
Data & Knowledge Engineering 10 (1993) 187-223 187
North-Holland

DATAK 167

Integrity control in relational database
systems- An overview

Paul W.P.J. Grefen and Peter M.G. Apers
University of Twente, Faculty of Computer Science, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received 28 January 1992
Accepted 25 September 1992

Abstract

Grefen, P.W.P.J. and P.M.G. Apers, Integrity control in relational database systems - An overview, Data &
Knowledge Engineering 10 (1993) 187-223.

This paper gives an overview of research regarding integrity control or integrity constraint handling in
relational database management systems. The topic of constraint handling is discussed from two points of
view. First, constraint handling is discussed by identifying a number of important research issues, and by
treating each issue in detail. Second, a number of projects is described that have resulted in the realization of
database management systems supporting integrity constraints; the various projects are compared with
respect to a number of system characteristics. Together, both approaches give a broad overview of the state
of the art in the field at this moment.

Keywords. Integrity control; relational database; survey.

1. Introduction

The complexity of modern database applications requires powerful facilities for controlling
the semantic correctness of the data in the database. The consequences of the absence of
such facilities are convincingly illustrated in [8, 69], where some striking anomalies in the
records of a health organization are presented. The requirement of semantic data control has
led to a number of research projects in the context of relational database systems. The first
projects started in the mid-seventies, together with the development of the first relational
database management systems, like System R and INGRES. The basic issues have become
clear by now, but research continues into new areas, like easy specification of constraints and
definition of complex constraint types, verification and optimization of constraint specifica-
tions, efficient constraint enforcement algorithms and parallelism in constraint enforcement.

This paper focusses on constraint handling in relational systems, but, where interesting,
side trips are made to other types of database systems.

1.1. Structure of this paper

This paper gives a broad overview of research performed in the field of semantic data
control or integrity constraint handling in the context of relational database systems. This

Correspondence to: P.W.P.J. Grefen, University of Twente, Faculty of Computer Science, P.O. Box 217, 7500 AE
Enschede, The Netherlands. Email: grefen@cs.utwente.nl

0169-023X/93/$06.00 © 1993- Elsevier Science Publishers B.V. All rights reserved

188 P.w. t'. J. Gre/en, P.M.G. Apers

concept is explained in the section below. Section 2 gives a short formal background on
databases, integrity constraints, and transactions. This section also introduces the example
database used throughout this paper. The research in the field of integrity constraint
handling is discussed from two points of view in Sections 3 and 4 of this paper. In the first
place, integrity constraint handling is discussed by identifying a number of important
research issues, and treating each issue in detail. In the second place, a number of projects
are described that have resulted in the realization of database systems supporting integrity
constraints; the various projects are compared with respect to a number of system charac-
teristics. Together, both approaches give a broad overview of the state of the art in the field
at this moment.

1.2. The integrity concept

As stated above, in a database management system, the correctness or accuracy of data is
of great importance. There are a number of ways in which incorrect data may occur in a
database. The following disciplines in database technology try to prevent certain classes of
errors [35, 51, 31]:

Security control deals with preventing users from accessing and modifying data in a database
in unauthorized ways; the security control subsystem of a DBMS keeps record of the
authorization of users to perform certain operations on certain data and checks this
authorization upon database access [29, 34].

Concurrency control deals with the prevention of inconsistencies caused by concurrent access
of multiple users or applications to a database; the concurrency control subsystem
orchestrates the access to the database, in most cases using a locking or timestamping
technique [29, 59, 34].

Reliability control deals with the prevention of errors due to the malfunctioning of system
hardware or software; the reliability control subsystem uses recovery techniques to
reinstall a correct database after system crashes [29, 59], and techniques like replication of
data to increase the reliability of the system [16].

Integrity control deals with the prevention of semantic errors made by users due to their
carelessness or lack of knowledge; the integrity control subsystem uses integrity rules to
verify the database and operations on the database.

This paper is concerned only with the integrity control discipline.
The term integrity as used throughout this paper refers to the correctness or validity of the

data in the database, as defined explicitly by means of integrity rules or integrity constraints. ~
This implies that neither the full correctness with respect to the part of the real world
modeled by the database is guaranteed in general, nor the completeness of the facts stored in
the database; a detailed discussion of this topic can be found in [67].

1.3. Integrity control allocation

An important question to be answered is who or what is responsible for keeping a

1Note that there is quite some confusion in terminology here: the terms integrity, consistency, validity,
correctness, etc. may be used differently by different authors.

Integrity control in RDBSs 189

database consistent with a number of specified integrity constraints (integrity control). In
general, the task of integrity control can be allocated in three ways:

Application designer The integrity control task can be left to the application designer or ad
hoc user of the database system. As such, no robustness with respect to integrity is offered
at all: applications and ad hoc transactions are required to be individually correct with
respect to the integrity constraints.

Transaction designer The integrity control task can be the responsibility of the transaction
designer. This means that transactions are required to be correct with respect to specified
constraints. In this situation, applications can only make use of predefined transactions.

Database Management System The database management system can have the responsibility
for integrity control. This means that arbitrary transactions can be executed on the system.

In the first case, the integrity of the database is not guaranteed by a central specification of
the database itself, but only by the design of the (numerous and ever changing) applications
operating on the database. Consequently, the chance of improper constraint control is high.
Further, changes of some constraint definitions require modification of all applications
including integrity control with respect to these definitions. This is an undesirable situation,
although it may occur frequently in practice.

In the second case, the responsibility for integrity control is part of the transaction design
process [38, 92]. Again, changes to constraint definitions require modification of all
transactions including integrity control with respect to these definitions. In a situation with
many constraints, transactions can get very complex. Further, this approach is hardly feasible
in a situation with a high rate of ad hoc transactions.

If the integrity control task is allocated with the database management system, the
integrity of the database is effectively ruled by a central set of constraint definitions.
Applications and transactions can be fully unaware of integrity control. A disadvantage of
this approach may be a reduced flexibility with respect to constraint handling (a different
handling of constraint violations per application or transaction type is not possible).

The latter two approaches are described in research, and the choice between them
depends on many criteria like the application domain, the actual usage of a database system,
performance requirements etc. This paper is mainly concerned with fully automatic integrity
control with transparency to all users of the database system, and therefore mainly adopts
the DBMS-based approach. Some attention is devoted to the transaction-based approach as
well, however.

2. A formal background for integrity constraints

As stated above, the integrity of a database is stated explicitly by means of integrity
constraints, i.e. rules that define properties to be satisfied by the database. This section gives
a formal background on integrity constraints that serves as a basis for the sequel of this
paper. First, some elementary database notions are introduced in short. Then, the concept of
integrity constraint is introduced in a database context. Finally, the relation between
integrity constraints and transactions is discussed. This section concludes with the intro-
duction of a simple example database that will be used throughout the paper to illustrate
concepts and techniques.

190 P,W.P.J. Gre¢on, P.M.G. Apers

2.1. Elementary database notions

The database notions to be used in the formal description of database integrity are relation
schemas and states, database schemas and states, and database transitions. These notions are
defined below.

Definition 2.1. A relation schema ~ consists of a relation name and a list of attributes
(A I, . . . , A n). Each attribute A~ is defined on a domain dom(A~). The type of ~ is defined
as d o m (~) = dom(A 1) x • • • x dom(A ~). A relation or relation instance R of relation schema

consists of the relation name of ~ and a set of elements in d o m (~) .

Definition 2.2. A database schema @ is a set of relation schemas { ~ 1 , " " " ' ~ n }" A database
or database instance D of database schema @ is a set of relation instances { R ~ , . . . , Rn}. The
set of all possible database instances of schema ~ is called the database universe U~, so
U~ = d o m (~ 1) x . . . x d o m (~ n).

Definition 2.3. A database transition of database schema ~ is an ordered pair of database
states (D q, D re) of schema ~, with tl, t 2 E [~ and t 1 < t 2. The values t I and t 2 are the logical
times of the database states.

Usually, a database transition describes two successive states of the database, so t 2 = t I + 1 in
the definition above. This type of transition is called a single-step transition. If not stated
otherwise, the term transition is used for single-step transitions in this paper.

2.2. Databases and integrity constraints

Below, the concept of integrity constraint is defined. In this definition, constraints are
divided into state constraints that describe properties of database states, and transition
constraints that describe properties of database transitions. This distinction is necessary to
come to a correct definition of integrity constraints; a more detailed classification of
constraints is discussed in Section 3.

Definition 2.4. Let ~ be a database schema. A state constraint I s is a boolean function that is
evaluated over a database state D from the database universe U~ defined on ~ :

I s: U~ --~ bool .

Definition 2.5. A correct database state D E U~ satisfies each element of a set of state
constraints ~ = { I] , . . . , I~,} defined on ~. The set of correct database states with schema

and constraint set 5 ~s is denoted as:

i~m / : (O)) ,
U~" { D e U ~ i = 1

A state constraint describes the static properties of a database, i.e. the properties that a
database should satisfy at one given moment.

Definition 2.6. Let ~ be a database schema. A transition constraint I' is a boolean function

Integrity control in RDBSs 191

that is evaluated over a pair of database states or database transition (D~, D 2) defined on
9 2

I ' : U~ x U~ ~ boo l .

Definition 2.7. A correct database transition (D 1, D 2) defined on schema @ satisfies each
e lement of a set of transition constraints `9' = { I ' 1 , . . . , Itn} defined on 9 . The set of correct
database transitions with schema 9 and constraint set `gt is denoted as:

V~'

A transition constraint describes the correct transitions of a database; as such, it describes
dynamic propert ies of a database. Therefore , transition constraints are also referred to as
dynamic constraints.

2.3. Transactions and integrity constraints

The integrity of the database in terms of integrity constraints as defined above has its
effect on the set of transactions that are allowed to be executed and successfully commit ted
against a database.

The fact that each database state has to satisfy all state constraints means that the
execution of a transaction T on a correct state D may never result in a database state that
violates any constraint in `9'; so the following should hold:

(ili~=m 1 l:(O))~ (i~= li=mlT(z(o))),
or in short notation:

Ys(O) f f YS(T(D)).

The fact that each database transition has to satisfy all transition constraints means that given
a correct database state, the execution of a transaction T may never imply a transition that
violates any constraint in `9,; so the following should always hold:

(ili~=m l [:(O)) * (i~= li=n I:(o, T(D))) ,
or again in short:

`9"(D) f f `g'(D, T(D)) .

Given these observations, we can define the correctness of a transaction as follows.

Definition 2.8. A transaction T is correct with respect to a correct database state D and a set
of integrity constraints `9 if and only if a commit ted execution of T on D does not imply a
database transition that violates any transition constraint in ,9, and the post-transaction
database state T(D) does not violate any state constraint in `9. A transaction that does not
comply with this requirement is called incorrect.

The concept of correctness of a transaction is essentially different f rom the concept of
safeness of a transaction as defined below.

2 We limit ourselves here to single-step transitions; some remarks on general transitions can be found in Section
3.1.

192 I: W. P.J. Grej~n, P.M.G. Apers

Definition 2.9. A transaction T is safe with respect to a database schema @ and a set of
integrity constraints 5 ~ if and only if a committed execution of T on any correct state D E U~
does not imply a database transition that violates any transition constraint in 5~, and the
post-transaction database state T (D) does not violate any state constraint in 5~. A transaction
that is not safe is called unsafe.

Note that the above definition of integrity constraints only considers the database states
before and after the execution of transactions. This approach is based on the fact that
transactions are considered to be atomic units of operations against a database; intermediate
database states during transaction execution have therefore no semantics. Some approaches
to integrity control, however, do take the intermediate database states during transaction
execution into consideration (see Section 3.2), thereby rejecting the atomicity principle.
Other approaches do not use the transaction concept at all, but limit themselves to single
operations against the database (sometimes even to single-tuple operations).

2.4. E x a m p l e database

Below an example beer database is introduced that is used in the examples of this paper.
The database schema is shown in Table 1; it consists of a relation beer describing for each
beer the name, brewery, type, and alcohol percentage, a relation brewery describing for each
brewery the name and location, and a relation drinker describing for each drinker his /her
favorite beer and the quantities bought and drunk of this beer.

