77 research outputs found

    SoK: Privacy-Preserving Computing in the Blockchain Era

    Get PDF
    Privacy is a huge concern for cryptocurrencies and blockchains as most of these systems log everything in the clear. This has resulted in several academic and industrial initiatives to address privacy. Starting with the UTXO model of Bitcoin, initial works brought confidentiality and anonymity to payments. Recent works have expanded to support more generalized forms of private computation. Such solutions tend to be highly involved as they rely on advanced cryptographic primitives and creative techniques to handle issues related to dealing with private records (e.g. concurrency and double spending). This situation makes it hard to comprehend the current state-of-the-art, much less build on top of it. To address these challenges, we develop a systematization of knowledge for privacy-preserving solutions in blockchain. To the best of our knowledge, our work is the first of its kind. After motivating design challenges, we devise two systematization frameworks---the first as a stepping stone to the second---and use them to study the state-of-the-art. For our first framework, we study the zero-knowledge proof systems used in surveyed solutions, based on their key features and limitations. Our second is for blockchain privacy-preserving solutions; we define several dimensions to categorize the surveyed schemes and, in doing so, identify two major paradigms employed to achieve private computation. We go on to provide insights to guide solutions\u27 adoption and development. Finally, we touch upon challenges related to limited functionality, practicality, and accommodating new developments

    An architecture for secure data management in medical research and aided diagnosis

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e as Comunicacións. 5032V01[Resumo] O Regulamento Xeral de Proteccion de Datos (GDPR) implantouse o 25 de maio de 2018 e considerase o desenvolvemento mais importante na regulacion da privacidade de datos dos ultimos 20 anos. As multas fortes definense por violar esas regras e non e algo que os centros sanitarios poidan permitirse ignorar. O obxectivo principal desta tese e estudar e proponer unha capa segura/integracion para os curadores de datos sanitarios, onde: a conectividade entre sistemas illados (localizacions), a unificacion de rexistros nunha vision centrada no paciente e a comparticion de datos coa aprobacion do consentimento sexan as pedras angulares de a arquitectura controlar a sua identidade, os perfis de privacidade e as subvencions de acceso. Ten como obxectivo minimizar o medo a responsabilidade legal ao compartir os rexistros medicos mediante o uso da anonimizacion e facendo que os pacientes sexan responsables de protexer os seus propios rexistros medicos, pero preservando a calidade do tratamento do paciente. A nosa hipotese principal e: os conceptos Distributed Ledger e Self-Sovereign Identity son unha simbiose natural para resolver os retos do GDPR no contexto da saude? Requirense solucions para que os medicos e investigadores poidan manter os seus fluxos de traballo de colaboracion sen comprometer as regulacions. A arquitectura proposta logra eses obxectivos nun ambiente descentralizado adoptando perfis de privacidade de datos illados.[Resumen] El Reglamento General de Proteccion de Datos (GDPR) se implemento el 25 de mayo de 2018 y se considera el desarrollo mas importante en la regulacion de privacidad de datos en los ultimos 20 anos. Las fuertes multas estan definidas por violar esas reglas y no es algo que los centros de salud puedan darse el lujo de ignorar. El objetivo principal de esta tesis es estudiar y proponer una capa segura/de integración para curadores de datos de atencion medica, donde: la conectividad entre sistemas aislados (ubicaciones), la unificacion de registros en una vista centrada en el paciente y el intercambio de datos con la aprobacion del consentimiento son los pilares de la arquitectura propuesta. Esta propuesta otorga al titular de los datos un rol central, que le permite controlar su identidad, perfiles de privacidad y permisos de acceso. Su objetivo es minimizar el temor a la responsabilidad legal al compartir registros medicos utilizando el anonimato y haciendo que los pacientes sean responsables de proteger sus propios registros medicos, preservando al mismo tiempo la calidad del tratamiento del paciente. Nuestra hipotesis principal es: .son los conceptos de libro mayor distribuido e identidad autosuficiente una simbiosis natural para resolver los desafios del RGPD en el contexto de la atencion medica? Se requieren soluciones para que los medicos y los investigadores puedan mantener sus flujos de trabajo de colaboracion sin comprometer las regulaciones. La arquitectura propuesta logra esos objetivos en un entorno descentralizado mediante la adopcion de perfiles de privacidad de datos aislados.[Abstract] The General Data Protection Regulation (GDPR) was implemented on 25 May 2018 and is considered the most important development in data privacy regulation in the last 20 years. Heavy fines are defined for violating those rules and is not something that healthcare centers can afford to ignore. The main goal of this thesis is to study and propose a secure/integration layer for healthcare data curators, where: connectivity between isolated systems (locations), unification of records in a patientcentric view and data sharing with consent approval are the cornerstones of the proposed architecture. This proposal empowers the data subject with a central role, which allows to control their identity, privacy profiles and access grants. It aims to minimize the fear of legal liability when sharing medical records by using anonymisation and making patients responsible for securing their own medical records, yet preserving the patient’s quality of treatment. Our main hypothesis is: are the Distributed Ledger and Self-Sovereign Identity concepts a natural symbiosis to solve the GDPR challenges in the context of healthcare? Solutions are required so that clinicians and researchers can maintain their collaboration workflows without compromising regulations. The proposed architecture accomplishes those objectives in a decentralized environment by adopting isolated data privacy profiles

