1,709 research outputs found

    Integrated testing and verification system for research flight software design document

    Get PDF
    The NASA Langley Research Center is developing the MUST (Multipurpose User-oriented Software Technology) program to cut the cost of producing research flight software through a system of software support tools. The HAL/S language is the primary subject of the design. Boeing Computer Services Company (BCS) has designed an integrated verification and testing capability as part of MUST. Documentation, verification and test options are provided with special attention on real time, multiprocessing issues. The needs of the entire software production cycle have been considered, with effective management and reduced lifecycle costs as foremost goals. Capabilities have been included in the design for static detection of data flow anomalies involving communicating concurrent processes. Some types of ill formed process synchronization and deadlock also are detected statically

    SLEC: A Novel Serverless RFID Authentication Protocol Based on Elliptic Curve Cryptography

    Get PDF
    Radio Frequency Identification (RFID) is one of the leading technologies in the Internet of Things (IoT) to create an efficient and reliable system to securely identify objects in many environments such as business, health, and manufacturing areas. Since the RFID server, reader, and tag communicate via insecure channels, mutual authentication between the reader and the tag is necessary for secure communication. The central database server supports the authentication of the reader and the tag by storing and managing the network data. Recent lightweight RFID authentication protocols have been proposed to satisfy the security features of RFID communication. A serverless RFID system is a new promising solution to alternate the central database for mobile RFID models. In this model, the reader and the tag perform the mutual authentication without the support of the central database server. However, many security challenges arise from implementing the lightweight RFID authentication protocols in the serverless RFID network. We propose a new robust serverless RFID authentication protocol based on the Elliptic Curve Cryptography (ECC) to prevent the security attacks on the network and maintain the confidentiality and the privacy of the authentication messages and tag information and location. While most of the current protocols assume a secure channel in the setup phase to transmit the communication data, we consider in our protocol an insecure setup phase between the server, reader, and tag to ensure that the data can be renewed from any checkpoint server along with the route of the mobile RFID network. Thus, we implemented the elliptic curve cryptography in the setup phase (renewal phase) to transmit and store the data and the public key of the server to any reader or tag so that the latter can perform the mutual authentication successfully. The proposed model is compared under the classification of the serverless model in term of computation cost and security resistance

    Electronic Voting: 6th International Joint Conference, E-Vote-ID 2021, Virtual Event, October 5–8, 2021: proceedings

    Get PDF
    This volume contains the papers presented at E-Vote-ID 2021, the Sixth International Joint Conference on Electronic Voting, held during October 5–8, 2021. Due to the extraordinary situation brought about by the COVID-19, the conference was held online for the second consecutive edition, instead of in the traditional venue in Bregenz, Austria. The E-Vote-ID conference is the result of the merger of the EVOTE and Vote-ID conferences, with first EVOTE conference taking place 17 years ago in Austria. Since that conference in 2004, over 1000 experts have attended the venue, including scholars, practitioners, authorities, electoral managers, vendors, and PhD students. The conference focuses on the most relevant debates on the development of electronic voting, from aspects relating to security and usability through to practical experiences and applications of voting systems, also including legal, social, or political aspects, amongst others, and has turned out to be an important global referent in relation to this issue

    Sixth International Joint Conference on Electronic Voting E-Vote-ID 2021. 5-8 October 2021

    Get PDF
    This volume contains papers presented at E-Vote-ID 2021, the Sixth International Joint Conference on Electronic Voting, held during October 5-8, 2021. Due to the extraordinary situation provoked by Covid-19 Pandemic, the conference is held online for second consecutive edition, instead of in the traditional venue in Bregenz, Austria. E-Vote-ID Conference resulted from the merging of EVOTE and Vote-ID and counting up to 17 years since the _rst E-Vote conference in Austria. Since that conference in 2004, over 1000 experts have attended the venue, including scholars, practitioners, authorities, electoral managers, vendors, and PhD Students. The conference collected the most relevant debates on the development of Electronic Voting, from aspects relating to security and usability through to practical experiences and applications of voting systems, also including legal, social or political aspects, amongst others; turning out to be an important global referent in relation to this issue. Also, this year, the conference consisted of: · Security, Usability and Technical Issues Track · Administrative, Legal, Political and Social Issues Track · Election and Practical Experiences Track · PhD Colloquium, Poster and Demo Session on the day before the conference E-VOTE-ID 2021 received 49 submissions, being, each of them, reviewed by 3 to 5 program committee members, using a double blind review process. As a result, 27 papers were accepted for its presentation in the conference. The selected papers cover a wide range of topics connected with electronic voting, including experiences and revisions of the real uses of E-voting systems and corresponding processes in elections. We would also like to thank the German Informatics Society (Gesellschaft für Informatik) with its ECOM working group and KASTEL for their partnership over many years. Further we would like to thank the Swiss Federal Chancellery and the Regional Government of Vorarlberg for their kind support. EVote- ID 2021 conference is kindly supported through European Union's Horizon 2020 projects ECEPS (grant agreement 857622) and mGov4EU (grant agreement 959072). Special thanks go to the members of the international program committee for their hard work in reviewing, discussing, and shepherding papers. They ensured the high quality of these proceedings with their knowledge and experience

    SciTokens: Capability-Based Secure Access to Remote Scientific Data

    Full text link
    The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Integrity Control in Relational Database Systems - An Overview

    Get PDF
    This paper gives an overview of research regarding integrity control or integrity constraint handling in relational database management systems. The topic of constraint handling is discussed from two points of view. First, constraint handling is discussed by identifying a number of important research issues, and by treating each issue in detail. Second, a number of projects is described that have resulted in the realization of database management systems supporting integrity constraints; the various projects are compared with respect to a number of system characteristics. Together, both approaches give a broad overview of the state of the art in the field at this moment

    Anonymity and trust in the electronic world

    Get PDF
    Privacy has never been an explicit goal of authorization mechanisms. The traditional approach to authorisation relies on strong authentication of a stable identity using long term credentials. Audit is then linked to authorization via the same identity. Such an approach compels users to enter into a trust relationship with large parts of the system infrastructure, including entities in remote domains. In this dissertation we advance the view that this type of compulsive trust relationship is unnecessary and can have undesirable consequences. We examine in some detail the consequences which such undesirable trust relationships can have on individual privacy, and investigate the extent to which taking a unified approach to trust and anonymity can actually provide useful leverage to address threats to privacy without compromising the principal goals of authentication and audit. We conclude that many applications would benefit from mechanisms which enabled them to make authorization decisions without using long-term credentials. We next propose specific mechanisms to achieve this, introducing a novel notion of a short-lived electronic identity, which we call a surrogate. This approach allows a localisation of trust and entities are not compelled to transitively trust other entities in remote domains. In particular, resolution of stable identities needs only ever to be done locally to the entity named. Our surrogates allow delegation, enable role-based access control policies to be enforced across multiple domains, and permit the use of non-anonymous payment mechanisms, all without compromising the privacy of a user. The localisation of trust resulting from the approach proposed in this dissertation also has the potential to allow clients to control the risks to which they are exposed by bearing the cost of relevant countermeasures themselves, rather than forcing clients to trust the system infrastructure to protect them and to bear an equal share of the cost of all countermeasures whether or not effective for them. This consideration means that our surrogate-based approach and mechanisms are of interest even in Kerberos-like scenarios where anonymity is not a requirement, but the remote authentication mechanism is untrustworthy
    corecore