The example constraints are shown in Table 1 in first order logic notation. The identifiers x
and y denote tuple variables; the other identifiers refer to relations and attributes of the
example database. Constraint I1 is a simple domain constraint on an attribute of relation
beer; it states that a beer in the database contains at least some alcohol. Cons t ra in t /2 is a
referential integrity constraint from relation beer to relation brewery , stating that every beer
in the database is brewed by an existing brewery. Constraint 13 is a unique key constraint,
stating that the name of a brewery in relation brewery is unique. Tuple constraint 14 states
that every drinker in the database has bought at least as much beer as he or she drinks.
Finally, 15 is a dynamic constraint stating that the quantity Of beer drunk by a person never
decreases. In this constraint, the notation drinkeroz d refers to the pre-transaction state of
relation drinker .

Table 1
Example database definition

Relation Attributes

beer name, brewed_by, type, alcperc
brewery name, city, country
drinker name, beer, qty_bought, qty_drunk

Constraint Definition

11
12
13
14
15

(Vx E beer.alcperc)(x > O)
(Vx E beer. brewed_by)(3y E brewery.name)(x = y)
(Vx, y E brewery)((x.name = y.name) ~ (x = y))
(Vx E drinker)(x, qty bought >1 x. qty_drunk)
(Vx @ drinker, y E drinker ola)
((x.name = y.name) ~ (x.qty_drunk >i y.qty_drunk))

Integrity control in RDBSs 193

3. Research topic overview

This section discusses a number of important research topics in the field of integrity
constraint handling in relational database systems. These topics can be classified into four
categories; these categories and their topics are listed below.

Constraint types and semantics: the various types of integrity constraints discussed in the field
of relational database systems; the various approaches to full transaction support in
constraint handling, particularly with regard to transaction atomicity.

Constraint specification: the various approaches to the specification of integrity constraints,
and the classes of constraint specification languages;

Constraint preprocessing: the verification of newly defined constraints, i.e. checking if new
constraints are correct and meaningful with respect to a number of criteria; the translation
of constraints from the formalism used for constraint specification to the formalism used
for constraint enforcement by the system; the optimization of constraint definitions, i.e.
the transformation of constraint definitions to obtain forms that are semantically equiva-
lent, but that can be enforced more efficiently;

Constraint enforcement: the various approaches to the actual evaluation or enforcement of
constraints and the execution of violation response actions; the effects of database system
distribution and parallel processing capabilities on constraint handling; special system
support aiming at improving the efficiency of constraint enforcement, both in terms of
software and hardware; the analysis and evaluation of the performance of the constraint
enforcement process in transaction execution.

In the sections to follow each of these topics is discussed.

3.1. Constraint types

Various constraint types and their semantics are an important research topic. It is however
hard, if not impossible, to design a complete constraint type classification scheme. An
overview of important constraint types is given in Table 2. Below, some constraint types are
discussed in detail.

3.1.1 Domain and nonnull constraints
Domain constraints 3 restrict the values that attributes of tuples can assume. Usually,

domain constraints specify a certain range of values for the attribute, like example constraint
I1. Sometimes, a domain constraint enumerates the possible values for an attribute, like:

(Vx E beer. type)(x E {'pilsener', 'ale', 'stout'}).

In the relational model, the enumerated values can be stored in a separate, single-attribute
relation; the domain constraint has to be implemented then as a referential integrity
constraint. In this way, a 'variable enumerated domain constraint' can be defined [9].

Nonnull constraints can be seen as a special case of domain constraints, since they restrict
the domain of attributes. Some theoretical work on nonnull constraints can be found in [41].

3 Some authors (e.g. [37]) use the te rm type constraint instead of domain constraint.

194

Tablc 2
Constraint taxonomy

State

Transition

Attribute

t: W. P.J. Grefen, P.M.G. Apers

Domain

Nonnull

Tuple Attribute comparison

Relation

Database

Uniqueness (key)

Functional dependency

Aggregate

Transitive closure

Referential integrity

Interrelation aggregate

Attribute Domain

Tuple Attribute comparison

Relation Aggregate

Database Interrelation aggregate

3.1.2 Referential integrity constraints
The concept of referential integrity is a central issue in the relational data model, since it is

an important way to specify semantic links between the various relations in a database.
Therefore, this type of constraint has received quite some attention, even though it is just
another type of constraint from a constraint handling viewpoint.

The original idea of referential integrity is described in [25]. Extensions to this idea are
given in [28], leading to more usable semantics for constraints. An important extension is
allowing foreign keys to contain null values. The combination of null values and multi-
attribute foreign keys can lead to various kinds of problematic situations, however, since it is
hard to describe the semantics of referential integrity constructs with foreign key values that
are partly null [30].

In [64] the safeness of referential integrity structures is discussed. A structure is considered
to be unsafe if it causes certain data manipulation problems as a consequence of the order of
enforcement of referential integrity constraints or the order of tuple manipulations in a
transaction, or if no correct transition sequence exists that transforms one given consistent
database state in another given consistent state.

Referential integrity constraints are even more important if the relational data model is
used for the representation of object-oriented structures. This topic is discussed for example
in [63].

3.1.3 Recursive constraints
Recursive queries have been the topic of a reasonable amount of research by now,

especially transitive closure queries. Integrity constraints with recursive rules have been
discussed much less, however. The topic is discussed in [19] in the context of deductive
databases with logic programming interfaces. In the context of relational database systems,
the topic is described briefly in [46, 47], and mentioned very briefly in [79].

In many applications, the use of constraints with transitive closure constructs is natural;
examples are the following:

• in an employee database, one may want to specify that no one can be his/her own chief,
either directly or indirectly;

Integrity control in RDBSs 195

• in a database representing a network (e.g. railroads), one may want to specify that
every node in the network is reachable from every other node.

3.1.4 Transition constraints
In most cases, transition or dynamic constraints described in literature are 'single-step'

transition constraints, i.e. constraints that are evaluated on a pair of pre-transaction and
post-transaction states of a database. Constraint 15 from the example database illustrates this
kind of constraint:

(Vx E drinker, y E drinker ot d)((x, name = y. name)

(x. qty_drunk >i y. qty_drunk)) .

Mostly, these constraints are tuple constraints, i.e. they relate old and new attribute values
in a single tuple. As illustrated by the above example, the notion of a key (attribute name in
this case) is important for the specification of these constraints.

An example of a transition constraint on the relation level is the constraint shown below,
stating that the number of breweries in the database cannot decrease:

CO UNT(brewery) >! CO UNT(breweryol d) .

3.1.5 Temporal constraints
It is possible to describe dynamic constraints that are not limited to single-step transitions.

These temporal constraints can be specified using the temporal qualifiers always and
sometime and their bounded versions a lways . . , until and somet ime . . , before [33], or other
forms of temporal logic [23].

Two remarks can be made with respect to general temporal constraints. In the first place,
one can question the relevance to practice of this type of constraints. In the second place,
practical solutions for the enforcement of this type of constraints are either restricted or very
inefficient (if possible at all) [33]. A restricted approach is discussed in [23], where a method
is described for the enforcement of temporal constraints taking only past database states into
consideration. This method makes use of redundant information to be able to enforce
temporal constraints without storing the entire history of a database.

3.1.6 Fuzzy constraints
Fuzzy relational database systems are systems that can deal with fuzzy or incomplete data.

In these systems, integrity constraints involve fuzzy constructs as well [73]. Examples of
fuzzy constraints in an employee database are (taken from [73])':

• Many managers have a high income (fuzzy domain constraint).
• Employees having similar jobs and experience must have almost equal salary (fuzzy

data dependency).
The specification of fuzzy constraints requires a specification language including fuzzy
operators.

3.2. Transaction support

This section discusses the way constraint handling approaches take transactions into
consideration. A number of issues are of interest here. The first issue concerns the
enforcement granularity, with which we mean the complexity of update operations against
the database the integrity constraint enforcement takes into consideration. The next issue
concerns transaction atomicity under constraint enforcement; this is considered important to
obtain full transaction semantics. Finally, the concept of integrity checkpoints is described;
this concept allows the specification of points in a transaction where the integrity constraints

196 f'.W.P.J. GreJen, P.M.G. Apers

should be enforced, thereby avoiding the complete rollback of complex transactions. These
issues are discussed below in detail.

Note that the concept of nested or multi-level transactions (see e.g. [5]) can make the
semantics of constraints more complicated. A proposal for constraints in a multi-level
transaction environment is given in [75, 54].

3.2.1 Enforcement granularity
In principle, three levels of constraint enforcement granularity can be distinguished:

Tuple update If the enforcement granularity is tuple update, constraints are enforced after
every single tuple update operation. In some approaches this is even limited to insertion
and deletions of single tuples [6, 80].

Set update If the enforcement granularity is set update, constraints are enforced after every
update operation that may involve the update of multiple tuples.

Transaction If the enforcement granularity is transaction, constraints are enforced at the end
of a transaction, possibly consisting of multiple set updates.

3.2.2 Transaction atomicity
Conceptually, the execution of a transaction T should always satisfy the atomicity

property; this means that the effect of any execution of T on the initial database state D must
be such that either the effects of T are completed fully, or D remains unchanged. So, if T
consists of the actions a l ; . . . , a n, the following must hold:

(T(D)= Da"$) v (T(D)= D) ,

where Da"$ denotes the database state after the execution of a n minus the temporary
relations created by T. The enforcement of constraints as a consequence of updates
performed by a transaction T should not violate this property. To be able to support
transaction atomicity, the enforcement granularity as defined above must clearly be at the
transaction level. Further, the constraint violation response action must be such that
transaction atomicity is not violated. An example of an approach that does not satisfy this
requirement is the query modification technique [81] (see Section 3.7.2).

In the context of more complex transaction models (e.g. nested transactions [54, 75]), the
concept of transaction atomicity may have to be redefined.

3.2.3 Integrity checkpoints
In the case of complex transactions consisting of multiple operations, the abort of the

complete transaction as a consequence of a constraint violation may be costly, either in terms
of the rollback operation or in terms of the work already performed. Therefore, some
approaches to constraint enforcement use the concept of integrity checkpoints, which are
points in a transaction where all constraints are enforced. When a constraint violation occurs
after an integrity checkpoint, the transaction can be undone back to this checkpoint, and
does not have to be undone completely. User-defined integrity checkpoints are suggested in
the System R approach to constraint handling [91]. It should be noted, however, that a
partial transaction rollback does not fit nicely in the concept of transaction atomicity. As
described in Section 2.3, the principle of transaction atomicity implies that only the
pre-transaction and post-transaction database states are taken into account in determining
the correctness of a transaction.

In the SABRE project, integrity checkpoints are used to find points in a transaction where

Integrity control in RDBSs 197

certain constraints can be enforced, such that they do not have to be postponed until commit
time [79, 91]. In this approach, integrity checkpoints are automatically established by the
system through an analysis of the transaction and the constraints.

3.3. Constraint specification

The specification of integrity constraints is an important research issue, because the
specification formalism can determine both the functionality of the constraint handling
mechanism and the userfriendliness in database design. Four approaches to constraint
specification can be distinguished:

Language-oriented In the language-oriented approach, constraints are specified in some kind
of data definition language. This can either be an extension to the general data definition
language of the system or a special-purpose constraint definition language.

Form-oriented In the form-oriented approach, constraints are specified by filling in condi-
tions in forms generated by the system. Mostly, these forms are a representation of
existing relations, like in the QBE system [97, 98] (see also Section 4.2).

Toolbox-oriented The toolbox-oriented approach allows the construction of constraint
specification with the use of toolboxes providing building blocks and construction primi-
tives for constraints. An example of this approach can be found in the SuperBase system
[86].

Graphics-oriented In the graphical approach, cofastraints are specified by arranging graphical
symbols representing constraint constructs in a graphical workspace. An example in the
context of entity-relationship schema definition is the graphical schema editor of the
SUPER database visual environment [3].

The form-oriented, toolbox-oriented, and graphics-oriented approaches usually concentrate
on userfriendliness, whereas the language-oriented approach tends to put more stress on
expressive power. Therefore, the language-based approach can be considered the most
general. Since user interfaces are not a main topic in this paper, the sequel of this section will
be devoted to the language-based approach.

In its most complete form from an operational point of view, the specification of an
integrity constraint I is a triplet It, c, a] with the following elements:

Triggers The trigger set t specifies the update types that may violate I;
Condition The constraint condition c specifies the boolean predicate that has to be satisfied

by either a database state or a database transition;
Action The violation response action specifies the action to be executed upon a constraint

violation.

