707 research outputs found

    Applications and prototype for systems of systems swarm robotics

    Full text link
    In order to develop a robotic system of systems the robotic platforms must be designed and built. For this to happen, the type of application involved should be clear. Swarm robots need to be self contained and powered. They must also be self governing. Here the authors examine various applications and a prototype robot that may be useful in these scenarios. <br /

    Adversarial patrolling with spatially uncertain alarm signals

    Get PDF
    When securing complex infrastructures or large environments, constant surveillance of every area is not affordable. To cope with this issue, a common countermeasure is the usage of cheap but wide-ranged sensors, able to detect suspicious events that occur in large areas, supporting patrollers to improve the effectiveness of their strategies. However, such sensors are commonly affected by uncertainty. In the present paper, we focus on spatially uncertain alarm signals. That is, the alarm system is able to detect an attack but it is uncertain on the exact position where the attack is taking place. This is common when the area to be secured is wide, such as in border patrolling and fair site surveillance. We propose, to the best of our knowledge, the first Patrolling Security Game where a Defender is supported by a spatially uncertain alarm system, which non-deterministically generates signals once a target is under attack. We show that finding the optimal strategy is FNP-hard even in tree graphs and APX-hard in arbitrary graphs. We provide two (exponential time) exact algorithms and two (polynomial time) approximation algorithms. Finally, we show that, without false positives and missed detections, the best patrolling strategy reduces to stay in a place, wait for a signal, and respond to it at best. This strategy is optimal even with non-negligible missed detection rates, which, unfortunately, affect every commercial alarm system. We evaluate our methods in simulation, assessing both quantitative and qualitative aspects

    Developing Police Patrol Strategies Based on the Urban Street Network

    Get PDF
    In urban areas, crime and disorder have been long-lasting problems that spoil the economic and emotional well-being of residents. A significant way to deter crime, and maintain public safety is through police patrolling. So far, the deployment of police forces in patrolling has relied mainly on expert knowledge, and is usually based on two-dimensional spatial units, giving insufficient consideration to the underlying urban structure and collaboration among patrol officers. This approach has led to impractical and inefficient police patrol strategies, as well as a workload imbalance among officers. Therefore, it is of essential importance to devise advanced police patrol strategies that incorporate urban structure, the collaboration of the patrol officers, and a workload balance. This study aims to develop police patrol strategies that would make intelligent use of the street network layout in urban areas. The street network is a key component in urban structure and is the domain in which crime and policing take place. By explicitly considering street network configurations in their operations, police forces are enabled to provide timely responses to emergency calls and essential coverage to crime hotspots. Although some models have considered street networks in patrolling to some extent, challenges remain. First, most existing methods for the design of police districts use two-dimensional units, such as grid cells, as basic units, but using streets as basic units would lead to districts that are more accessible and usable. Second, the routing problem in police patrolling has several unique characteristics, such as patrollers potentially starting from different stations, but most existing routing strategies have failed to consider these. Third, police patrolling strategies should be validated using real-world scenarios, whilst most existing strategies in the literature have only been tested in small hypothetical instances without realistic settings. In this thesis, a framework for developing police patrol strategies based on the urban street network is proposed, to effectively cover crime hotspots, as well as the rest of the territory. This framework consists of three strategies, including a districting model, a patrol routing strategy for repeated coverage, and a patrol routing strategy for infrequent coverage. Various relevant factors have been considered in the strategy design, including the underlying structure of the street network and the collaboration among patrollers belonging to different stations. Moreover, these strategies have been validated by the patrolling scenarios in London. The results demonstrate that these strategies outperform the current corresponding benchmark strategies, which indicates that they may have considerable potential in future police operations

    Specification Patterns for Robotic Missions

    Get PDF
    Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing the need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation, or guiding the implementation. For instance, the logical language LTL is commonly used by experts to specify missions, as an input for planners, which synthesize the behavior a robot should have. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems, each of which detailing the usage intent, known uses, relationships to other patterns, and---most importantly---a template mission specification in temporal logic. Our tooling produces specifications expressed in the LTL and CTL temporal logics to be used by planners, simulators, or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns' correctness with simulators and two real robots

    A Security Game Combining Patrolling and Alarm-Triggered Responses Under Spatial and Detection Uncertainties

    Get PDF
    Motivated by a number of security applications, among which border patrolling, we study, to the best of our knowledge, the first Security Game model in which patrolling strategies need to be combined with responses to signals raised by an alarm system, which is spatially uncertain (i.e., it is uncertain over the exact location the attack is ongoing) and is affected by false negatives (i.e., the missed detection rate of an attack may be positive). Ours is an infinite-horizon patrolling scenario on a graph, where a single patroller moves. We study the properties of the game model in terms of computational issues and form of the optimal strategies and we provide an approach to solve it. Finally, we provide an experimental analysis of our techniques
    • …
    corecore