1,315 research outputs found

    A Shibboleth-protected privilege management infrastructure for e-science education

    Get PDF
    Simplifying access to and usage of large scale compute resources via the grid is of critical importance to encourage the uptake of e-research. Security is one aspect that needs to be made as simple as possible for end users. The ESP-Grid and DyVOSE projects at the National e-Science Centre (NeSC) at the University of Glasgow are investigating security technologies which will make the end-user experience of using the grid easier and more secure. In this paper, we outline how simplified (from the user experience) authentication and authorization of users are achieved through single usernames and passwords at users' home institutions. This infrastructure, which will be applied in the second year of the grid computing module part of the advanced MSc in Computing Science at the University of Glasgow, combines grid portal technology, the Internet2 Shibboleth Federated Access Control infrastructure, and the PERMS role-based access control technology. Through this infrastructure inter-institutional teaching can be supported where secure access to federated resources is made possible between sites. A key aspect of the work we describe here is the ability to support dynamic delegation of authority whereby local/remote administrators are able to dynamically assign meaningful privileges to remote/local users respectively in a trusted manner thus allowing for the dynamic establishment of virtual organizations with fine grained security at their heart

    The PERMIS X.509 Based Privilege Management Infrastructure

    Get PDF
    This document describes the PERMIS X.509 Based Privilege Management Infrastructure, which is a trust management system as described in RFC 2704 [2]. The PERMIS Infrastructure is compared with the AAA Authorisation Framework described in RFC 2904 [4], and is shown to be compatible with it

    DyVOSE project: experiences in applying privilege management infrastructures

    Get PDF
    Privilege Management Infrastructures (PMI) are emerging as a necessary alternative to authorization through Access Control Lists (ACL) as the need for finer grained security on the Grid increases in numerous domains. The 2-year JISC funded DyVOSE Project has investigated applying PMIs within an e-Science education context. This has involved establishing a Grid Computing module as part of Glasgow University’s Advanced MSc degree in Computing Science. A laboratory infrastructure was built for the students realising a PMI with the PERMIS software, to protect Grid Services they created. The first year of the course centered on building a static PMI at Glasgow. The second year extended this to allow dynamic attribute delegation between Glasgow and Edinburgh to support dynamic establishment of fine grained authorization based virtual organizations across multiple institutions. This dynamic delegation was implemented using the DIS (Delegation Issuing) Web Service supplied by the University of Kent. This paper describes the experiences and lessons learned from setting up and applying the advanced Grid authorization infrastructure within the Grid Computing course, focusing primarily on the second year and the dynamic virtual organisation setup between Glasgow and Edinburgh

    Experiences in teaching grid computing to advanced level students

    Get PDF
    The development of teaching materials for future software engineers is critical to the long term success of the grid. At present however there is considerable turmoil in the grid community both within the standards and the technology base underpinning these standards. In this context, it is especially challenging to develop teaching materials that have some sort of lifetime beyond the next wave of grid middleware and standards. In addition, the current way in which grid security is supported and delivered has two key problems. Firstly in the case of the UK e-Science community, scalability issues arise from a central certificate authority. Secondly, the current security mechanisms used by the grid community are not line grained enough. In this paper we outline how these issues are being addressed through the development of a grid computing module supported by an advanced authorisation infrastructure at the University of Glasgow

    Comparison of advanced authorisation infrastructures for grid computing

    Get PDF
    The widespread use of grid technology and distributed compute power, with all its inherent benefits, will only be established if the use of that technology can be guaranteed efficient and secure. The predominant method for currently enforcing security is through the use of public key infrastructures (PKI) to support authentication and the use of access control lists (ACL) to support authorisation. These systems alone do not provide enough fine-grained control over the restriction of user rights, necessary in a dynamic grid environment. This paper compares the implementation and experiences of using the current standard for grid authorisation with Globus - the grid security infrastructure (GSI) - with the role-based access control (RBAC) authorisation infrastructure PERMIS. The suitability of these security infrastructures for integration with regard to existing grid technology is presented based upon experiences within the JISC-funded DyVOSE project