In other approaches, like [17, 18], this triplet is denoted in the fully equivalent notation of a
production rule:

W H E N t
I F c
T H E N a

Note that the specification of triggers is of an operational nature; in general, the triggers can
be derived from the constraint rule [17, 18, 46, 47].

Below, the specification of these elements in language-oriented approaches is discussed.

198 P.W.P.J. Grefen, P .M.G. Apers

The most important part of a constraint is the condition. Therefore, attention is first paid to
a number of condition specification language classes. Next, the specification of triggers and
violation response actions is discussed. The section is concluded with a few words on the
procedural approach to the specification of constraints; this approach uses an integrated
imperative specification of triggers, condition, and violation response action.

3.3.1 Relational algebra based approach
In the relational algebra approach, constraints are expressed in (some extension of) the

relational algebra. A common way to express a constraint is to specify a relational expression
that calculates the tuples in the database that do not satisfy the constraint. In this way,
example constraints I1 and 12 are expressed as follows:

I1: o-~tcp~r,,>obeer

12: beer - 7r n b d_by,type,alcperc(b e e r ~ b d by-,~mebrewery)

Some approaches add special-purpose constructs to the relational algebra to be able to
specify constraints (see for instance the approach in the PRISMA project in Section 4.6).

3.3.2 Relational calculus based approach
In the relational calculus approach, two variants can be used: the tuple and domain

calculus [90]. In tuple relational calculus example constraints I1 and I2 are expressed by
describing the violating tuples as follows:

I1: {tl beer(t) ^ -~(t[3] > 0)}

12: {tl (Vu)(beer(t) ^ (Tbrewery(u) v t[2] ~ u[1]))}

In domain relational calculus we have for the same constraints:

I1: {tuvwlbeer(tuvw) ^ 7(w > 0)}

I2: (tuvw[(Vx , y, z)(beer(tuvw) ^ (Tbrewery(xyz) v u ~ x))}

Instead of 'pure' relational calculus, also query languages based on relational calculus can be
used. The SQL language is frequently used for constraint specification, for instance in
[2, 17]. Using the notation of [17], constraints are expressed by an SQL predicate denoting
the tuples that violate the constraints. The example constraints are specified in this notation
as follows:

I1: alcperc(= 0

12: brewed_by N O T IN (S E L E C T name FROM brewery)

3.3.3 Logic programming approach
In a logic programming approach, constraints are specified in a Prolog-like syntax.

Constraints can be specified by logic clauses that define the correct tuples. The example
constraints then can look like:

11: beer(. Z) : - Z > 0 .

I2: beer(_, Y) : - brewery(Y) .

In [19] a predicate incorrectdb is introduced that states if a database state is incorrect. Using
this approach, the example constraints look as follows:

11: incorrectdb : - beer(. Z), Z(= 0.

I2: incorrectdb : - beer(_, Y), not(brewery(Y)) .

Integrity control in RDBSs 199

The logic approach is especially used in the deductive database field. In [69] logic is used for
constraints and meta-constraints.

3.3.4 Special-purpose languages
Several proposals have been made for special-purpose languages or language constructs to

facilitate the specification of constraints. Some examples are discussed below.

Constraint equations
In [66] the use of constraint equations is discussed. Constraint equations are declarative

expressions of constraints that require consistency between several relations.
The following example of a constraint equation specifies that the projects of a manager are

to be the same as the set of projects his employees work on:

manager.project = = manager, employee.project

Constructs for common constraints
Several approaches to constraint specification use simple special-purpose language con-

structs for commonly used constraints and provide a general mechanism for other con-
straints. This approach is used for example in the SABRINA system [40, 91]. Referential
integrity constraint 12 can be specified in this system as follows:

A S S E R T R E F E R E N T I A L D E P E N D E N C Y
beer. brewed_by FROM brewery, name

3.3.5 Constraint triggers
Many approaches to constraint specification allow or require the specification of triggers

with the constraint rule, indicating the types of updates that may violate the constraint.
Triggers are used for several purposes:

System simplification Explicit specification of triggers avoids part of automatic constraint
analysis by the system. This simplifies the constraint handling system, but puts the burden
on the shoulders of the database designer.

Enforcement efficiency Allowing the database designer to specify application characteristics
in the form of triggers may enhance the efficiency of constraint enforcement. The database
designer may know for example that certain update types will never violate certain
constraints in practice.

Enhanced functionality In some cases the possibility to specify triggers can enhance the
functionality of the constraint handling subsystem. This is illustrated by the following
example on relation drinker. If an application requires that only tuples with attribute
qty_drunk equal to 0 may be deleted, the following constraint may be specified:

on delete drinker: qty_drunk = 0

The use of triggers provides a procedural but simple mechanism for the specification of
this type of constraints. If the values of deleted tuples can be addressed explicitly, this
constraint can be specified more declaratively. 4

4 Using the nota t ion for differential sets as explained in Section 3.6.1, the example constraint can be specified in a
logic formal ism as follows:

(Vx ~ drinker-, qty drunk)(x = O).

200 P.W.P.J. Grefen, P.M.G. Apers

3.3.6 Violation response actions
The default violation response action in most approaches to constraint handling is

transaction abort. In some cases, the application may require other actions, such as
cascading updates [29]. We take the referential integrity constraint as an example here; one
case of this constraint can be specified as:

12 = [t, r, a]

t = {insert(beer)}
r = brewed_by N O T IN (SELECT name FROM brewery)
a = INSERT INTO brewery VALUES (brewed_by, null, null)

Note that the specification of a violation response action has imperative semantics. There-
fore, a purely declarative view on constraints cannot be used when actions are specified. This
complicates the semantics of constraint enforcement.

A different approach to specifying constraint violation actions is the specification of
integrity dependencies [61]. These dependencies denote which variables in constraints can be
modified upon a violation detection (dependent variables) and which cannot (independent
variables). Take constraint 14 of the example database as an illustration of this technique to
describe violation response actions. The definition of this constraint is the following:

(Vx E drinker)(x, qty_bought >I x. qty_drunk)

If qty_bought would be declared the dependent variable and qty_drunk the independent
variable, a violation of this constraint would be repaired by increasing the value of
qty_bought to that of qty_drunk.

3.3.7 Procedural approach
The procedural approach to the specification of integrity constraints uses programming

language concepts to build 'constraint enforcement procedures'. This kind of constraint
specification is of an imperative nature, whereas the approaches to the specification of rules
as discussed before are of a declarative nature. An example is the way in which constraints
are specified in the SYBASE system [64, 88]. A partial specification of example integrity
constraint 12 is given in Table 3. The shown trigger procedure specifies the effect of the
deletion of brewery tuples. It will be clear that this approach to constraint specification is less
friendly and more error-prone than the declarative approach.

Table 3
Example constraint in SYBASE

create trigger delete_brewery on brewery for delete as
begin

declare @del_beer int
select @del_beer = count(*)
from deleted, beer
where deleted.name = beer.brewed_by
if @del_beer > 0
begin

raiserror 1 "deletion of brewery failed"
rollback transaction

end
end

Integrity control in RDBSs 201

3.4. Constraint verification

When new integrity constraints are defined on a database, it has to be checked if the
constraints themselves are valid syntactically and semantically. This process is called
constraint verification here. The verification of a new constraint includes the following issues
(see also [89, 10]):

• Checking the syntactic correctness or well-formedness of the constraint with respect to
the syntactic rules for specifying constraints.

• Checking the semantic correctness of the individual constraint. Relevant aspects are for
example: do all used relations and attributes exist, are comparisons made only between
compatible operandsS?

• Checking if the constraint is not violated by the database state at the time the constraint
is defined. If the constraint does not hold at definition time, it is likely that no update
on the database will succeed any more. Clearly, this check can only be performed for
state constraints.

• Checking if the constraint is not implied by already existing constraints. If so, the new
constraint is superfluous. Although a redundant set of constraints is semantically
correct, it is undesirable from viewpoints of efficiency and constraint maintenance.

• Checking if the constraint is not contradicted by already existing constraints, i.e.
checking the consistency of the constraint set. If the set of constraints is inconsistent, no
valid database states or transitions can exist if the constraint is accepted. Note that for
state constraints, checking the constraint successfully against the current database state
is sufficient to prove that there is no contradiction.

• Checking if the violation response action does not trigger an infinite process of
compensating actions due to the interaction with other constraints (see e.g. [18]).

The relevance of the first three issues can be seen as generally accepted. These checks should
be supported by every real world database system supporting constraints and pose no
fundamental problems. The last three issues are mainly discussed in the research area. Some
fundamental problems have to be solved here.

3.4.1 Consistency of a set of constraints
The issue of consistency of a set of constraints has received some attention in literature.
Practical work on constraints and meta-constraints defining the validity of a set of

constraints is described in [69]. A method to detect a contradiction between constraints is
described in a logic programming context. The approach is rather informal and based on a
single application.

A formal treatment based on logic of constraint set consistency is given in [11]. A
constraint set is consistent when it is satisfiable. This work distinguishes between finitely
satisfiable and infinitely satisfiable; finitely satisfiable implies the existence of a finite model
for the set of constraints, whereas infinitely satisfiable implies the existence of infinite models
only. Constraint sets are considered acceptable only when they are finitely satisfiable,
because databases can have finite contents only. The following set of constraints defined on a
personnel database is an example of a consistent but not finitely satisfiable set (taken from
[11]):

• everybody works for somebody;
• nobody works for himself;
• if x works for y and y works for z, then x works for z.

s This issue is related to the concept of underlying domain as introduced in the ALPHA language [24]. This
concept allows the database designer to specify that certain attributes are not compatible, even though they have the
same basic domain.

202 P.W.P.J. Gre/en, P.M.G. Apers

3.4.2 Finiteness o f compensating actions
The issue of infinite compensating actions is addressed in [17, 18]. The problem of

guaranteeing termination of the constraint enforcement process in case of compensating
violation response actions is described to be 'almost certainly undecidable in the general
case'. Therefore, the infinite action detection algorithms perform a worst case analysis of the
constraint violation actions using a triggering graph, and issue a warning in case of potential
cyclic behavior. The actual decision is further left to the discretion of the database designer.

3.5. Constraint translation

The requirements on languages for constraint specification by a database designer and
constraint enforcement by the database system are generally different. Specification lan-
guages focus on ease of use and declarative semantics, whereas enforcement languages
require efficiency and imperative semantics. Therefore, a translation between the two types
of languages may be necessary. The approach as described in [43, 46] is an example. Here,
constraints are specified in first-order logic and enforced in an extension to the relational
algebra.

Further, some systems allow users to use special language constructs to define commonly
used constraints in an easy way. These language constructs have to be translated to the
general constraint specification formalism (or directly to the enforcement formalism).

3.6. Constraint optimization

The execution cost of constraint enforcement is one of the major problems in the field of
constraint handling. Therefore, constraint optimization is of great importance. The topic has
many similarities with query optimization (see e.g. [16]).

Various types of optimization can be applied to integrity constraints:
• The amount of data to be checked in constraint enforcement can be reduced by

evaluating the constraints only on the relevant parts of relations.
• The constraint rules can be manipulated algebraically to obtain equivalent rules that can

be evaluated cheaper.
• In a distributed system with fragmented relations, fragmentation knowledge can be used

to reduce the number of fragments used in a constraint.
• The constraint rules can be transformed using semantic knowledge about the applica-

tion being modelled by the database and about the database itself.
These topics are discussed below in more detail.

3.6.1 Data reduction
A reduction of the amount of data to be checked in constraint enforcement can be

obtained by inspecting only those parts of relations that have been changed in a relevant
way. This is usually accomplished by the use of differential sets [79, 40, 43]. In this approach,
each relation consists of three sets:

Base set The base set contains the tuples that have not been changed by the current
transaction. For a relation R, this set can be denoted as R °.

New set The new set contains tuples that have been inserted and the new values of tuples
that have been modified by the current transaction. The new set is usually denoted as R +.

Old set The old set contains tuples that have been deleted and the old values of tuples that
have been modified by the current transaction. The old set is usually denoted as R-.

Integrity control in RDBSs 203

Using these sets, constraint rules can be reformulated. Take as an example the domain
constraint rule r 1 below that can be reformulated into r2:

r 1" (VX E beer.alcperc)(x > O)
r2: (Vx E beer+.alcperc)(x > 0).

Differential sets can be easily implemented using indexes or markings on the tuples in a
relation to mark the sets. The principle of data reduction is also used in [17, 18].

