeted rule for a specific web-
site such as google.com would be
(android.hardware.camera,allow,google.com)

4. OVERRIDE
An Override, V, is a function of a rule, R, that gener-
ates a new rule R′ with a different access singleton

V (R) =V (resource,access)

= R′

= (resource,access′)

maps.google.com, may request location per-
missions. Assuming a priori existence of a deny
rule for location services, Congo will block the
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request and notify the user. The user, however, may
elect to allow location access thereby overriding
the original (android.location,deny) rule.

5. POLICY
A policy, P, is a function that generates a subset of a
set of rules. It behaves similar to a partition function
with the relaxed requirement that an element may
belong to multiple subsets i.e. a rule may belong to
multiple policies.

S = {R1,R2, . . . ,Rn} finite set of all rules
Z Internet Policy
Z(S) = S′ set of Internet rules

6. CONTEXT
A context, C, is a set of determinable environment
variables.

C = {location, time,history, . . . ,network}

7. REFERENCE MONITOR
Reference Monitor, Φ, is a function of context,
a request, and a policy. It maps the 4-tuple
(request,rules, policy,context) to a bit. A bit is
analogous to the “yes/no” decision on a request.

EXAMPLE 1

r1 = (android.hardware.camera,deny)

r2 = (android.location,deny)

S = {r1,r2} Rules set
P Camera Policy
C Context set
χ = (m. f acebook.com,android.hardware.camera)

Φ handling the request χ has the functional form

Φ(χ,S,P,C) = /0

The result, /0, dictates m.facebook.com is denied
access. The logic can be iteratively broken down.
On receiving the χ request, Φ applies Camera Pol-
icy, P, to obtain the relevant rules.

P(S) = r1 (8a)

Rule, r1, specifies that the access to an-
droid.hardware.camera is deny. Consequently, the
camera access request is denied.

EXAMPLE 2

r1 = (android.hardware.camera,allow,Monday)

r2 = (android.location,deny)

S = {r1,r2}
P Camera Policy
C = {Tuesday,38°N,77°W} Context set
χ = ( f b.com,android.hardware.camera)

Φ handling the request χ will yield.

Φ(χ,S,P,C) = /0

As demonstrated in Example 1, Φ employs
the policy function to obtain relevant rules
for access. This distills to the rule tuple
(android.hardware.camera,allow,Monday)
that can be verbalized as only allow camera access
on Monday. However, based off current context C,
request χ is denied as the current day is Tuesday.

4.2 General Interposition Mechanism

Interposition allows a middle person to mediate whether
a requested action is legal or appropriate. Congo

intercepts system calls to libc - the Android standard
C library. For a normal app, a Java method call that
opens a file will resolve to an fopen in the chain of
causation. For Congo, a Java method call will resolve
to sandbox fopen which is a wrapper function around
fopen. Function hooking allows swapping out fopen
for sandbox fopen in Congo’s Procedure Lookup
Table. Interception occurs at the Native code level.

Motivation for Native Code Interception: The An-
droid stack affords Java-level or Native-level entry
points for interception. Interception at Java-level is
an inexpensive alluring method; however, it has some
shortcomings. Interception of Java methods would
require auditing and tracing of a considerable amount
of methods. For instance, a desire to intercept file
read/write operations would require an examination of
51 candidate methods in Java.io package [26]. The
explosion of targets in Java-land begets an examina-
tion of a better alternative. Native-level interception
becomes a tractable solution based on the observation
that Java API calls resolve to C calls. Consequently,
all the cited 51 methods resolve to C functions: open,
close, read, and write. Another disadvantage is that
Java-level supervision can easily be sidestepped through
Java reflection or sideloading of dex files. Therefore,
the standard C library of operations is a great chokepoint.

Function Hooking: Function hooking is a staple tech-
nique. It has been extensively used for means both
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positive (sandboxing) [27] and nefarious (malware) [6].
Hooking itself is not particularly novel, but the means
by which Congo achieves it is. Unlike other attempts at
Android hooking, Congo’s hooking imitates the Android
kernel’s dynamic linker and loader - the Android Crazy
Linker. As a consequence, coverage is increased to all
modern versions of Android (versions later than Froyo).
Another side-benefit is that the hooking mechanism is
genericized well enough to work on any Android app.

Hooking exploits the fact that Android object files fol-
low the Executable and Linkable Format (ELF) specifi-
cation. When an executable is compiled, its references
to externally defined functions, i.e. open, fork, are
initialized as stubs. These stubs are in a designated re-
gion on the binary known as the Procedure Linkage Table
(PLT). Stubs are recorded in the PLT because the even-
tual memory mapped addresses of functions are indeter-
minable at compile time.