    A Component-Based Approach for Securing Indoor Home Care Applications

    Get PDF
    eHealth systems have adopted recent advances on sensing technologies together with advances in information and communication technologies (ICT) in order to provide people-centered services that improve the quality of life of an increasingly elderly population. As these eHealth services are founded on the acquisition and processing of sensitive data (e.g., personal details, diagnosis, treatments and medical history), any security threat would damage the public's confidence in them. This paper proposes a solution for the design and runtime management of indoor eHealth applications with security requirements. The proposal allows applications definition customized to patient particularities, including the early detection of health deterioration and suitable reaction (events) as well as security needs. At runtime, security support is twofold. A secured component-based platform supervises applications execution and provides events management, whilst the security of the communications among application components is also guaranteed. Additionally, the proposed event management scheme adopts the fog computing paradigm to enable local event related data storage and processing, thus saving communication bandwidth when communicating with the cloud. As a proof of concept, this proposal has been validated through the monitoring of the health status in diabetic patients at a nursing home.This work was financed under project DPI2015-68602-R (MINECO/FEDER, UE), UPV/EHU under project PPG17/56 and GV/EJ under recognized research group IT914-16

    The Prom Problem: Fair and Privacy-Enhanced Matchmaking with Identity Linked Wishes

    Get PDF
    In the Prom Problem (TPP), Alice wishes to attend a school dance with Bob and needs a risk-free, privacy preserving way to find out whether Bob shares that same wish. If not, no one should know that she inquired about it, not even Bob. TPP represents a special class of matchmaking challenges, augmenting the properties of privacy-enhanced matchmaking, further requiring fairness and support for identity linked wishes (ILW) – wishes involving specific identities that are only valid if all involved parties have those same wishes. The Horne-Nair (HN) protocol was proposed as a solution to TPP along with a sample pseudo-code embodiment leveraging an untrusted matchmaker. Neither identities nor pseudo-identities are included in any messages or stored in the matchmaker’s database. Privacy relevant data stay within user control. A security analysis and proof-of-concept implementation validated the approach, fairness was quantified, and a feasibility analysis demonstrated practicality in real-world networks and systems, thereby bounding risk prior to incurring the full costs of development. The SecretMatch™ Prom app leverages one embodiment of the patented HN protocol to achieve privacy-enhanced and fair matchmaking with ILW. The endeavor led to practical lessons learned and recommendations for privacy engineering in an era of rapidly evolving privacy legislation. Next steps include design of SecretMatch™ apps for contexts like voting negotiations in legislative bodies and executive recruiting. The roadmap toward a quantum resistant SecretMatch™ began with design of a Hybrid Post-Quantum Horne-Nair (HPQHN) protocol. Future directions include enhancements to HPQHN, a fully Post Quantum HN protocol, and more

    Algorithmic Regulation using AI and Blockchain Technology

    Get PDF
    This thesis investigates the application of AI and blockchain technology to the domain of Algorithmic Regulation. Algorithmic Regulation refers to the use of intelligent systems for the enabling and enforcement of regulation (often referred to as RegTech in financial services). The research work focuses on three problems: a) Machine interpretability of regulation; b) Regulatory reporting of data; and c) Federated analytics with data compliance. Uniquely, this research was designed, implemented, tested and deployed in collaboration with the Financial Conduct Authority (FCA), Santander, RegulAItion and part funded by the InnovateUK RegNet project. I am a co-founder of RegulAItion. / Using AI to Automate the Regulatory Handbook: In this investigation we propose the use of reasoning systems for encoding financial regulation as machine readable and executable rules. We argue that our rules-based “white-box” approach is needed, as opposed to a “black-box” machine learning approach, as regulators need explainability and outline the theoretical foundation needed to encode regulation from the FCA Handbook into machine readable semantics. We then present the design and implementation of a production-grade regulatory reasoning system built on top of the Java Expert System Shell (JESS) and use it to encode a subset of regulation (consumer credit regulation) from the FCA Handbook. We then perform an empirical evaluation, with the regulator, of the system based on its performance and accuracy in handling 600 “real- world” queries and compare it with its human equivalent. The findings suggest that the proposed approach of using reasoning systems not only provides quicker responses, but also more accurate results to answers from queries that are explainable. / SmartReg: Using Blockchain for Regulatory Reporting: In this investigation we explore the use of distributed ledgers for real-time reporting of data for compliance between firms and regulators. Regulators and firms recognise the growing burden and complexity of regulatory reporting resulting from the lack of data standardisation, increasing complexity of regulation and the lack of machine executable rules. The investigation presents a) the design and implementation of a permissioned Quorum-Ethereum based regulatory reporting network that makes use of an off-chain reporting service to execute machine readable rules on banks’ data through smart contracts b) a means for cross border regulators to share reporting data with each other that can be used to given them a true global view of systemic risk c) a means to carry out regulatory reporting using a novel pull-based approach where the regulator is able to directly “pull” relevant data out of the banks’ environments in an ad-hoc basis- enabling regulators to become more active when addressing risk. We validate the approach and implementation of our system through a pilot use case with a bank and regulator. The outputs of this investigation have informed the Digital Regulatory Reporting initiative- an FCA and UK Government led project to improve regulatory reporting in the financial services. / RegNet: Using Federated Learning and Blockchain for Privacy Preserving Data Access In this investigation we explore the use of Federated Machine Learning and Trusted data access for analytics. With the development of stricter Data Regulation (e.g. GDPR) it is increasingly difficult to share data for collective analytics in a compliant manner. We argue that for data compliance, data does not need to be shared but rather, trusted data access is needed. The investigation presents a) the design and implementation of RegNet- an infrastructure for trusted data access in a secure and privacy preserving manner for a singular algorithmic purpose, where the algorithms (such as Federated Learning) are orchestrated to run within the infrastructure of data owners b) A taxonomy for Federated Learning c) The tokenization and orchestration of Federated Learning through smart contracts for auditable governance. We validate our approach and the infrastructure (RegNet) through a real world use case, involving a number of banks, that makes use of Federated Learning with Epsilon-Differential Privacy for improving the performance of an Anti-Money-Laundering classification model