3.6.2 Syntactical rule manipulation
Various approaches to the manipulation of integrity constraint rules are described in

literature. In [68] the simplification of integrity constraints in first-order logic is described.
The basic principle of the described method relies on the instantiation of formulas obtained
by substituting for some of their variables the (or some of the) constants occurring in the
inserted (or deleted, or updated) tuple. The technique is only applicable to transactions
updating multiple tuples, if the order of the operations in a transaction is immaterial. In [58]
the simplification of constraints in the context of general transactions is described. The
simplification is based on the prefix of the constraint (quantifiers). In [43, 47] the rewriting is
discussed of constraints on fragmented relations specified in a first-order logic formalism.
The rewriting consists of pushing quantifiers through set unions and is comparable with
pushing operations through unions in relational algebra as described in [16].

3.6.3 Usage of fragmentation knowledge
Similar to the use of fragmentation knowledge in query optimization [16], fragmentation

knowledge can be used for the optimization of constraints in systems with fragmented
relations [43, 47]. An important example is a referential integrity constraint between two
horizontally fragmented relations. If the referencing relation is fragmented on the referenc-
ing attributes (foreign key) and the referenced relation is fragmented on the referenced
attributes (key) using the same fragmentation algorithm, the enforcement of the referential
integrity constraint can be reduced from a pairwise checking of all combinations of fragments
of the two relations to a pairwise checking of the compatible fragments only.

3.6.4 Semantical rule manipulation
Constraint rules can be manipulated by applying semantic knowledge about application

and/or database. A knowledge-based approach to constraint optimization and enforcement
is described in [71]. In this approach, a constraint manager keeps a knowledge base with
semantic knowledge about application and database. The knowledge is extracted from the
database schema definition, from user-defined constraints, and from the results of continuous
monitoring of the database state. The knowledge is used to optimize and enforce constraints.
The ideas are, however, a long way from practical applicability.

3.7. Constraint enforcement

This section first discusses the constraint enforcement strategy: prevention or detection of
constraint violations. Next, attention is paid to the handling of the various kinds of system
responses to constraint violations.

3.7.1 Violation prevention versus violation detection
Essentially, there are two strategies to enforce integrity constraints [79, 40]:

Violation prevention is used, if integrity constraints are enforced before the updates of a

204 17. W. P.J. Grefen. P.M.G. Apers

transaction are actually applied to the database. In case of a violation, the transaction is
aborted, and there is no need to undo any changes to the database.

Violation detection is used, if integrity constraints are enforced after the updates of a
transaction have actually been applied to the database. In case of a violation, the
transaction is aborted, and the changes performed by the transaction to the database have
to be undone.

From a complexity point of view, the violation detection technique is preferable to the
prevention technique, since updates can be applied to the database, the constraints can be
evaluated against the database, and standard recovery techniques can be used to undo
updates in case of a violation. For this reason, the detection technique is used in most of the
earlier systems, like DB2 [91]. From a performance point of view, the prevention method is
generally preferable, since it eliminates the need to undo changes to a database, which is
costly in a disk-based environment. In a main-memory database system, however, this does
not hold. Further, in a main-memory system like PRISMA/DB [95, 1], it is hard to
distinguish between the database storage and the transaction workspace, since both are
managed by the same processes in the distributed memory of the system. In such a situation,
it is questionable if the distinction between prevention and detection has to be made (see
below).

3.7.2 Violation prevention techniques
Constraint violation prevention can be carried out with a number of rather different

techniques. These techniques are described in detail below.

Transaction analysis
One approach to constraint violation detection is to analyze update transactions statically,

i.e. without taking the database state upon which they will be executed into consideration.
This process is called verifying the safeness or consistency of the transaction. As stated in
Section 2, a transaction T is safe or consistent with respect to a set of integrity constraints 5~
and a database schema @, if it cannot violate the integrity of any database state conforming
to the schema:

safe(T)C~(VD E ~)(5~(D) ~ ~(D, T(D))) .

If the transaction is found to be consistent, it can be executed against the database without
any further constraint enforcement. If the transaction is found to be inconsistent, it is simply
rejected. In [38], the consistency of transactions is analyzed with Hoare's axiomatic approach
to program correctness. In [92] a knowledge-based approach is described. A positive aspect
of the technique is that it can be applied at transaction definition time and does not imply
any constraint enforcement overhead at transaction execution time. An evident shortcoming
of the technique is, however, that it cannot be used for arbitrary transactions and con-
straints, since it does not take the dynamic properties of the database into account.

Query modification
In the query modification approach to constraint enforcement, updates to be performed on

the database are modified such that they cannot violate the integrity of the database [81].
After modification, the updates can be executed without any checks. Updates are modified
by extending the update qualification predicate with a predicate derived from a constraint
definition. Take as an example relation beer and domain constraint I1 as described in Section
2.4. The following update statement:

Integrity control in RDBSs 205

U P D A T E beer
S E T alcperc = alcperc - 1
W H E R E brewed_by = " Geineken"

is modified to the following statement:

U P D A T E beer
S E T alcperc = alcperc - 1
W H E R E brewed_by = "Geineken" A N D alcperc > 1

The query modification approach has two major drawbacks. In the first place, the approach
is not applicable to all constraint types [77]. In the second place, it does not comply with the
transaction atomicity principle since it merely 'filters out' tuples violating a constraint, but
does change the other tuples [46, 47]. If the beer relation contains the tuples shown in Table
4, the update shown above changes two tuples of brewery Geineken, but leaves one tuple as
it is, and is thus not executed atomically as defined originally.

Transaction workspace
Using the transaction workspace approach to constraint violation prevention, the updates

to be performed to the database are carried out in a temporary workspace of the transaction.
Next, the constraints are evaluated on this workspace and, if necessary, the database. If a
constraint violation is detected, the updates in the workspace are simply not propagated to
the database. If possible, the transaction workspace is kept in main memory to avoid
unnecessary disk accesses. The transaction workspace method is used in the SABRE/
SABRINA project [79, 40]; details can be found in Section 4.4.

3.7.3 Violation response actions
When an integrity constraint violation occurs, the system has to execute a violation

response action. In general, three classes of response actions can be distinguished:

Error message The most simple (but least satisfactory) approach to handling a constraint
violation is issuing an error message to the user or application causing the violation. Note
that this approach fully relies on the user to get the database back into a consistent state.
Constraints that trigger this type of violation response action are called soft assertions in
[351.

Transaction abort A commonly used approach to handling a violation is triggering a
transaction abort. In case of constraint enforcement through prevention, the updates
performed by the transaction causing the violation are simply not propagated to the
database. In case of enforcement through detection, the updates of the transaction have to
be undone, possibly by using the recovery mechanism of the system.

Table 4
Example beer relation

Name Brewedby Type Alcperc

Pilsner Gold Geineken Pilsner 5.0
Super Bock Geineken Bock 7.0
Ultra Light Geineken Light 0.5
Extra Stout Huinness Stout 6.0

206 P.W.P.J. GreJen, P.M.G. Apers

Compensating updates The most complex but also most flexible approach to handling a
constraint violation is allowing the database designer to specify compensating updates as
violation response actions. A theoretical treatment of compensating updates can be found
in [14].

It is also possible, of course, to use a combination of the three approaches described above,
to give the database designer maximum flexibility.

3.8. Distribution and parallelism

Constraint handling should be an integral part of distributed database systems too.
Distribution of the database over various sites or nodes has two effects.

In the first place, relations are generally fragmented and allocated on various sites or
nodes [16]. This brings two new problems to constraint handling. Constraints specified in
terms of relations have to be translated to constraints specified in terms of relation
fragments; this problem is discussed in [43, 47]. Also, it has to be decided where the
constraint enforcement processes have to take place; a discussion of this issue can be found
in [78].

In the second place, distributed systems often offer parallel processing capabilities. These
capabilities can be used to support parallel constraint enforcement, thereby reducing the
response times of constraint enforcement; this is very important, since the processing costs of
constraint enforcement are generally considered one of the main problems in constraint
handling. It may be clear that parallel processing is more appropriate in distributed database
systems in a multi-processor environment, than in a wide-area network environment.

3.8.1 Relation fragmentation
The translation of constraints from the relation to the fragment level can be performed in

the same way as regular queries (see e.g. [16]). The translation consists of the following steps
[43, 47]:

Canonical fragment form The constraints are first translated to the canonical fragment form.
This form is obtained by replacing all references to global relations by the reconstruction
of these relations from their fragments.

Distributed fragment form As a second step, the canonical fragment form is distributed, to
avoid the reconstruction of global relations and to improve the possibilities for parallel
enforcement.

Optimized fragment form The distributed fragment form can then be optimized in a number
of ways to obtain constraints that can be enforced more efficiently. An optimization that is
closely related to relation fragmentation is the omission of parts of constraints that can
never be violated due to fragmentation constraints.

In general, this translation of constraints can be performed at constraint definition time. A
retranslation may be necessary, however, when the fragmentation and/or allocation of
fragments used in the constraints changes.

3.8.2 Parallel enforcement
In principle, the same parallel processing possibilities can be used for constraint enforce-

ment as for regular query execution. The following parallelism taxonomy can be used [95]:

Integrity control in RDBSs 207

Inter-transaction parallelism In a multi-user database system, several transactions can be
executed in parallel. As a consequence of this, the constraint enforcement process of these
transactions can be executed in parallel, as far as this does not violate the serializability of
concurrently executing transactions.

Inter-constraint parallelism Within one transaction, the enforcement of several constraints
can be executed in parallel. This process is closely related to the scheduling of the
execution of various actions within one transaction [48].

Intra-constraint parallelism Within the enforcement of one constraint, we have the same
possibilities for parallelism as within the execution of one single query, by executing the
various relational operators in parallel. Intra-constraint parallelism can be subdivided
further in:

Task spreading Task spreading parallelism is obtained by executing the same operator on
the various fragments of a relation or intermediate result in parallel.

Pipelining Pipelining parallelism is obtained by executing the various stages of relational
operators within the execution of a constraint in parallel.

3.9. Special system support

One of the main problems of constraint enforcement is the large cost associated with it.
Therefore, techniques have been developed to improve the efficiency of constraint enforce-
ment. In general, three approaches can be distinguished. First, the database system can keep
special (redundant or summary) data that facilitate the evaluation of constraints. Secondly,
the system can support special-purpose low level algorithms for constraint enforcement.
Thirdly, the system can be equipped with special-purpose hardware to speed up constraint
enforcement. The first two approaches can be used in general database systems. The last
approach is usually restricted to high-performance database machines. The various ap-
proaches are discussed below in detail.

3.9.1 Redundant data
One way to reduce the cost for integrity constraint enforcement is to have the database

system keep redundant data that can be used in the evaluation of integrity constraints. A
form of redundant data that is used very frequently in database systems is an index. This
type of low level data will not be considered here.

In [6] the use of redundant data is described for the enforcement of certain classes of
integrity constraints called two-free assertions. The redundant data required for constraint
enforcement are aggregates (minima and maxima of domains). The correctness of the
algorithms is demonstrated using Hoare's program logic. The method is only applicable to
single-tuple inserts and deletes.

In the SABRE system [77, 79] redundant aggregate values are maintained by the system to
reduce the costs of enforcing constraints with aggregates.

3.9.2 Low level algorithms
In addition to a general constraint enforcement mechanism that can handle all kinds of

constraints, a system may be equipped with special-purpose low level algorithms that can
enforce heavily used constraint types more efficiently than the general mechanism. Con-
straint types that may be suited for this approach are the structural constraints of the

208 f'. W. P.J. Grefen, P.M.G. Apers

relational model: domain, referential integrity, and key uniqueness constraints (see example
constraints I1-13).

In the PRISMA project this approach is taken [44]. The parallel data management layer of
the PRISMA database system is equipped with a special-purpose interface for the specifica-
tion of certain kinds of constraints that can be enforced more or less autonomously by this
layer as part of the two-phase commit protocol.

3.9.3 Hardware support
A way to improve the performance of a database machine is the use of special-purpose

hardware. Examples are database filters that perform a first phase of filtering on disk I /O
and join processors that can perform join operations very efficiently. These special-purpose
hardware devices may also be used to speed up integrity constraint enforcement.

In [70] the use of filter chips for constraint enforcement is discussed. These filter chips are
designed to perform selection, projection, and join operations to improve the performance
of general database operations.