    Shibboleth-based access to and usage of grid resources

    Get PDF
    Security underpins grids and e-research. Without a robust, reliable and simple grid security infrastructure combined with commonly accepted security practices, large portions of the research community and wider industry will not engage. The predominant way in which security is currently addressed in the grid community is through public key infrastructures (PKI) based upon X.509 certificates to support authentication. Whilst PKIs address user identity issues, authentication does not provide fine grained control over what users are allowed to do on remote resources (authorization). In this paper we outline how we have successfully combined Shibboleth and advanced authorization technologies to provide simplified (from the user perspective) but fine grained security for access to and usage of grid resources. We demonstrate this approach through different security focused e-science projects being conducted at the National e-Science Centre (NeSC) at the University of Glasgow. We believe that this model is widely applicable and encourage the further uptake of e-science by non-IT specialists in the research communitie

    Single sign-on and authorization for dynamic virtual organizations

    Get PDF
    The vision of the Grid is to support the dynamic establishment and subsequent management of virtual organizations (VO). To achieve this presents many challenges for the Grid community with perhaps the greatest one being security. Whilst Public Key Infrastructures (PKI) provide a form of single sign-on through recognition of trusted certification authorities, they have numerous limitations. The Internet2 Shibboleth architecture and protocols provide an enabling technology overcoming some of the issues with PKIs however Shibboleth too suffers from various limitations that make its application for dynamic VO establishment and management difficult. In this paper we explore the limitations of PKIs and Shibboleth and present an infrastructure that incorporates single sign-on with advanced authorization of federated security infrastructures and yet is seamless and targeted to the needs of end users. We explore this infrastructure through an educational case study at the National e-Science Centre (NeSC) at the University of Glasgow and Edinburgh

    Semantic security: specification and enforcement of semantic policies for security-driven collaborations

    Get PDF
    Collaborative research can often have demands on finer-grained security that go beyond the authentication-only paradigm as typified by many e-Infrastructure/Grid based solutions. Supporting finer-grained access control is often essential for domains where the specification and subsequent enforcement of authorization policies is needed. The clinical domain is one area in particular where this is so. However it is the case that existing security authorization solutions are fragile, inflexible and difficult to establish and maintain. As a result they often do not meet the needs of real world collaborations where robustness and flexibility of policy specification and enforcement, and ease of maintenance are essential. In this paper we present results of the JISC funded Advanced Grid Authorisation through Semantic Technologies (AGAST) project (www.nesc.ac.uk/hub/projects/agast) and show how semantic-based approaches to security policy specification and enforcement can address many of the limitations with existing security solutions. These are demonstrated into the clinical trials domain through the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project (www.nesc.ac.uk/hub/projects/votes) and the epidemiological domain through the JISC funded SeeGEO project (www.nesc.ac.uk/hub/projects/seegeo)

    Online Project Management for Dynamic e-Collaboration

    Get PDF
    Today’s collaborative projects demand efficient and productive software application tools for the workplace that will bring remote teams together to get the work done. Dynamic e-collaboration is a necessity for virtual relations and business agreements. It depends on two distinct factors: trust and need. This paper presents a way to manage remote teams using a web application developed with ColMap model of project management in an IT company. The information exposed and shared applications with partners in collaborative projects are based on RBAC. Group collaboration and management software has been proven to successfully manage and coordinate projects.Dynamic E-collaboration, Collaboration Model, Web Application

    Advanced security infrastructures for grid education

    Get PDF
    This paper describes the research conducted into advanced authorization infrastructures at the National e-Science Centre (NeSC) at the University of Glasgow and their application to support a teaching environment as part of the Dynamic Virtual Organisations in e-Science Education (DyVOSE) project. We outline the lessons learnt in teaching Grid computing and rolling out the associated security authorisation infrastructures, and describe our plans for a future, extended security infrastructure for dynamic establishment of inter-institutional virtual organisations (VO) in the education domain
    • …
    corecore