At runtime, the linker-loader primes the binary for
execution by performing runtime binding. Specifically,
PLT stubs are updated to properly map a function name,
a.k.a symbol name, to the now known address of the
function. A promising idea would have been to compel
the linker-loader to write in bespoke addresses on cus-
tom targets. However, since the linker-loader is a very
essential core of the OS, it is highly privileged and pro-
tected. Consequently, modifying the linker-loader can
only be feasibly achieved through expensive means such
as rooting the device or building from modified source.
A viable alternative is to instead wait for linker-loader
to transfer control to the binary and then overwrite the
loader’s entries.
Congo’s hooking module is invoked immediately af-

ter the linker-loader cedes control. The module traverses
through the process’s virtual memory space remap-
ping PLT entries. PLT mappings to standard C calls
such as open and fork are remapped to corresponding
sandbox open and sandbox fork. Algorithm 2 shows
the pseudocode for function hooking.

4.3 Binder Interposition Mechanism

Reliably and effectively intercepting the binder was a re-
markable challenge with regard to both lack of documen-
tation and seeming technical infeasibility.

The Android binder process intercommunication
mechanism mostly espouses the microkernel philosophy.
It is characterized by message passing between user ap-
plications and user space based services that relay to
a microkernel. The binder framework is instantiated
through libbinder.so (user space library) and /dev/binder
(a global readable/writeable device driver). Common
app messaging mechanisms, such as Intents and Con-
tentProviders, are built on top of binder. Congo lever-

2: Function Hooking

ages the fact that any complex communication or ob-
jects are marshalled into discernible buffers. For in-
stance, an app requesting to send an SMS uses the
binder framework to issue a request that contains a
binder transaction data struct shown below.

1 struct binder_transaction_data {

2 union { size_t handle; void *ptr; } ←↩
target;

3 void *cookie;

4 unsigned int code; unsigned int flags;

5 pid_t sender_pid; uid_t sender_euid;

6 size_t data_size; size_t offsets_size;

7 union {

8 struct {

9 const void *buffer;

10 const void *offsets;

11 } ptr;

12 uint8_t buf [8];

13 } data;

14 };

The key struct members are unsigned int code (in-
dex to function to be invoked) and ptr.buffer (a buffer
that comprises a descriptor of requested service’s inter-
face and arguments to requested function). For the pre-
viously mentioned SMS example, the corresponding val-
ues for the highlighted struct members would be:

• unsigned int code is 5. An index of 5 resolves
to the sendText method that ISms interface de-
clares.

• ptr.buffer contains a unicode string,
com.android.internal.telephony.ISms,
which is the interface descriptor. Coming after
the descriptor are the actual text message and
recipient’s phone number respectively.

The resolution of complex Java invocations to native
code again provides an important entry point for inter-
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position. Unlike techniques that require separate con-
comitant services or applications to parse Android’s In-
terface Definition Language, the employed interposition
technique allows for tight coupling of binder interception
with reduced overhead. Additionally, Congo’s technique
is portable across Android versions. Our technique in-
tercepts at the point where data has been parceled and is
about to be submitted to the binder driver. Pseudocode
for binder interposition is shown in Algorithm 3 below.

3: Binder Interposition

Binder interception involves modification of incom-
ing and outgoing data. For dangerous calls, the potent
parcel payload may be substituted with an empty pay-
load that raises an invocation failure. The ability to parse
the buffer affords many opportunities for identification of
dangerous behavior. For instance, surveillance of Inter-
net connections is a two-ringed defense. The first defense
is binder interposition that allows for parsing of Android
parcels (binder buffers). A request to connect to a hypo-
thetical www.android.infection.agent.com will be
identified in ptr.buffer and denied. Techniques such
as encryption of strings may, however, mask such behav-
ior. Fortunately, the second ring of function hooking acts
as a last defense. Despite the fact that a malicious url
may be masked in transit, it has to be decrypted for stan-
dard communication. Consequently, the url is unmasked
when used in conjunction with C networking functions.
The native C functions in this instance are Kinshasa’s
hooked functions that screen and protect from malicious
behavior. As a result, potential peril is avoided.

We later show that interposition, though seemingly in-
vasive and expensive, adds reasonable overhead to nor-
mal operations.