3.10. Constraint enforcement performance

There has not been much attention in literature for the performance analysis and
evaluation of integrity constraint enforcement in relational database systems. With per-
formance analysis, the quantitative analysis of models of constraint enforcement algorithms
is meant. With performance evaluation, the evaluation of constraint enforcement algorithms
through measurements on actual systems is meant.

3.10.1 Performance analysis
In [4] a quantitative analysis of three constraint enforcement strategies is made:
• transaction compile time enforcement, meaning that the execution of a transaction is

not started before all constraints are evaluated to hold; thus, the correctness of the
transaction is established before it is actually executed;

• transaction run time enforcement, meaning that the constraints are enforced during
transaction execution while the actual updates have not yet been carried out; note that
this is the same as violation prevention as described in [40];

• post transaction execution enforcement, in which the constraints are evaluated after all
updates have been performed against the database; this is the same as violation
detection as described in [40].

The costs of the three methods are measured only in I / O costs. A number of further
simplifications are made that limit the practical usability of the proposed model. According
to the paper, run time constraint enforcement is superior to any of the other methods
examined for realistic database operations (i.e. with most transactions committing). In some
situations, compile time enforcement yields a better performance.

In the context of the SABRE project (see Section 4.4) some attention has been devoted to
the performance modeling of constraint enforcement [77, 78]. The cost of constraint
enforcement is modeled as the number of I /O operations necessary to read and write data
f rom/ to disk. Both domain and referential integrity constraints are discussed. The method
for enforcement of domain constraints is compared quantitatively with the query modi-
fication method [81]; the analysis shows a general superiority of the SABRE approach. 6

6 This observation is, however, mainly caused by the fact that the analysis is based on the assumption that tuples
violating the constraint have to be presented to the user. As a consequence of this choice, the query modification
approach requires the execution of an additional retrieval operation, whereas the SABRE approach has the
violating tuples readily available.

Integrity control in RDBSs 209

3.10.2 Performance evaluation
The actual performance evaluation of existing constraint enforcement systems has hardly

got any attention in literature. The only known work in this field is that performed in the
context of the SABRE and PRISMA projects.

In [77] the enforcement of domain and referential integrity constraints is evaluated. For
these experiments, the SABRE system runs on a MULTICS system and manages a small toy
database. As may be expected, the experiments show that the enforcement of referential
integrity constraints is more costly than the enforcement of domain constraints. In [79]
similar experiments are described, but now with SABRE running on a SM90 machine and
managing an adapted Wisconsin database [7]; the relation sizes are still fairly small (3000
tuples).

A performance evaluation of constraint enforcement in a parallel main-memory environ-
ment has been performed in the context of the PRISMA project [49]. In the evaluation, the
DBMS runs on an 8-node shared-nothing POOMA multiprocessor. The experiments contain
enforcement of domain and referential integrity constraints on medium-size databases
(10000 and 50000 tuples). The evaluation focuses on the effects on integrity control of
parallel constraint enforcement and main-memory data storage.

4. Research system overview

This section provides an overview of a number of research projects in which database
systems were or are developed that support integrity constraints. The following systems are
discussed: System R and DB2, QBE and OBE, INGRES, SABRE/SABRINA,
POSTGRES, PRISMA, Starburst, and a few small scale projects. An introduction to a
number of these projects can be found in [91]. It should be clear that the systems discussed
in this section are not the only relational database systems that support integrity constraints.
Some other systems are commercially available that have complete integrity constraint
handling, like SYBASE [87]; there is, however, hardly any scientific literature available
discussing the details of these systems.

The larger projects are all described in three parts. The first part provides a short
introduction to the project. The second part discusses the specification and preprocessing of
integrity constraints; preprocessing includes verification, compilation, simplification, and
optimization. The third part describes the constraint enforcement algorithms. The smaller
projects are described shorter. The last part of this section presents a number of comparisons
between the systems described; in one comparison, a few other commercial systems are
included as well.

Note that the description of the systems is mainly based on the original design of the
systems. Some systems, like INGRES, have been extended later with mechanisms not
discussed in this paper.

4.1. System R and DB2

System R was developed by the IBM San Jose Research Laboratory between 1975 and
1979 [2, 22]. The system is one of the first complete prototypes of a relational database
management system. In this project the SQL language (originally called SEQUEL) has been
designed [21, 34]. The techniques developed in the system R project have been incorporated
into the commercial DB2 (and SQL/DS) system.

A functional description of a complete integrity subsystem for System R is given in [35].
The functionality described in this paper is rather complete; the actual implementation in

210 P.W.P.J. Grefen, P.M.G. Apers

system R and DB2 is, however, rather restricted (only uniqueness constraints on keys are
supported in System R [91], recent versions of DB2 also include other constraints types like
referential integrity [32]).

4.1.1 Constraint specification
The definition of an integrity constraint is established by an assertion, expressed in SQL

predicates, on a relation or a view. Any constraint that may be expressed by predicates in
the WHERE clause of an SQL query may be defined. Transition constraints are supported
by allowing the explicit specification of the OLD and NEW states of data. Further, key
uniqueness constraints can be defined.

Constraints can be declared to be IMMEDIATE, with enforcement immediately after an
update operation, or DELAYED, with enforcement at the end of a transaction. Newly
defined constraints are validated against the current database state and stored in the data
dictionary of the system.

4.1.2 Constraint enforcement
Updates performed by transactions are made on a copy of the base relations, and

constraints are evaluated on the updated copy. In case of a violation, the pre-transaction
state of the database is restored by application of the recovery mechanism of the system.
Transactions may specify integrity points, however, invoking the enforcement of the
constraints during transaction execution. This allows a partial transaction restart from the
last integrity point in case of a constraint violation.

4.2. QBE and OBE

The Query-by-Example (QBE) relational product was developed by the IBM Thomas J.
Watson Research Center in the mid-seventies [97]. The emphasis in this project was on an
easy to use form-oriented database language. QBE has been adapted to an integrated office
automation system, called OBE [99].

QBE has an integrated support for integrity constraints [98]; the emphasis is on constraints
specification, not on constraint enforcement.

4.2.1 Constraint specification
In QBE integrity constraints are specified in the same form-driven way as relations are

defined or queries are specified [97, 98, 90]. In forms representing database relation
skeletons the user can specify the constraints in an easy way, using constants, variables,
keywords, and simple constructs. The formalism supports a full range of constraint types,
among which domain constraints, uniqueness (key) constraints, functional dependencies,
inter-attribute comparisons, and transition constraints [97]. Further, the user can use triggers
to define upon which events a constraint should be enforced.

Table 5 shows a simplified example of constraints defined on a relation EMPLOYEE; the

Table 5

Example Q B E constraint definitions

Employee Name Salary Manager Department

(1) KEY
(2) CONSTR0, U)
(3) CONSTR0, U)
(4) CONSTR(D)
(5) CONSTR(I, U)

Tom
C O U N T Tom > 2
Tom

<10 000

~ T o m

• C O U N T E d = I .

Sales

Dep

Integrity control in RDBSs 211

constraints are shown in the form specified by the user. The constraint definitions have the
following meaning.
(1) The attribute NAME is the key of relation EMPLOYEE.
(2) The salaries in the Sales department must be less than 10 000. Both Sales and 10 000 are

constants in this constraint. The constraint has to be enforced upon insert or update
operations on the relation.

(3) An employee cannot be his own manager. The underlined word indicates a variable; the
name is arbitrary.

(4) Every department must have at least 3 employees. The constraint has to be enforced
upon delete operations on the relation.

(5) Each employee has exactly one manager (this is an example of a functional dependency
constraint).

4.2.2 Constraint enforcement
The QBE system does not support the explicit notion of transactions. Update commands

can, however, be grouped (a user can submit an entire screenful of commands to the
system). Integrity constraints are enforced at the end of the execution of the entire group,
thereby allowing the database to go through incorrect states during the execution of a group
of commands.

4.3. INGRES

The INGRES project was conducted at the University of California at Berkeley from 1973
to 1980. It is one of the first major efforts to build a relational database management system.
A complete description of the development of INGRES can be found in [82]. From 1981,
INGRES was marketed as a commercial product by Relational Technology Inc. The original
data definition and manipulation language of INGRES is called QUEL, a language based on
tuple relational calculus [34].

Integrity constraint support has been one of the research topics of the project. This has led
to the development of the well-known method of query modification, described in [81].

4.3.1 Constraint specification
In INGRES, the definition of an integrity constraint is expressed as a QUEL qualification.

Although algorithms for processing all types of constraints that may be expressed by
predicates are given in [81], the original implementation was restricted to single-variable
constraints without aggregates (domain and transition constraints). 7 According to [77],
constraints on deleted tuples (for instance in referential integrity constraints) and constraints
that require duplicate elimination cannot be specified.

When an integrity constraint is defined on a relation, it is verified against the current state
of that relation. Accepted constraints are stored in the data dictionary of the system, which is
organized as a metabase containing among others the relation INTEGRITY.

4.3.2 Constraint enforcement
Integrity constraints are enforced by means of query modification. This means that the

qualification of an update operation is modified with the qualification representing the
constraints defined on the relation being updated (a simple conjunction of the qualifiers is
used). As such, query modification performs constraint enforcement by prevention of
constraint violation, not by detection.

7 Recent commercial versions of INGRES include more general constraint handling mechanisms, see e.g. [64].

212 P.W.P.J. Grefen. P.M.G. Apers

As mentioned before, query modification merely places a filter on update operations to
remove incorrect values, it does not comply with transaction semantics (the atomicity of
transactions is violated).

4.4. S A B R E and SABRINA

SABRE and SABRINA 8 are relational database management systems developed in the
SABRE project at INRIA in cooperation with MASI laboratory in France [39]. The project
started in the early eighties. Most of the solutions implemented in the prototype have been
incorporated into a commercial product marketed since 1986.

One of the main research topics of the project is a complete support of semantic data
integrity [77, 79]. Further topics that are relevant here are the support of efficient transaction
management and the possibility to experiment with parallelism.

The constraint enforcement algorithms of SABRE are extended in [78] to distributed
database systems. An introduction to the basic ideas can also be found in [40].

4.4.1 Constraint specification
In SABRE and SABRINA, an integrity constraint is specified as a tuple relational calculus

assertion or by a special construct corresponding to predefined types of integrity constraints
(like referential integrity). A constraint specification in relational calculus is labeled with the
update type upon which the constraint must be enforced. New and old states of relations can
be specified explicitly to enable the specification of transition constraints.

The constraint specifications are translated by a constraint compiler into a set of
assertions, each referring to a base relation for a particular type of update. Some classes of
assertions can be further simplified to improve the efficiency of constraint enforcement [79].
The assertions are evaluated against the current database state; if no violation occurs, they
are stored in the data dictionary of the system.

4.4.2 Constraint enforcement
During transaction execution, tuples to be updated are isolated in two temporary relations

called differential relations. One contains tuples to be inserted, the other contains tuples to
be deleted. The integrity constraints are evaluated against these differential relations. If all
constraints are satisfied, the updates in the differential sets are applied to the actual
database; if a violation occurs, the updates are rejected and the user is informed. As such,
the system uses a constraint violation prevention method, rather than a detection method.

Theoretically, integrity constraints must be enforced at transaction end. The system can
detect, however, that some constraints can be enforced at the end of a single update
operation. Using this technique, it is possible to determine integrity enforcement points
within a transaction, enabling partial validation of the updates of a transaction. The current
implementation of the system enforces all constraints at transaction end.

Constraints are divided into three categories according to their enforcement cost and
complexity:

(1) individual assertions (single-relation constraints such as domain and uniqueness con-
straints);

(2) multi-relation assertions (like referential integrity constraints);
(3) assertions with aggregate functions.

For each category, an efficient enforcement algorithm is defined. For aggregate constraints,

8 The earl ier papers from the S A B R E project use S A B R E as the name for the DBMS, whereas later papers use
S A B R I N A .

Integrity control in RDBSs 213

redundant information is maintained in the database to avoid the repetitive calculation of the
aggregate values.

A quantitative analysis of the constraint enforcement algorithms for domain and referen-
tial integrity constraints can be found in [77].

4.5. POSTGRES

POSTGRES is an extended relational database management system designed at the
University of California at Berkeley during the second half of the eighties [83, 85]. The
system is the successor to the INGRES system, adding many new features like support for
complex objects, extendibility for user-defined data types and facilities for active databases
in the form of a rule system. The system is designed as close to the standard relational model
as possible. POSTGRES uses the POSTQUEL language for data definition and manipula-
tion [74]; this language is based on QUEL [55].

