29,936 research outputs found

    An Efficient Rule-Based Distributed Reasoning Framework for Resource-bounded Systems

    Get PDF
    © 2018, The Author(s). Over the last few years, context-aware computing has received a growing amount of attention among the researchers in the IoT and ubiquitous computing community. In principle, context-aware computing transforms a physical environment into a smart space by sensing the surrounding environment and interpreting the situation of the user. This process involves three major steps: context acquisition, context modelling, and context-aware reasoning. Among other approaches, ontology-based context modelling and rule-based context reasoning are widely used techniques to enable semantic interoperability and interpreting user situations. However, implementing rich context-aware applications that perform reasoning on resource-bounded mobile devices is quite challenging. In this paper, we present a context-aware systems development framework for smart spaces, which includes a lightweight efficient rule engine and a wide range of user preferences to reduce the number of rules while inferring personalized contexts. This shows rules can be reduced in order to optimize the inference engine execution speed, and ultimately to reduce total execution time and execution cost

    A formal approach to modelling and verification of context-aware systems

    Get PDF
    The evolution of smart devices and software technologies has expanded the domain of computing from workplaces to other areas of our everyday life. This trend has been rapidly advancing towards ubiquitous computing environments, where smart devices play an important role in acting intelligently on behalf of the users. One of the sub fields of the ubiquitous computing is context-aware systems. In context-aware systems research, ontology and agent-based technology have emerged as a new paradigm for conceptualizing, designing, and implementing sophisticated software systems. These systems exhibit complex adaptive behaviors, run in highly decentralized environment and can naturally be implemented as agent-based systems. Usually context-aware systems run on tiny resource-bounded devices including smart phones and sensor nodes and hence face various challenges. The lack of formal frameworks in existing research presents a clear challenge to model and verify such systems. This thesis addresses some of these issues by developing formal logical frameworks for modelling and verifying rule-based context-aware multi-agent systems. Two logical frameworks LOCRS and LDROCS have been developed by extending CTL* with belief and communication modalities, which allow us to describe a set of rule-based context-aware reasoning agents with bound on time, memory and communication. The key idea underlying the logical approach of context-aware systems is to define a formal logic that axiomatizes the set of transition systems, and it is then used to state various qualitative and quantitative properties of the systems. The set of rules which are used to model a desired system is derived from OWL 2 RL ontologies. While LOCRS is based on monotonic reasoning where beliefs of an agent cannot be revised based on some contradictory evidence, the LDROCS logic handles inconsistent context information using non-monotonic reasoning. The modelling and verification of a healthcare case study is illustrated using Protégé IDE and Maude LTL model checker

    A formal approach to modelling and verification of context-aware systems

    Get PDF
    The evolution of smart devices and software technologies has expanded the domain of computing from workplaces to other areas of our everyday life. This trend has been rapidly advancing towards ubiquitous computing environments, where smart devices play an important role in acting intelligently on behalf of the users. One of the sub fields of the ubiquitous computing is context-aware systems. In context-aware systems research, ontology and agent-based technology have emerged as a new paradigm for conceptualizing, designing, and implementing sophisticated software systems. These systems exhibit complex adaptive behaviors, run in highly decentralized environment and can naturally be implemented as agent-based systems. Usually context-aware systems run on tiny resource-bounded devices including smart phones and sensor nodes and hence face various challenges. The lack of formal frameworks in existing research presents a clear challenge to model and verify such systems. This thesis addresses some of these issues by developing formal logical frameworks for modelling and verifying rule-based context-aware multi-agent systems. Two logical frameworks LOCRS and LDROCS have been developed by extending CTL* with belief and communication modalities, which allow us to describe a set of rule-based context-aware reasoning agents with bound on time, memory and communication. The key idea underlying the logical approach of context-aware systems is to define a formal logic that axiomatizes the set of transition systems, and it is then used to state various qualitative and quantitative properties of the systems. The set of rules which are used to model a desired system is derived from OWL 2 RL ontologies. While LOCRS is based on monotonic reasoning where beliefs of an agent cannot be revised based on some contradictory evidence, the LDROCS logic handles inconsistent context information using non-monotonic reasoning. The modelling and verification of a healthcare case study is illustrated using Protégé IDE and Maude LTL model checker

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes

    Get PDF
    The application of emerging technologies of Internet of Things (IoT) and cloud computing have increasing the popularity of smart homes, along with which, large volumes of heterogeneous data have been generating by home entities. The representation, management and application of the continuously increasing amounts of heterogeneous data in the smart home data space have been critical challenges to the further development of smart home industry. To this end, a scheme for ontology-based data semantic management and application is proposed in this paper. Based on a smart home system model abstracted from the perspective of implementing users’ household operations, a general domain ontology model is designed by defining the correlative concepts, and a logical data semantic fusion model is designed accordingly. Subsequently, to achieve high-efficiency ontology data query and update in the implementation of the data semantic fusion model, a relational-database-based ontology data decomposition storage method is developed by thoroughly investigating existing storage modes, and the performance is demonstrated using a group of elaborated ontology data query and update operations. Comprehensively utilizing the stated achievements, ontology-based semantic reasoning with a specially designed semantic matching rule is studied as well in this work in an attempt to provide accurate and personalized home services, and the efficiency is demonstrated through experiments conducted on the developed testing system for user behavior reasoning

    Cloud service localisation

    Get PDF
    The essence of cloud computing is the provision of software and hardware services to a range of users in dierent locations. The aim of cloud service localisation is to facilitate the internationalisation and localisation of cloud services by allowing their adaption to dierent locales. We address the lingual localisation by providing service-level language translation techniques to adopt services to dierent languages and regulatory localisation by providing standards-based mappings to achieve regulatory compliance with regionally varying laws, standards and regulations. The aim is to support and enforce the explicit modelling of aspects particularly relevant to localisation and runtime support consisting of tools and middleware services to automating the deployment based on models of locales, driven by the two localisation dimensions. We focus here on an ontology-based conceptual information model that integrates locale specication in a coherent way
    • 

    corecore