4.4 Kinshasa Reference Monitor

Implementation-wise, reference monitoring is tightly
coupled with interposition. Algorithm 3 shows a sur-
mise of interposition’s integration with Kinshasa. The
reference monitor merely provides a wrapper about the
original function. In Algorithm 3, modify outgoing

evaluates the safety of a binder call. If unsafe, the po-
tentially dangerous invocation is cancelled and does not

reach the ioctl call. Cancellation is not the only pos-
sible response to dangerous requests. A phonebook re-
quest may be allowed to pass only for the consequent
reply to the request to be modified. In this instance, the
legitimate phone book in the reply is substituted with a
dummy phone book. Despite deep coupling of code, the
breadth of supervision can be better understood through
Kinshasa’s policy framework.

4.4.1 Policy Framework

Privacy: This policy has the dual intent of undergirding
user and application data confidentiality.

• User Privacy - Binder requests to confidential ser-
vice providers, such as the phonebook, are sub-
ject to the reference monitor. The reference mon-
itor gives the user the option of granting or deny-
ing access. However, not all requests are mediated
through the user. Certain contexts have enough in-
formation for user-excluded mediation. On strict
permissions, if a device on public wifi receives a
request for location from an unknown website, the
request is denied without user involvement.

• Application Data - Interposition of I/O tools
i.e: open, read, write allows for mediation of
filesystem reads and writes.

Network Communications: This policy monitors the
following external communication channels:

• Internet - Connection attempts to websites are me-
diated. A blacklist of known malicious or adware-
laden targets are used to referee Internet connection
requests.

• Cellular - Interposition of binder requests to
telephony services aims to prevent abuse of SMS
and phoning features. Malicious ventures use SMS
and phoning as covert communication channels or
as means to rack up charges on premium phone
services.

Execution: This policy prevents remote code execu-
tion. The following channels for privilege escalation are
blocked:

• Reflection - A malicious actor may use reflection to
gain access to classes and methods whose visibility
is hidden through access modifiers i.e. private or
protected.

• Shell Runtime - The Android runtime ordinarily al-
lows access to bash runtime. Such facility is par-
ticularly dangerous for rooted users who normally
have root user enabled with the default password.
At first glance, non-rooted devices may seem im-
mune to shell chicanery. However, a clever attacker
can invoke or chain standard shell commands, i.e.
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ls, grep, to induce clinical stack and buffer over-
flows for privilege escalation. Additionally, seem-
ingly innocuous commands, such as ls, can be used
to fingerprint a device.

• Native Code - C library functions that are standard
ingredients for privilege escalation techniques, i.e.
dlopen, are made unavailable to Congo. Kinshasa
responds with failure to invocation requests for
such functions.

Context: This policy utilizes a context manager to en-
able proactive mitigation of threats. The context manager
works across domains such as:

• Frequency - URLs not in browsing history are scru-
tinized greatly. Such unusual URLs are only loaded
after an advance warning is displayed and the user
elects to proceed with visiting the URL.

• Location - Locations are classified similar to the
Windows OS designation of private and public net-
work locations. Public unsecured networks are
treated as insecure by default and requests for priv-
ilege and privileged data are not honored.

• Time - Certain privileges can be availed at only cer-
tain times as demonstrated in Example 2. Addition-
ally, rules can be created with expiration dates. For
instance, a user could disable location services for
an hour. Consequently, Kinshasa, within the hour
window, will reject location requests unless explic-
itly overruled by the user.

5 Evaluation

Efficiency of a proposed mobile framework is critically
important; especially because mobile devices are re-
source constrained. As a result, evaluation is performed
through a series of repeated trials on different metrics.
Congo is tested for Runtime Robustness, Performance
Impact, and Sandbox Enforcement. Tests reported are
performed on a Nexus 5 on Android 4.4, the most pop-
ular version of Android on active handsets. Addition-
ally, with a view to corroborate results, evaluations are
also performed on a Nexus 6 running Android 5 and em-
ulators running the modern version families of Android;
namely, Gingerbread, Honeycomb, Ice Cream Sandwich,
Jelly Bean, KitKat, and Lollipop.

5.1 Runtime Robustness
To asses robustness, Congo is automated to load the top
500 [28] websites globally. Each website is subject to 50
input events to mimic navigation about the website. 4.2%
of websites crash upon launch or navigation. 64% of the
crashes are attributable to general website noncompli-
ance with the webkit rendering engine. The remainder,

36%, of the crashes are because of websites requesting
unanticipated permissions which were ungracefully de-
nied. However, a success rate of 95.8% for a dynamic
list of the most popular websites globally is a promising
achievement for Congo. The success rate can further be
improved through a complicated robust overloading of
the JavaScript V8 engine or a simple ECMAScript inter-
preter.