POSTGRES does not have special-purpose support for integrity control, but its rule
system can be used for integrity constraint enforcement [84]. The first version of the rule
system has been implemented [84, 85]; the description below is based on this version.
Because of functional shortcomings and fundamental complexity of the first version of the
rule system, it will be replaced by a second version in due course [85].

4.5.1 Constraint specification
POSTGRES supports the query language POSTQUEL [74], which is based on its

predecessor QUEL [55]. Any POSTQUEL command can be tagged with special modifiers
which change the commands to rules. These rules can be used for integrity control. Two
modifiers are relevant in the context of integrity control. A POSTQUEL command tagged
with the always modifier logically appears to run forever. Update commands used in this way
can maintain the integrity of the database. Table 6 shows how an example domain constraint
I1 can be specified using this construct. A POSTQUEL command tagged with the refuse
modifier can never run. This construct can be used to specify update operations that would
invalidate the integrity of the database. Constraint 12 in Table 6 is a partial specification of a
referential integrity constraint using the refuse modifier.

To avoid ambiguity in multiple rule semantics and to allow the specification of exception
situations, POSTGRES allows the specification of a priority level per rule.

The second version of the rule system will be based on a more conventional production
rule syntax for rule specification.

4.5.2 Constraint enforcement
In POSTGRES, integrity constraint enforcement consists of the execution of rules that

specify the constraints. The execution has two important characteristics that can be changed
by a rule optimizer to obtain optimal performance.

In the first place, the time of triggering of rules tagged with the always modifier can be
chosen. The first option is early evaluation or forward chaining, meaning that a rule is
executed when an update changes part of the database such that the execution of the rule is

Table 6
Example constraints in POSTGRES

11 delete always beer
where beer.alcperc(= 0

12 refuse delete brewery
where brewery.name = beer.brewed_by

214 P.W.P.J. Grefen, P.M.G. Apers

needed to obtain a correct state again. The second option is late evaluation or backward
chaining, meaning that a rule is executed when a database action requires access to part of
the database of which the integrity was violated by a prior update.

In the second place, the granularity of locking for rules can be chosen. 9 The options are
relation level and tuple level locking. Clearly, relation level locking is preferable in the case
when few rules are defined on a large quantity of data, whereas tuple level locking is
preferable in the situation with many rules concerning small quantities of data. The locking
strategy can be enhanced to allow dynamic escalation of tuple level locks to relation level
locks.

In the case of rules with small scope, rule execution is based on markers per tuple that
trigger actions; in the case of rules with large scope, a query rewrite scheme is used
comparable to query modification [81].

P O S T G R E S builds a graph representing rule invocations to avoid cyclical triggering of
multiple rules. If this graph is not tree-shaped, the system generates an error message.

4.6. P R I S M A

In the PRISMA project a parallel, main-memory, relational database system has been
developed [95, 1], designed to run on a shared-nothing, multiprocessor hardware architec-
ture. ~° The second operational prototype of the PRISMA database management system
(PR1SMA/DB1) includes a complete constraint handling subsystem based on transaction
modification [46, 47]. This subsystem uses parallelism for the efficient enforcement of
constraints on fragmented relations. Transaction modification is used to support a broad
class of constraint types [47]; the current implementation of PRISMA/DB1 only supports
domain, uniqueness, and referential integrity constraints, however.

4.6.1 Constraint specification
In the transaction modification approach, constraints are specified in a first-order logic

formalism (the current implementation uses a simple ad hoc formalism). Constraint defini-
tion is performed with full fragmentation and location transparency [16]. Newly defined
constraints are handled by a DBMS component called the constraint compiler.

The constraint compiler has three tasks in preparing constraints for transaction modi-
fication. First, it optimizes the constraints in a number of ways [43, 47]. Secondly, it removes
fragmentation transparency. Thirdly, it translates constraints into an extension of the
relational algebra [43, 47], called XRA [45]; the translated constraints are directly executable
by the relational execution layer of the system. The example constraints are shown in XRA
format in Table 7. I~

Table 7
Example constraints in XRA format

I2 I alarm (sel (not alcperc>0), beer)
m

12 I alarm (diff (uniq (proj (brewedby. beer)), proj (name, brewery)))

The locking strategy for rules in POSTGRES is rather complex, since the system supports no less than 13 kinds
of locks [84].

~0 The PRISMA project should not be confused with the PRISM project [76] or the PRIMA project [54, 75].
Both projects also pay attention to integrity constraint handling: PRISM deals with a knowledge based approach to
constraint management, and PRIMA deals with constraint handling in a complex object database.

L~ The alarm operator is specially included in XRA to allow the specification of constraints; the operator triggers a
transaction abort if its argument is non-empty.

Integrity control in RDBSs 215

The constraint compiler can also decide to have some constraint types enforced autonom-
ously by the relational execution layer of the system to reduce the overhead in constraint
enforcement through transaction modification [44].

4.6.2 Constraint enforcement
In PRISMA/DB, constraints are always enforced at transaction commit time, thereby

ensuring full transaction semantics. During transaction execution, the transaction manage-
ment layer of the system analyses the transaction to record which relation fragments are
updated by the transaction. When the transaction management layer reaches the commit
point of a transaction, it retrieves the constraints of updated fragments from the data
dictionary of the system, and performs some filtering on these. Next, the actual transaction
modification takes place by concatenating the constraint specifications to the transaction.
The modified transaction is executed in the same way as an unmodified transaction, using the
full possibilities for parallel execution [95, 48, 96]. In case of a constraint violation, the
modified transaction is either aborted using the normal abort protocol, or the modified
transaction performs compensating updates to reach a correct database state.

Autonomous enforcement of constraints by the relational execution layer of the system
takes place without any intervention from the transaction management layer. In case of a
constraint violation, the transaction is aborted using the normal abort protocol.

4.7. Starburst

Starburst is a prototype relational database management system under development at the
IBM Almaden Research Center [50, 62]. One of the goals of the Starburst project is to build
an extensible system that can support non-traditional applications and can serve as a testbed
for innovations and improvements in database technology. Constraint handling in Starburst
relies on a general-purpose production rules facility that is developed as an extension to
Starburst [93, 62]. This facility allows the definition of database operations that are executed
automatically whenever certain events occur or certain conditions are met. The production
rules mechanism in Starburst can also be used for the maintenance of derived data [20] and
the construction of knowledge base systems.

4.7.1 Constraint specification
In Starburst, constraints are specified in a set-oriented database rule language based on

SQL [93]. A rule in Starburst is identified by its name and the relation on which the rule is
defined. A rule further consists of four parts. The rule transition predicate specifies the
triggering operations of the rule in terms of insert, delete, and update (on specified
columns). The rule is triggered if the specified operations occurred on the specified relation
in the net effect of a database transition. The rule condition is an arbitrary SQL predicate
over the database. If it evaluates to true, the action list of the rule is executed. The rule
action list consists of arbitrary Starburst database operations, including data manipulation
operations, data definition commands and rollback requests. Finally, the precedence part of a
rule lists the rules of which the execution has to precede, respectively follow, the execution
of the rule at hand, and is used to define rule priorities. The condition and action list of a
rule may refer to both the current state of the database and transition tables that contain the
net changes to the database that have occurred during the database transition.

In [17, 18] a facility is discussed to derive these production rules from constraint definitions
stated in an SQL-based language. This facility generates the transition predicate, analyses
sets of rules for potential cyclical triggering behaviour, and performs some optimizations on
the rule conditions.

216 P.W.P.J. Grefen, P.M.G. Apers

4.7.2 Constraint enforcement
When a transaction (a sequence of SQL operations) is executed on Starburst, this may

cause a change in the database state. This state change creates the first transition that
triggers a set of rules. Taking specified precedences between rules into consideration, one
rule from this set is chosen. If the condition of the chosen rule evaluates to false, another
rule is chosen from the set. If the condition evaluates to true, the actions of the rule are
executed. The database state change composed of the original transaction and the execution
of the actions of the rule constitutes the next relevant transition for rule evaluation. A given
rule is triggered at a certain point if its transition predicate holds with respect to the
(composite) transition since the point at which its condition was most recently evaluated; if
the rule's condition has not been evaluated before, the transition is taken from the start of
the transaction. If a rollback action is encountered during rule execution, the system undoes
the transaction, including the effects o£ previously executed rule actions, and rule processing
terminates. Otherwise, rule processing terminates when the set of triggered rules is empty or
when no triggered rule has a condition that evaluates to true; in this case the entire
transaction is committed.

Rule condition evaluation and rule action execution is handled by the Starburst query
processor, thereby ensuring serializability of transactions including rule actions. The rule
system itself must enforce concurrency control for transactions that affect the set of rules in
the system, i.e. for transactions that include any form of rule definition. Also, the rule
system must provide means to roll back the effects of transactions that affect the set of rules
in the system, to guarantee atomicity of this kind of transactions in the case of transaction
abort.

4.8. Other systems

4.8.1 System by small
At the University of London a Constraint Enforcement System has been developed for a

database system based on the Binary Relational Model [80]. In this approach, constraints are
specified in a subset of first order predicate calculus. Each constraint definition is translated
into a single query specified in a logic programming formalism. The translation takes place in
a few simple rewriting steps, Upon updates against the database, the updated tuples are
matched against the set of constraints. Matched constraints are evaluated against the
database using a resolution based theorem prover. If a constraint is violated, the update
operation is aborted, and the violating tuples are presented to the user. The presented
algorithms are suited for single tuple insert and delete operations only; h~tadling of
multi-tuple update operations requires modification of the algorithms. General constraints
are supported by the system, with the exception of transition constraints and aggregate
constraints. A small scale implementation of the system has been completed.

4.8.2 AIM
AIM is an extension to the INGRES system to provide a nontrivial semantic control

mechanism [26]. The system has been developed at the University of Dortmund, Germany. 12
Following the AIM approach, integrity constraints are partitioned into two categories:
constraints that are enforced upon every relevant update of the database, and constraints
that are checked periodically (batch constraints). A constraint is specified using a QUEL-

~2 This AIM system has no relation to the IBM project with the same name, in which a DBMS for extended NF2
relations was designed [27].

Integrity control in RDBSs 217

based formalism. Constraint enforcement takes place by submitting a query with as
qualification the negation of the QUEL predicate stated in the constraint. For most
constraint types, AIM implements a detection and rollback strategy for constraint enforce-
ment. For some simple types of constraints, the system can use a prevention strategy,
making use of temporary relations. Further, the system supports transactions, by enforcing
constraints at transaction end (except for the constraints enforced by prevention).

4.9. System comparison

Below, the systems described above are compared on a number of characteristics with
respect to constraint handling: supported constraint types, constraint preprocessing charac-
teristics, and constraint enforcement characteristics.

4.9.1 Supported constraint types
An overview of the integrity constraint types supported by implemented systems is given

in Table 8.13 The table lists most systems discussed in this section plus a few commercial
systems.

Note that POSTGRES and Starburst do not have integrated support for specific constraint
types, but provide a general production rule-based extension to handle a large spectrum of
constraint types (see Sections 4.7 and 4.5 for details). Similarly, SYBASE has specific
support for some constraint types, but provides a trigger mechanism for more general types.

From this table it may be clear that some systems actually support only a very limited set
of constraint types, although some of them are based on a complete-conceptual design and
have been under development for a considerable period (like DB2 and INGRES).

4.9.2 Constraint preprocessing characteristics
In Table 9 the following characteristics of constraint preprocessing in existing systems are

listed:

Constraint verification This column in the table lists if the system supports constraint
verification as discussed in Section 3.4. Note that syntactic and simple semantic checks
(attribute types) on individual constraints are considered standard here, and are not listed
in the table.

T a b l e 8

S u p p o r t e d cons t r a in t types in i m p l e m e n t e d sys tems

D o m a i n U n i q u e Re fe r en t . Funct . Aggre - Trans - G e n e r a l

const r . (k e y) in tegr i ty depend , ga te i t ion cons t r .