    Partitioning workflow applications over federated clouds to meet non-functional requirements

    Get PDF
    PhD ThesisWith cloud computing, users can acquire computer resources when they need them on a pay-as-you-go business model. Because of this, many applications are now being deployed in the cloud, and there are many di erent cloud providers worldwide. Importantly, all these various infrastructure providers o er services with di erent levels of quality. For example, cloud data centres are governed by the privacy and security policies of the country where the centre is located, while many organisations have created their own internal \private cloud" to meet security needs. With all this varieties and uncertainties, application developers who decide to host their system in the cloud face the issue of which cloud to choose to get the best operational conditions in terms of price, reliability and security. And the decision becomes even more complicated if their application consists of a number of distributed components, each with slightly di erent requirements. Rather than trying to identify the single best cloud for an application, this thesis considers an alternative approach, that is, combining di erent clouds to meet users' non-functional requirements. Cloud federation o ers the ability to distribute a single application across two or more clouds, so that the application can bene t from the advantages of each one of them. The key challenge for this approach is how to nd the distribution (or deployment) of application components, which can yield the greatest bene ts. In this thesis, we tackle this problem and propose a set of algorithms, and a framework, to partition a work ow-based application over federated clouds in order to exploit the strengths of each cloud. The speci c goal is to split a distributed application structured as a work ow such that the security and reliability requirements of each component are met, whilst the overall cost of execution is minimised. To achieve this, we propose and evaluate a cloud broker for partitioning a work ow application over federated clouds. The broker integrates with the e-Science Central cloud platform to automatically deploy a work ow over public and private clouds. We developed a deployment planning algorithm to partition a large work ow appli- - i - cation across federated clouds so as to meet security requirements and minimise the monetary cost. A more generic framework is then proposed to model, quantify and guide the partitioning and deployment of work ows over federated clouds. This framework considers the situation where changes in cloud availability (including cloud failure) arise during work ow execution

    Building an open-source system test generation tool: lessons learned and empirical analyses with EvoMaster

    Get PDF
    Research in software testing often involves the development of software prototypes. Like any piece of software, there are challenges in the development, use and verification of such tools. However, some challenges are rather specific to this problem domain. For example, often these tools are developed by PhD students straight out of bachelor/master degrees, possibly lacking any industrial experience in software development. Prototype tools are used to carry out empirical studies, possibly studying different parameters of novel designed algorithms. Software scaffolding is needed to run large sets of experiments efficiently. Furthermore, when using AI-based techniques like evolutionary algorithms, care needs to be taken to deal with their randomness, which further complicates their verification. The aforementioned represent some of the challenges we have identified for this domain. In this paper, we report on our experience in building the open-source EvoMaster tool, which aims at system-level test case generation for enterprise applications. Many of the challenges we faced would be common to any researcher needing to build software testing tool prototypes. Therefore, one goal is that our shared experience here will boost the research community, by providing concrete solutions to many development challenges in the building of such kind of research prototypes. Ultimately, this will lead to increase the impact of scientific research on industrial practice.publishedVersio

    Principles of Security and Trust: 7th International Conference, POST 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings

    Get PDF
    authentication; computer science; computer software selection and evaluation; cryptography; data privacy; formal logic; formal methods; formal specification; internet; privacy; program compilers; programming languages; security analysis; security systems; semantics; separation logic; software engineering; specifications; verification; world wide we
    • …
    corecore