5.2 Performance Impact
Table 1 and Table 2 show the results of benchmarking
Android API calls and syscalls.

sycall Native(µs) Congo(µs)
Overhead(%)
= Congo−Native

Native
create 34.5 40.3 16.81
open 6.4 12.1 89.06
ls 5.9 11.2 89.83
rm 95.6 100.7 5.33

Table 1: Timed Syscall Microbenchmarks

For syscalls, it is observed that the overhead is an al-
most constant 5µs which represents the average duration
for a local target request to be handled.

API Native(ms) Congo(ms)
Overhead(%)
= Congo−Native

Native
Create Socket 119.8 130.9 9.27
Obtain Location 40.8 51.56 14.66
Query Contacts 10192.2 10051.9 1.38

Table 2: Timed API Microbenchmarks

Unsurprisingly, API calls incur the most overhead.
The overhead is reasonably under 15% and quite similar
to Boxify [29]. The reason for the substantial overhead
compared to syscalls is that API calls require intercep-
tion of IPC packets (Android parcels). Packet intercep-
tion is expensive in memory and time since it involves
cloning of packets and an accompanying shuttling from
native-level to Java-level and back. The demonstrated
overheads, however, are the worst case scenario. Or-
dinarily, not many remote IPC-based APIs are used by
Android applications; especially Congo. As a result, the
15% is not a constant recurrent bottleneck. Additionally,
once an API handle is acquired, future invocations of the
API are not invigilated for the handle’s duration.

5.3 Sandbox Enforcement
To test actual protection from malware and malvertising,
Congo is tested against 20 variant techniques used to ex-
ploit user privacy and security on Android [6]. Congo is
able to successfully defend against security and privacy

8



leaks. Due to time limitations and difficulty in tracking
fully fledged malicious websites, the sample set was kept
at 20. Despite the seemingly small sample size, the set
was found to be quite representative of the commonest
malicious methods.

The following JavaScript listing is a malicious sample
that Congo successfully protects against.

1 //https ://www.exploit -db.com/exploits←↩
/32884/

2 function execute(bridge , cmd) {

3 return bridge.getClass ().forName('java.←↩
lang.Runtime ')

4 .getMethod('getRuntime ',null).invoke(←↩
null ,null).exec(cmd);

5 }

6 if(window._app) {

7 try {

8 var path = '~/ gotcha.txt';
9 execute(window._app , ['/system/bin/sh←↩

','-c','echo \"MITM Done\" > '
10 + path]);

11 window._app.alert(path + ' created ', ←↩
3);

12 } catch(e) {

13 window._app.alert(e, 0);

14 }

15 }

Listing 1: Sample of malicious Javascript

An unprotected web browser rendering a page containing
Listing 1 invites an innocuous but unsanctioned filesys-
tem write. The demonstration can easily be scaled to
more malicious purposes. A particularly potent threat
is chaining bash commands to induce buffer overflows in
POSIX-defined binaries.
Congo, however, denies the script privileges and thus

maintains device integrity. Particularly, Kinshasa in-
tercepts a request to the java.lang.Runtime class
and returns an exception to the caller. The
java.lang.Runtime rule is hardcoded to always deny
because Congo should never have the need arise for di-
rect invocation of shell. As a result, the exception thrown
by Kinshasa is passed back up to the callee function,
execute, resulting in a Javascript exception instead of
the originally targeted filesystem write.

6 Future work

Future effort can be expended into overcoming current
shortcomings:

• Augmented Context Manager - Machine learning
can be incorporated to train on a user’s behavior
and develop a more sophisticated model that allows
for better recognition of atypical, and possibly ma-
licious, behavior.

• Improved Integrity Protection - Malware resident on
a device can exploit timing to hook and inject its
own code before Congo hooks. Malware residence
on the device is beyond the scope of Congo, how-
ever, a canary can be instrumented to assist in de-
tection of preload tampering.

• Sandbox Instrumentation Framework - The cou-
pling between vanilla Java and native code com-
prising the sandbox is minimal. Consequently, the
sandbox can be made generic enough such that it
can be weaved into any other Android binaries us-
ing a binary instrumentation framework.

7 Conclusion

Congo is the first dedicated hardened browser on An-
droid. Congo implements a context-aware sandbox that
contains malicious activity proactively and mitigatively.
The virtual sandbox is achieved through through use of
interposition of functions and Android IPC communica-
tion system . In addition, Congo is particularly portable.
Unlike extensive sandbox implementations that modify
source or need root access, Congo is implemented as a
shared library that is greatly portable and works on ver-
sions of Android later than 2.1. A great consequence of
the non-invasive implementation is that user friction is
eliminated as users need not root or flash their phones
to make utility of Congo. Congo demonstrably runs as
a normal Android application with minimal overhead on
resources. Additionally, experimental testing shows re-
markable success in protecting against various attempts
at privilege escalation or user fingerprinting.
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