D B 2 - yes
I N G R E S yes yes
O R A C L E yes yes

S A B R I N A yes yes yes yes yes yes -
P O S T G R E S ru les

P R I S M A yes yes yes

S t a r b u r s t ru les

S Y B A S E yes yes yes - - - t r iggers

U N I F Y yes yes yes

Sma l l yes yes yes yes - - -
A I M yes yes yes yes yes yes -

13 Th i s t ab l e is pa r t ly based on i n f o r m a t i o n in [91] and m a y the re fo re no t ref lect the mos t r ecen t s t a tus of c e r t a i n
sys tems . S o m e p a p e r s by o t h e r au tho r s (e.g. [63]) even s e e m to con t r ad ic t th is i n fo rma t ion .

218 P .W.P .J . GreJen, P, M . G . Apers

T a b l e 9

Cons t r a in t p rep rocess ing character is t ics in i m p l e m e n t e d sys tems

Trans la t ion

Sys t em Verification F r o m To Op t imiza t i on

D B 2 curr . s ta te -

I N G R E S curr . s tate -

S A B R I N A curr . s tate special D D L rel. calc. yes

P O S T G R E S - - yes

P R I S M A - special D D L rel. a lgebra yes

S ta rburs t - -

Small p red . calculus logic. D M L -

A I M

Constraint translation The two columns in the table under translation list if the system
supports translation from a specification language to a different internal (enforcement)
language, and if so, which language classes are used (see Section 3.3).

Constraint optimization The optimization column lists if the system supports constraint
optimization techniques.

4.9.3 Constraint enforcement characteristics
In Table 10 a number of characteristics of the constraint enforcement algorithms of

existing database systems are listed:

Enforcement strategy This column lists the constraint enforcement strategy employed by the
system: constraint violation prevention before the database is actually updated, or
violation detection after the database has been updated; further details are discussed in
Section 3.7.

Transaction atomicity This column specifies whether a system supports full transaction
atomicity; see Section 3.2 for a more complete treatment of this issue.

Integrity checkpoints Some systems use the concept of integrity checkpoints to establish the
correctness of the database at a certain point during transaction execution to enable a
partial transaction rollback (see Section 3.2).

T a b l e 10

C o n s t r a i n t e n f o r c e m e n t charac ter i s t ics of i m p l e m e n t e d sys tems

E n f o r c e m e n t T r a n s a c t i o n In tegr i ty Paral lel

S y s t e m s t ra tegy a tomic i ty checkpoin t s e n f o r c e m e n t

D B 2 de tec t ion opt ional yes -

I N G R E S p r e v e n t i o n - - -

S A B R I N A p r e v e n t i o n yes - see text

P O S T G R E S prev . / de tec t , no no no

P R I S M A see text yes - yes

S ta rburs t de tec t ion yes no -

Smal l de tec t ion - - -

A I M de tec t ion op t iona l - -

Integrity control in RDBSs 219

Parallel enforcement To decrease constraint enforcement execution times and thereby
transaction response times, parallelism may be used in constraint enforcement; further
details can be found in Section 3.8.

Two entries in the table require some comment. First, in the PRISMA system it is hard to
distinguish between enforcement through violation prevention of detection because of the
data storage organization of this system; this topic was discussed in Section 3.7. Secondly,
parallelism is a research issue in the SABRINA project [91], but the literature does not state
if parallelism is actually used in constraint enforcement.

5. Conclusions

A number of general remarks can be made with respect to the current state of the research
into integrity control in relational databases. A number of important remarks - at least from
the authors point of view - are listed below.

In general, there is still a large gap between the theoretic approach to constraint handling
and the actual implementation in complete relational database management systems. Most
implementations are incomplete, in the sense that they accept only limited constraint types,
do not support full transaction semantics etc.

The importance of transactions as atomic units of work against a database has not been
generally accepted in the research on integrity constraints. Part of the research does not take
transactions into consideration at all, part does take transactions into account, but does not
comply with the atomicity principle.

The integrity control mechanism in a database management system can be specially
constructed for this task, or can rely on some general mechanism. If a specially constructed
mechanism exists, it can be specially designed for a limited set of constraint types, or it can
be designed to handle arbitrary constraint types. So, the integrity control mechanism in a
DBMS can have one of three levels of generality (see Fig. 1): integrity control can be
performed by a mechanism designed to handle a limited set of constraint types, the task can
be performed by a mechanism designed to handle all constraint types, or it can be performed
by a general purpose rule or trigger subsystem that can be used for other tasks too.

An important criterium for the classification of integrity control mechanisms is the fact
whether the mechanism employs a violation prevention or detection technique. In a
main-memory environment where updates take place in the same memory space where the
database is actually stored, it is hardly relevant, however, to distinguish between violation
prevention using the transaction workspace model and violation detection.

Only little attention has been devoted to the performance of integrity control subsystems,

General Rule
Mechanism

General Constraint
Mechanism

Special Constraint
Mechanism

Fig. 1. Integrity control mechanisms.

220 P.W.P.J. Grefi'n, 1: M.G. Apers

both in terms of analysis and evaluation of systems. This observation is not in accordance
with the general opinion that performance is one of the key problems in real-world integrity
control. In contrast to the research in the field of query processing, there has been very little
attention for parallelism in constraint enforcement until now. Typical research on integrity
control mechanisms hardly takes parallelism into consideration, and typical research on
parallel database systems does not pay much attention to integrity control. Only in the
PRISMA project parallelism is taken as a primary research topic in the context of integrity
constraint handling.

Acknowledgements

We are grateful to Jennifer Widom from IBM Almaden Research Center for her
comments on an early version of this work, published as technical report at the University of
Twente. The referees of the DKE journal are thanked for their comments on the first
submitted version of this paper.

References

[i] P.M.G. Apers, C . A . v . d . Berg, J. Flokstra,
P.W.P.J. Grefen, M.L. Kersten and A.N.
Wilschut, PRISMA/DB: A parallel, main-
memory relational DBMS, IEEE Trans. Knowl-
edge Data Engrg. 4 (6) (1992).

[2] M.M. Astrahan et al., System R: A relational
approach to database management, ACM Trans.
Database Syst. 1 (2) (1976).

[3] A. Auddino, E. Amiel and B. Bhargava, Ex-
periences with SUPER, a database visual en-
vironment; Proc. 2nd lnternat. Conf. on Data-
base and Expert Systems Applications, Berlin,
Germany (1991).

[4] D. Badal and G. Popek, Cost and Performance
Analysis of Semantic Integrity Validation Meth-
ods, Proc. 1979 ACM SIGMOD lnternat. Conf.
on the Management of Data, Boston, USA
(1979).

[5] C. Beeri, H.J. Schek and G. Weikum, Multilevel
transaction management, Theoretical art or prac-
tical need?, Proc. 1988 lnternat. Conf. on Ex-
tending Database Technology, Venice, Italy
(1988).

[6] P. Bernstein, B. Biaustein and E. Clarke, Fast
maintenance of semantic integrity assertions
using redundant aggregate data, Proc. 6th Inter-
nat. Conf. on Very Large Data Bases, Montreal,
Canada (1980).

[7] D. Bitton, D.J. DeWitt and C. Turbyfill, Bench-
marking database systems: A systematic ap-
proach; Proc. 9th Internat. Conf. on Very Large
Data Bases, Horence, Italy (1983).

[8] BMJ Editorial, Some hospital statistics, British
Med. J. 1 (1965).

[9] E.O. de Brock, De Grondslagen van Semantische
Databases (Academic Service, 1989) (in Dutch).

[10] M.L. Brodie, Specification and verification of
data base semantic integrity, Ph.D. Thesis, Dept.
of Computer Science, University of Toronto, To-
ronto, Canada, 1978.

[11] F. Bry and R. Manthey, Checking consistency of
database constraints: A logical basis, Proc. 12th
Internat. Conf. on Very Large Data Bases, Kyoto,
Japan (1986).

[12] F. Bry, H. Decker and R. Manthey, A uniform
approach to constraint satisfaction and constraint
satisfiability in deductive databases, Proc. Inter-
nat. Conf. on Extending Database Technology,
Venice, Italy (1988).

[13] O.E Buneman and E.K. Clemons, Efficiently
monitoring relational databases, ACM Trans.
Database Syst. (3) (1979).

[14] R.A. de By, The integration of specification
aspects in database design, Ph.D. Thesis, Uni-
versity of Twente, 1991.

[15] M.A. Casanova, L. Tucherman and A.L. Fur-
tado, Enforcing inclusion dependencies and re-
ferential integrity, Proc. 14th Internat. Conf. on
Very Large Data Bases, Los Angeles, USA
(1988).

[16] S. Ceri and G. Pelagatti, Distributed Databases,
Principles and Systems (McGraw-Hill, Engle-
wood Cliffs, N J, 1984).

[17] S. Ceri and J. Widom, Deriving production rules
for constraint maintenance, IBM Research Re-
port RJ7348, IBM Almaden Research Center,
San Jose, USA, 1990.

[18] S. Ceri and J. Widom, Deriving production rules
for constraint maintenance, Proc. 16th lnternat.
Conf. on Very Large Data Bases, Brisbane,
Australia (1990).

[19] S. Ceri, G. Gottlob and L. Tanca, Logic Pro-
gramming and Databases (Springer-Verlag, Ber-
lin, 1990).

Integrity control in RDBSs 221

[20] S. Ceri and J. Widom, Deriving production rules
for incremental view maintenance, Proc. 17th
Internat. Conf. on Very Large Data Bases, Bar-
celona, Spain (1991).

[21] D.D. Chamberlin et al., SEQUEL 2: A unified
approach to data definition, manipulation, and
control, IBM J. Res. Develop. 20 (6) (1976).

[22] D.D. Chamberlin, A.M. Gilbert and R.A. Yost,
A history of System R and SQL/Data System,
Proc. 7th Internat. Conf. on Very Large Data
Bases, Cannes, France (1981).

[23] J. Chomicki, History-less checking of dynamic
integrity constraints, Proc. 8th IEEE Internat.
Conf. on Data Engineering, Phoenix, USA
(1992).

[24] E.F. Codd, A data base sublanguage founded on
relational calculus, Proc. 1971 ACM S1GFIDET
Workshop (1971).

[25] E.F. Codd, Extending the database relational
model to capture more meaning, ACM Trans.
Database Syst. (4) (1979).

[26] A.B. Cremers and G. Domann, AIM - An Integ-
rity Monitor for the database system INGRES,
Proc. 9th lnternat. Conf. on Very Large Data
Bases, Florence, Italy (1983).

[27] P. Dadam et al., A DBMS prototype to support
extended NF2 relations: An integrated view on
fiat tables and hierarchies, Proc. 1986 ACM SIG-
MOD lnternat. Conf. on the Management of
Data, Washington D.C., USA (1986).

[28] C.J. Date, Referential integrity, Proc. 7th Inter-
nat. Conf. on Very Large Data Bases, Cannes,
France (1981).

[29] C.J. Date, An Introduction to Database Systems,
Volume I1 (Addison-Wesley, Reading, MA,
1983).

[30] C.J. Date, Referential integrity and foreign keys:
Further considerations, in Relational Database
Writings 1985-1989 (Addison-Wesley, Reading,
MA, 1990).

[31] C.J. Date, A Contribution to the Study of Data-
base Integrity, in Relational Database Writings
1985-1989 (Addison-Wesley, Reading, MA,
1990).

[32] IBM DATABASE 2 Referential integrity usage
guide, IBM Corporation, 1989.

[33] H.D. Ehrich, U.W. Lipeck and M. Gogolla,
Specification, semantics and enforcement of dy-
namic database constraints, Proc. 1984 ACM
SIGMOD Internat. Conf. on the Management of
Data, Singapore (1984).

[34] R. Elmasri and S.B. Navathe, Fundamentals of
Database Systems (Benjamin/Cummings, Menlo
Park, LA, 1989).

[35] K.P. Eswaran and D.D. Chamberlin, Functional
specifications of a subsystem for data base integri-
ty, Proc. 1st lnternat. Conf. on Very Large Data
Bases, Framingham, USA (1975).

[36] K.P. Eswaran, Aspects of a trigger subsystem in
an integrated database system, Proc. 2nd Inter-
nat. Conf. on Software Engineering (1976).

[37] H. Gallaire, Impacts of logic on data bases, Proc.
7th lnternat. Conf. on Very Large Data Bases,
Cannes, France (1981).

[38] G. Gardarin and M. Melkanoff, Proving con-
sistency of database transactions, Proc. 5th Inter-
nat. Conf. on Very Large Data Bases, Rio de
Janeiro, Brazil (1979).

[39] G. Gardarin et al., Design of a multiprocessor
relational database system; IFIP 9th World Com-
puter Congress, Paris, France (1983).

[40] G. Gardarin and P. Valduriez, Relational Data-
bases and Knowledge Bases (Addison-Wesley,
Reading, MA, 1989).

[41] B.S. Goldstein, Constraints on null values in
relational databases, Proc. 7th lnternat. Conf. on
Very Large Data Bases, Cannes, France (1981).

[42] J. Gray, The transaction concept: virtues and
limitations, Proc, 7th lnternat. Conf. on Very
Large Data Bases, Cannes, France (1981).

[43] P.W.P.J. Grefen and P.M.G. Apers, Parallel
handling of integrity constraints on fragmented
relations, Proc. lnternat. Symp. on Databases in
Parallel and Distributed Systems, Dublin, Ireland
(1990).

[44] P.W.P.J. Grefen, J. Flokstra and P.M.G. Apers,
Parallel handling of integrity constraints, Proc.
PRISMA Workshop on Parallel Database Sys-
tems, Noordwijk, The Netherlands (1990).

[45] P.W.P.J. Grefen, A.N. Wilschut and J. Flokstra,
PRISMA/DB 1.0 user manual. Memorandum
INF91-06, University of Twente, The Nether-
lands, 1991.

[46] P.W.P.J. Grefen and P.M.G. Apers, Integrity
constraint enforcement through transaction modi-
fication, Proc. 2nd lnternat. Conf. on Database
and Expert Systems Applications, Berlin, Ger-
many (1991).

[47] P.W.P.J. Grefen, Integrity control in parallel
database systems, Ph.D. Thesis, University of
Twente, 1992.

[48] P.W.P.J. Grefen, Dynamic action scheduling in a
parallel database system, Proc. 4th lnternat.
Conf. on Parallel Architectures and Languages
Europe, Paris, France (1992).

[49] P.W.P.J. Grefen, J. Flokstra and P.M.G. Apers,
Performance evaluation of constraint enforce-
ment in a parallel main-memory database system,
Proc. 3rd lnternat. Conf. on Database and Expert
System Applications, Valencia, Spain (1992).

[50] L. Haas et al., Starburst midflight: As the dust
clears, IEEE Trans. Knowledge Data Engrg. (1)
(1990).

[51] M.M. Hammer and D.J. McLeod, Semantic in-
tegrity on a relational data base system, Proe. 1st
lnternat. Conf. on Very Large Data Bases,
Framingham, USA (1975).

[52] M.M. Hammer and D.J. McLeod, A framework
for database semantic integrity, Proc. 2nd Inter-
nat. Conf. on Software Engineering, San Francis-
co, USA (1976).

[53] M.M. Hammer and S.K. Satin, Efficient

222 P.W.P.J. Grefen. P.M.G. Apers

monitoring of database assertions, Proc. 1978
A C M S1GMOD Internat. Conf. on the Manage-
ment o f Data, Dallas, USA (1978).

[54] T. Harder, K. Meyer-Wegener, B. Mitschang
and A. Sikeler, P R I M A - A DBMS prototype
supporting engineering applications, Proc. 13th
lnternat. Conf. on Very Large Data Bases,
Brighton, UK (1987).

[55] G. Held et al., INGRES: A relational data base
system, Proc. 1975 Nat. Computer Conf.,
Anaheim, USA (1975).

[56] L.J. Henschen, W.W. McCune and S.A. Naqvi,
Compiling constraint-checking programs from
first-order formulas, Advances in Database
Theory, Vol. 2 (Plenum Press, New York, 1984).

[57] Y.C. Hong and Y.W. Stanley, Associative hard-
ware and software techniques for integrity con-
trol, A C M Trans. Database Syst. 6 (1981).

[58] A. Hsu and T. Imielinsky, Integrity checking for
multiple updates, Proc. 1985 A C M S1GMOD
lnternat. Conf. on the Management of Data,
Austin, USA (1985).

[59] H.F. Korth and A. Silberschatz, Database System
Concepts (McGraw-Hill, New York, 1986).

[60] A.M. Kotz, K.R. Dittrich and J.A. Miille, Sup-
porting semantic rules by a generalized event/
trigger mechanism, Proc. i988 lnternat. Conf. on
Extending Database Technology, Venice, Italy
(1988).

[61] G.M.E. Lafue, Semantic integrity dependencies
and delayed integrity checking, Proc. 8th Inter-
nat. Conf. on Very Large Data Bases, Mexico
City, Mexico (1982).

[62] G.M. Lohman, B. Lindsay, H. Pirahesh and
K.B. Schiefer, Extensions to Starburst: objects,
types, functions, and rules, Comm. A C M 34 (10)
(1991).

[63] V.M. Markowitz, Referential integrity revisited:
An object-oriented perspective, Proc. 16th Inter-
nat. Conf, on Very Large Data Bases, Brisbane,
Australia (1990).

[64] V.M. Markowitz, Safe referential integrity struc-
tures in relational databases, Proc. 17th lnternat.
Conf. on Very Large Data Bases, Barcelona,
Spain (1991).

[65] V.M. Markowitz, Problems underlying the use of
referential integrity mechanisms in relational
database management systems, Proc. 7th Inter-
nat. Conf. on Data Egnineering, Japan (1991).

[66] M. Morgenstern, Constraint equations: Declara-
tive expression of constraints with automatic en-
forcement, Proc. lOth lnternat. Conf. on Very
Large Data Bases, Singapore (1984).

[67] A. Motro, Integrity = Validity + Completeness,
A C M Trans. Database Syst. 14 (4) (1989).

[68] J.M. Nicolas, Logic for improving integrity
checking in relational data bases, Acta Inform. 18
(1982).

[69] H. Noble and T. Abbod, Meta-rules and seman-
tic integrity constraints in databases, Proc. 5th

British Nat. ConJi on Databases, Canterbury, UK
(1986).

[70] M. Penaloza and E. Ozkarahan, Integrating in-
tegrity constraints with database filters implemen-
ted in hardware, Proc. 6th lnternat. Workshop on
Database Machines, Deauville, France (1989).

[71] X. Qian and G. Wiederhold, Knowledge-based
integrity constraint validation, Proc. 12th Inter-
nat. Conf. on Very Large Data Bases, Kyoto,
Japan (1986).

[72] X. Qian and D.R. Smith, Integrity constraint
reformulation for efficient validation, Proc. 13th
lnternat. Conf. on Very Large Data Bases,
Brighton, UK (1987).

[73] K.V.S.V.N. Raju and A.K. Majumdar, Fuzzy
functional dependencies and lossless join decom-
position of fuzzy relational database systems,
ACM Trans. Database Syst. 13 (2) (1988).

[74] L. Rowe and M. Stonebraker, The POSTGRES
data model, Proc. 13th lnternat. Conf. on Very
Large Data Bases, Brighton, UK (1987).

[75] H. Sch6ning, Preserving consistency in nested
transactions, Department of Computer Science;
University of Kaiserslautern, Germany, 1989.

[76] A. Shepherd and L. Kerschberg, PRISM: A
knowledge based system for semantic integrity
specification and enforcement in database sys-
tems, Proc. 1884 ACM S1GMOD Internat. Conf.
on the Management o f Data, Boston, USA
(1984).

[77] E. Simon and P. Valduriez, Design and im-
plementation of an extendible integrity subsys-
tem, Proc. 1984 ACM S1GMOD lnternat. Conf.
on the Management o f Data, Boston, USA
(1984).

[78] E. Simon and P. Valduriez, Integrity control in
distributed database systems, MCC Technical Re-
port Number DB-103-85, MCC, Austin, USA,
1985.

[79] E. Simon and P. Valduriez, Design and analysis
of a relational integrity subsystem, MCC Techni-
cal Report Number DB-015-87, MCC, Austin,
USA, 1987.

[80] C. Small, An implementation of a constraint
enforcement system, Proc. 5th British Nat. Conf.
on Databases, Canterbury, UK (1986).

[81] M. Stonebraker, Implementation of integrity con-
straints and views by query modification, Proc.
1975 A C M SIGMOD lnternat. Conf. on the Man-
agement o f Data, San Jose, USA (1975).

[82] M. Stonebraker, ed., The INGRES Papers (Ad-
dison-Wesley, Reading, MA, 1986).

[83] M. Stonebraker and L. Rowe, The design of
POSTGRES, Proc. 1986 A C M SIGMOD Inter-
nat. Conf. on the Management o f Data, Washing-
ton DC, USA (1986).

[84] M. Stonebraker, E.N. Hanson and S.
Potamianos, The POSTGRES rule manager,
1EEE Trans. Software Engrg. 14 (7) (1988).

[85] M. Stonebraker, L.A. Rowe and M. Hirohama,

Integrity control in RDBSs 223

The implementation of POSTGRES, IEEE
Trans. Knowledge Data Engrg. 2 (1) (1990).

[86] SuperBase user and reference manual, Precision
Software Limited, Irving, USA, 1990.

[87] SYBASE SQL server, Sybase Inc., Emeryville,
USA, 1989.

[88] Transact-SQL user's guide, Sybase Inc.,
Emeryville, USA, 1989.

[89] D.C. Tsichritzis and F.H. Lochovsky, Data Mod-
els (Prentice-Hall, Englewood Cliffs, NJ, 1982).

[90] J.D. Ullman, Principles of database systems, sec-
ond edition (Computer Science Press, Rockville,
MD, 1982).

[91] P. Valduriez and G. Gardarin, Analysis and Com-
parison of Relational Database Systems (Addison-
Wesley, Reading, MA, 1989).

[92] X.Y. Wang, N.J. Fiddian and W.A. Gray, The
development of a knowledge-based database
transaction design assistant, Proc. 2nd Internat.
Conf. on Database and Expert Systems Applica-
tions, Berlin, Germany (1991).

[93] J. Widom, R.J. Cochrane and B.G. Lindsay,
Implementing set-oriented production rules as an
extension to Starburst, Proc. 17th Internat. Conf.
on Very Large Data Bases, Barcelona, Spain
(1991).

[94] G.A. Wilson, A conceptual model for semantic
integrity checking, Proc. 6th Internat. Conf. on
Very Large Data Bases, Montreal, Canada
(1980).

[95] A.N. Wilschut, P.W.P.J. Grefen, P.M.G. Apers
and M.L. Kersten, Implementing PRISMA/DB
in an OOPL, Proc. 6th Internat. Workshop on
Database Machines, Deauville, France (1989).

[96] A.N. Wilschut and P.M.G. Apers, Dataflow
query execution in a parallel main-memory en-
vironment, Proc. I st lnternat. Conf. on Parallel
and Distributed Information Systems, Miami
Beach, FL, USA (1991).

[97] M.M. Zloof, Query-By-Example: The invocation
and definition of tables and forms, Proc. 1st
lnternat. Conf. on Very Large Data Bases,
Framingham, USA (1975).

[98] M.M. Zloof, Security and integrity within the
Query-by-Example database management lan-
guage, IBM Research Report RC6982, IBM
Thomas J. Watson Research Center, Yorktown
Heights, USA, 1978.

[99] M.M. Zloof, Office-By-Example: A business lan-
guage that unifies data and word processing and
electronic mail, IBM Systems J. 21 (3) (1982).

. . . . Paul W.EJ. Grefen is an assis-
tant professor in the Informa-
tion Systems Group at the
University of Twente in the
Netherlands. He received his
Ph.D. from the University of
Twente on the topic of integri-
ty control in parallel database
systems. As a full-time re-
searcher he has worked on the
PRISMA research project
from 1987 to 1992. This pro-

- ject has resulted in a working
prototype of a parallel main-memory database ma-
chine with full database functionality, including paral-
lel inte/~rity control. His current research interests
include integrity control, active database systems, and
groupware systems.

Peter M.G. Apers is a pro-
fessor at the University of
Twente in the Netherlands.
He received his Ph.D. from
the Vrije University in Am-
sterdam. His Ph.D. thesis was
on distributed query process-
ing and data allocation. Be-
fore and after working on his
thesis he was a visiting re-
searcher at the University of
California in Santa Cruz and
Stanford University. He was

the European Program chairman of the Very Large
Data Bases Conference in 1989 held in Amsterdam.
Currently he heads a group working on object-orient-
ed data models, complex object databases, optimiza-
tion of logical query languages, parallelism in database
management systems, and database machines. He
serves on the editorial board of Data & Knowledge
Engineering and Distributed and Parallel Database
Systems. He is a member of ACM and IEEE (CS).

